Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3998
  • E-ISSN: 1875-6417

Abstract

Diabetic nephropathy (DN), the leading cause of end-stage renal disease, has no definite treatment so far. In fact, a combination of metabolic, hemodynamic, and immunological factors are involved in the pathogenesis of DN; therefore, effective disease management requires a holistic approach to all predisposing contributors. Due to the recent findings about the role of inflammation in the initiation and progression of kidney injury in diabetic patients and considerable advances in immunotherapy methods, it might be useful to revise and reconsider the current knowledge of the potential of immunomodulation in preventing and attenuating DN. In this review, we have summarized the findings of add-on therapeutic methods that have concentrated on regulating inflammatory responses in diabetic nephropathy, including phosphodiesterase inhibitors, nuclear factor-kB inhibitors, Janus kinase inhibitors, chemokine inhibitors, anti-cytokine antibodies, cell therapy, and vaccination.

Loading

Article metrics loading...

/content/journals/cdr/10.2174/0115733998267893231016062205
2023-11-06
2025-06-28
Loading full text...

Full text loading...

References

  1. Fernandez-FernandezB. OrtizA. Gomez-GuerreroC. EgidoJ. Therapeutic approaches to diabetic nephropathy—beyond the RAS.Nat. Rev. Nephrol.201410632534610.1038/nrneph.2014.74 24802062
    [Google Scholar]
  2. LimA. Diabetic nephropathy – complications and treatment.Int. J. Nephrol. Renovasc. Dis.2014736138110.2147/IJNRD.S40172 25342915
    [Google Scholar]
  3. ACE Inhibitors in Diabetic Nephropathy Trialist Group.Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? A meta-analysis of individual patient data.Ann. Intern. Med.2001134537037910.7326/0003‑4819‑134‑5‑200103060‑00009 11242497
    [Google Scholar]
  4. PerkovicV. HeerspinkH.L. ChalmersJ. Intensive glucose control improves kidney outcomes in patients with type 2 diabetes.Kidney Int.201383351752310.1038/ki.2012.401 23302714
    [Google Scholar]
  5. TurnbullF.M. AbrairaC. AndersonR.J. Intensive glucose control and macrovascular outcomes in type 2 diabetes.Diabetologia200952112288229810.1007/s00125‑009‑1470‑0 19655124
    [Google Scholar]
  6. KawanamiD. MatobaK. UtsunomiyaK. Dyslipidemia in diabetic nephropathy.Renal Replacement Therapy2016211610.1186/s41100‑016‑0028‑0
    [Google Scholar]
  7. KouroumichakisI. PapanasN. ZarogoulidisP. LiakopoulosV. MaltezosE. MikhailidisD.P. Fibrates: Therapeutic potential for diabetic nephropathy?Eur. J. Intern. Med.201223430931610.1016/j.ejim.2011.12.007 22560376
    [Google Scholar]
  8. ChenJ. LiuQ. HeJ. LiY. Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target.Front. Immunol.20221395879010.3389/fimmu.2022.958790 36045667
    [Google Scholar]
  9. KandaH. YamawakiK. Bardoxolone methyl: drug development for diabetic kidney disease.Clin. Exp. Nephrol.2020241085786410.1007/s10157‑020‑01917‑5 32594372
    [Google Scholar]
  10. BrosiusF.C. TuttleK.R. KretzlerM. JAK inhibition in the treatment of diabetic kidney disease.Diabetologia20165981624162710.1007/s00125‑016‑4021‑5 27333885
    [Google Scholar]
  11. MorenoJ.A. Gomez-GuerreroC. MasS. Targeting inflammation in diabetic nephropathy: a tale of hope.Expert Opin. Investig. Drugs2018271191793010.1080/13543784.2018.1538352 30334635
    [Google Scholar]
  12. WangY. ShanS.K. GuoB. The multi-therapeutic role of MSCs in diabetic nephropathy.Front. Endocrinol.20211267156610.3389/fendo.2021.671566 34163437
    [Google Scholar]
  13. DingD. DuY. QiuZ. Vaccination against type 1 angiotensin receptor prevents streptozotocin-induced diabetic nephropathy.J. Mol. Med. (Berl.)201694220721810.1007/s00109‑015‑1343‑6 26407577
    [Google Scholar]
  14. BhanotS. LeeheyD.J. Pentoxifylline for diabetic nephropathy: An important opportunity to re-purpose an old drug?Curr. Hypertens. Rep.2016181810.1007/s11906‑015‑0612‑7 26747265
    [Google Scholar]
  15. NavarroJ.F. MilenaF.J. MoraC. LeónC. GarcíaJ. Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration.Am. J. Nephrol.200626656257010.1159/000098004 17167242
    [Google Scholar]
  16. Navarro-GonzálezJF Mora-FernándezC Muros de FuentesM Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: The PREDIAN trial.J. Am. Soc. Nephrol.201526122022910.1681/ASN.2014010012 24970885
    [Google Scholar]
  17. MoosaieF. RabizadehS. FallahzadehA. Effects of pentoxifylline on serum markers of diabetic nephropathy in type 2 diabetes.Diabetes Ther.20221351023103610.1007/s13300‑022‑01250‑y 35380410
    [Google Scholar]
  18. HanS.J. KimH.J. KimD.J. Effects of pentoxifylline on proteinuria and glucose control in patients with type 2 diabetes: a prospective randomized double-blind multicenter study.Diabetol. Metab. Syndr.2015716410.1186/s13098‑015‑0060‑1 26300986
    [Google Scholar]
  19. BramanV. GrahamP. ChengC. A randomized phase I evaluation of CTP‐499, a novel deuterium‐containing drug candidate for diabetic nephropathy.Clin. Pharmacol. Drug Dev.201321536610.1002/cpdd.3 27121560
    [Google Scholar]
  20. SabounjianL. GrahamP. WuL. A first-in-patient, multicenter, double-blind, 2-arm, placebo-controlled, randomized safety and tolerability study of a novel oral drug candidate, CTP-499, in chronic kidney disease.Clin. Pharmacol. Drug Dev.20165431432510.1002/cpdd.241 27310332
    [Google Scholar]
  21. SinghB DiamondSA PergolaPE In Am J Kidney Dis. WB saunders Co-Elsevier INC 1600 John F Kennedy Boulevard, STE 1800201463A1200
    [Google Scholar]
  22. WolkR. SmithW.B. NeutelJ.M. Blood pressure lowering effects of a new long-acting inhibitor of phosphodiesterase 5 in patients with mild to moderate hypertension.Hypertension20095361091109710.1161/HYPERTENSIONAHA.109.132225 19398651
    [Google Scholar]
  23. ScheeleW. DiamondS. GaleJ. Phosphodiesterase type 5 inhibition reduces albuminuria in subjects with overt diabetic nephropathy.J. Am. Soc. Nephrol.201627113459346810.1681/ASN.2015050473 27113485
    [Google Scholar]
  24. SanzA.B. Sanchez-NiñoM.D. RamosA.M. NF-kappaB in renal inflammation.J. Am. Soc. Nephrol.20102181254126210.1681/ASN.2010020218 20651166
    [Google Scholar]
  25. PergolaP.E. KrauthM. HuffJ.W. Effect of bardoxolone methyl on kidney function in patients with T2D and Stage 3b-4 CKD.Am. J. Nephrol.201133546947610.1159/000327599 21508635
    [Google Scholar]
  26. de ZeeuwD. AkizawaT. AudhyaP. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease.N. Engl. J. Med.2013369262492250310.1056/NEJMoa1306033 24206459
    [Google Scholar]
  27. ChinM.P. BakrisG.L. BlockG.A. Bardoxolone methyl improves kidney function in patients with chronic kidney disease stage 4 and type 2 diabetes: post-hoc analyses from bardoxolone methyl evaluation in patients with chronic kidney disease and type 2 diabetes study.Am. J. Nephrol.2018471404710.1159/000486398 29402767
    [Google Scholar]
  28. MoraE. GuglielmottiA. BiondiG. Sassone-CorsiP. Bindarit.Cell Cycle201211115916910.4161/cc.11.1.18559 22189654
    [Google Scholar]
  29. RuggenentiP. NegarimM. Effects of MCP-1 inhibition by bindarit therapy in type 2 diabetes subjects with micro-or macro-albuminuria.J. Am. Soc. Nephrol.201021Suppl. 144A
    [Google Scholar]
  30. AhadA. GanaiA.A. MujeebM. SiddiquiW.A. Ellagic acid, an NF-κB inhibitor, ameliorates renal function in experimental diabetic nephropathy.Chem. Biol. Interact.2014219647510.1016/j.cbi.2014.05.011 24877639
    [Google Scholar]
  31. ZhuL. HanJ. YuanR. XueL. PangW. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway.Biol. Res.2018511910.1186/s40659‑018‑0157‑8 29604956
    [Google Scholar]
  32. SoetiknoV. SariF.R. VeeraveeduP.T. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy.Nutr. Metab. (Lond.)2011813510.1186/1743‑7075‑8‑35 21663638
    [Google Scholar]
  33. LiF. ChenY. LiY. HuangM. ZhaoW. Geniposide alleviates diabetic nephropathy of mice through AMPK/SIRT1/NF-κB pathway.Eur. J. Pharmacol.202088617344910.1016/j.ejphar.2020.173449 32758570
    [Google Scholar]
  34. KimJ.E. LeeM.H. NamD.H. Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice.PLoS One201384e6206810.1371/journal.pone.0062068 23637966
    [Google Scholar]
  35. ZhangY.W. WuC.Y. ChengJ.T. Merit of Astragalus polysaccharide in the improvement of early diabetic nephropathy with an effect on mRNA expressions of NF-κB and IκB in renal cortex of streptozotoxin-induced diabetic rats.J. Ethnopharmacol.2007114338739210.1016/j.jep.2007.08.024 17900838
    [Google Scholar]
  36. ChaoE.C. HenryR.R. SGLT2 inhibition — a novel strategy for diabetes treatment.Nat. Rev. Drug Discov.20109755155910.1038/nrd3180 20508640
    [Google Scholar]
  37. BirnbaumY. BajajM. YangH.C. YeY. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes.Cardiovasc. Drugs Ther.201832213514510.1007/s10557‑018‑6778‑x 29508169
    [Google Scholar]
  38. HeerspinkH.J.L. PercoP. MulderS. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease.Diabetologia20196271154116610.1007/s00125‑019‑4859‑4 31001673
    [Google Scholar]
  39. La GrottaR. de CandiaP. OlivieriF. Anti-inflammatory effect of SGLT-2 inhibitors via uric acid and insulin.Cell. Mol. Life Sci.202279527310.1007/s00018‑022‑04289‑z 35503137
    [Google Scholar]
  40. BakrisG.L. AgarwalR. ChanJ.C. Effect of finerenone on albuminuria in patients with diabetic nephropathy: A randomized clinical trial.JAMA2015314988489410.1001/jama.2015.10081 26325557
    [Google Scholar]
  41. MarcathL.A. Finerenone.Clin. Diabetes202139333133210.2337/cd21‑0050 34421212
    [Google Scholar]
  42. Barrera-ChimalJ. EstrelaG.R. LechnerS.M. The myeloid mineralocorticoid receptor controls inflammatory and fibrotic responses after renal injury via macrophage interleukin-4 receptor signaling.Kidney Int.20189361344135510.1016/j.kint.2017.12.016 29548765
    [Google Scholar]
  43. LattenistL. LechnerS.M. MessaoudiS. Nonsteroidal mineralocorticoid receptor antagonist finerenone protects against acute kidney injury–mediated chronic kidney disease.Hypertension201769587087810.1161/HYPERTENSIONAHA.116.08526 28320854
    [Google Scholar]
  44. JeromeJ.R. DeliyantiD. SuphapimolV. KolkhofP. Wilkinson-BerkaJ.L. Finerenone, a non-steroidal mineralocorticoid receptor antagonist, reduces vascular injury and increases regulatory T-cells: Studies in rodents with diabetic and neovascular retinopathy.Int. J. Mol. Sci.2023243233410.3390/ijms24032334 36768656
    [Google Scholar]
  45. MorenoJ.A. MorenoS. Rubio-NavarroA. Targeting chemokines in proteinuria-induced renal disease.Expert Opin. Ther. Targets201216883384510.1517/14728222.2012.703657 22793382
    [Google Scholar]
  46. DarisipudiM.N. KulkarniO.P. SayyedS.G. Dual blockade of the homeostatic chemokine CXCL12 and the proinflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease.Am. J. Pathol.2011179111612410.1016/j.ajpath.2011.03.004 21703397
    [Google Scholar]
  47. SayyedS.G. RyuM. KulkarniO.P. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes.Kidney Int.2011801687810.1038/ki.2011.102 21508925
    [Google Scholar]
  48. SullivanT. MiaoZ. DairaghiD.J. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice.Am. J. Physiol. Renal Physiol.20133059F1288F129710.1152/ajprenal.00316.2013 23986513
    [Google Scholar]
  49. de ZeeuwD. BekkerP. HenkelE. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial.Lancet Diabetes Endocrinol.20153968769610.1016/S2213‑8587(15)00261‑2 26268910
    [Google Scholar]
  50. GaleJ.D. GilbertS. BlumenthalS. Effect of PF-04634817, an Oral CCR2/5 Chemokine Receptor Antagonist, on Albuminuria in Adults with Overt Diabetic Nephropathy.Kidney Int. Rep.2018361316132710.1016/j.ekir.2018.07.010 30450458
    [Google Scholar]
  51. MoriwakiY. InokuchiT. YamamotoA. Effect of TNF-α inhibition on urinary albumin excretion in experimental diabetic rats.Acta Diabetol.200744421521810.1007/s00592‑007‑0007‑6 17767370
    [Google Scholar]
  52. LeiY. DevarapuS.K. MotrapuM. Interleukin-1β inhibition for chronic kidney disease in obese mice with type 2 diabetes.Front. Immunol.201910122310.3389/fimmu.2019.01223 31191559
    [Google Scholar]
  53. IssafrasH. CorbinJ.A. GoldfineI.D. RoellM.K. Detailed mechanistic analysis of gevokizumab, an allosteric anti-IL-1β antibody with differential receptor-modulating properties.J. Pharmacol. Exp. Ther.2014348120221510.1124/jpet.113.205443 24194526
    [Google Scholar]
  54. Perez-GomezM. Sanchez-NiñoM. SanzA. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade.J. Clin. Med.2015461325134710.3390/jcm4061325 26239562
    [Google Scholar]
  55. ZiyadehF.N. Different roles for TGF-β and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy.Diabetes Res. Clin. Pract.200882Suppl. 1S38S4110.1016/j.diabres.2008.09.016 18842317
    [Google Scholar]
  56. BenigniA. ZojaC. CornaD. Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat.J. Am. Soc. Nephrol.20031471816182410.1097/01.ASN.0000074238.61967.B7 12819241
    [Google Scholar]
  57. VoelkerJ. BergP.H. SheetzM. Anti–TGF-β1 antibody therapy in patients with diabetic nephropathy.J. Am. Soc. Nephrol.201728395396210.1681/ASN.2015111230 27647855
    [Google Scholar]
  58. HanD.C. HoffmanB.B. HongS.W. GuoJ. ZiyadehF.N. Therapy with antisense TGF-β1 oligodeoxynucleotides reduces kidney weight and matrix mRNAs in diabetic mice.Am. J. Physiol. Renal Physiol.20002784F628F63410.1152/ajprenal.2000.278.4.F628 10751224
    [Google Scholar]
  59. AssadiaslS MojtahediH NicknamMH JAK inhibitors in solid organ transplantation.J Clin Pharmacol2023jcph.232510.1002/jcph.2325 37500063
    [Google Scholar]
  60. BerthierC.C. ZhangH. SchinM. Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy.Diabetes200958246947710.2337/db08‑1328 19017763
    [Google Scholar]
  61. AssadiaslS. FatahiY. MosharmovahedB. MohebbiB. NicknamM.H. Baricitinib: From rheumatoid arthritis to COVID‐19.J. Clin. Pharmacol.202161101274128510.1002/jcph.1874 33870531
    [Google Scholar]
  62. TuttleK.R. BrosiusF.C.III AdlerS.G. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: results from a Phase 2 randomized controlled clinical trial.Nephrol. Dial. Transplant.201833111950195910.1093/ndt/gfx377 29481660
    [Google Scholar]
  63. AbdolmohammadiK. PakdelF.D. AghaeiH. Ankylosing spondylitis and mesenchymal stromal/stem cell therapy: a new therapeutic approach.Biomed. Pharmacother.20191091196120510.1016/j.biopha.2018.10.137 30551369
    [Google Scholar]
  64. LiuY. TangS.C.W. Recent progress in stem cell therapy for diabetic nephropathy.Kidney Dis.201621202710.1159/000441913 27536688
    [Google Scholar]
  65. NarayananK. SchumacherK.M. TasnimF. Human embryonic stem cells differentiate into functional renal proximal tubular–like cells.Kidney Int.201383459360310.1038/ki.2012.442 23389418
    [Google Scholar]
  66. TakasatoM. ErP.X. BecroftM. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney.Nat. Cell Biol.201416111812610.1038/ncb2894 24335651
    [Google Scholar]
  67. SongB. SminkA.M. JonesC.V. The directed differentiation of human iPS cells into kidney podocytes.PLoS One201279e4645310.1371/journal.pone.0046453 23029522
    [Google Scholar]
  68. BharadwajS. LiuG. ShiY. Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology.Stem Cells20133191840185610.1002/stem.1424 23666768
    [Google Scholar]
  69. ZavvarM. YahyapoorA. BaghdadiH. COVID-19 immunotherapy: Treatment based on the immune cell-mediated approaches.Int. Immunopharmacol.202210710865510.1016/j.intimp.2022.108655 35248946
    [Google Scholar]
  70. WuH.J. YiuW.H. LiR.X. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis.PLoS One201493e9088310.1371/journal.pone.0090883 24646687
    [Google Scholar]
  71. EzquerM.E. EzquerF.E. Arango-RodríguezM.L. CongetP.A. MSC transplantation: A promising therapeutic strategy to manage the onset and progression of diabetic nephropathy.Biol. Res.201245328929610.4067/S0716‑97602012000300010 23283438
    [Google Scholar]
  72. WangS. LiY. ZhaoJ. ZhangJ. HuangY. Mesenchymal stem cells ameliorate podocyte injury and proteinuria in a type 1 diabetic nephropathy rat model.Biol. Blood Marrow Transplant.201319453854610.1016/j.bbmt.2013.01.001 23295166
    [Google Scholar]
  73. ZhouH. TianH.M. LongY. Mesenchymal stem cells transplantation mildly ameliorates experimental diabetic nephropathy in rats.Chin. Med. J. (Engl.)20091222125732579 19951572
    [Google Scholar]
  74. LeeR.H. SeoM.J. RegerR.L. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice.Proc. Natl. Acad. Sci. USA200610346174381744310.1073/pnas.0608249103 17088535
    [Google Scholar]
  75. NagaishiK. MizueY. ChikenjiT. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes.Sci. Rep.2016613484210.1038/srep34842 27721418
    [Google Scholar]
  76. EbrahimN. AhmedI. HussienN. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway.Cells201871222610.3390/cells7120226 30467302
    [Google Scholar]
  77. BiY. StueltenC.H. KiltsT. Extracellular matrix proteoglycans control the fate of bone marrow stromal cells.J. Biol. Chem.200528034304813048910.1074/jbc.M500573200 15964849
    [Google Scholar]
  78. KumeS. KatoS. YamagishiS. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone.J. Bone Miner. Res.20052091647165810.1359/JBMR.050514 16059636
    [Google Scholar]
  79. SecchieroP. MelloniE. CoralliniF. Tumor necrosis factor-related apoptosis-inducing ligand promotes migration of human bone marrow multipotent stromal cells.Stem Cells200826112955296310.1634/stemcells.2008‑0512 18772312
    [Google Scholar]
  80. EllerK. KirschA. WolfA.M. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy.Diabetes201160112954296210.2337/db11‑0358 21911743
    [Google Scholar]
  81. ZhengD. WangY. CaoQ. Transfused macrophages ameliorate pancreatic and renal injury in murine diabetes mellitus.Nephron, Exp. Nephrol.20111184e87e9910.1159/000321034 21311199
    [Google Scholar]
  82. PetrovskyN. Immunomodulation with microbial vaccines to prevent type 1 diabetes mellitus.Nat. Rev. Endocrinol.20106313113810.1038/nrendo.2009.273 20173774
    [Google Scholar]
  83. HyötyH. LeonF. KnipM. Developing a vaccine for type 1 diabetes by targeting coxsackievirus B.Expert Rev. Vaccines201817121071108310.1080/14760584.2018.1548281 30449209
    [Google Scholar]
  84. Cavelti-WederC. TimperK. SeeligE. Development of an interleukin-1β vaccine in patients with type 2 diabetes.Mol. Ther.20162451003101210.1038/mt.2015.227 26686385
    [Google Scholar]
  85. MillerT.W. ShirleyT.L. WolfgangW.J. KangX. MesserA. DNA vaccination against mutant huntingtin ameliorates the HDR6/2 diabetic phenotype.Mol. Ther.20037557257910.1016/S1525‑0016(03)00063‑7 12718899
    [Google Scholar]
  86. RoestiE.S. BoyleC.N. ZemanD.T. Vaccination against amyloidogenic aggregates in pancreatic islets prevents development of type 2 diabetes mellitus.Vaccines20208111610.3390/vaccines8010116 32131431
    [Google Scholar]
  87. AzegamiT. NakayamaT. HayashiK. Vaccination against receptor for advanced glycation end products attenuates the progression of diabetic kidney disease.Diabetes20217092147215810.2337/db20‑1257 34155040
    [Google Scholar]
  88. CelecP. HodosyJ. GardlíkR. The effects of anti-inflammatory and anti-angiogenic DNA vaccination on diabetic nephropathy in rats.Hum. Gene Ther.201223215816610.1089/hum.2011.030 21939398
    [Google Scholar]
  89. MashitahM.W. AzizahN. SamsuN. Immunization of AGE-modified albumin inhibits diabetic nephropathy progression in diabetic mice.Diabetes Metab. Syndr. Obes.20158347355 26346342
    [Google Scholar]
/content/journals/cdr/10.2174/0115733998267893231016062205
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test