Skip to content
2000
Volume 23, Issue 12
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background: Tangeretin, present in citrus fruits, is a polymethoxy flavone with extensive pharmacological effects. It has been widely used in the clinic, but there were no detailed studies on the in vivo metabolism of tangeretin. Objective: This study aimed to establish a rapid and effective strategy to identify the metabolites of tangeretin and evaluate the biotransformation pathways of tangeretin in rats. Methods: The ultra-high performance liquid chromatography (UHPLC) equipped with a Q-Exactive Orbitrap mass spectrometer was used to identify the metabolites of tangeretin in plasma, urine and faeces of rats after intragastric administration. Based on high-resolution extracted ion chromatograms (HREICs) and parallel reaction monitoring mode (PRM), metabolites of tangeretin were identified by comparing the accurate mass, chromatographic retention times, diagnostic product ions (DPIs) and neutral loss fragments (NLFs) with those of tangeretin reference standard. Isomers were distinguished by ClogP values. Results: An efficient and integrated strategy was established for the comprehensive screening and characterizing of tangeretin metabolites through Rapid Profiling. Based on this strategy, a total of 52 metabolites were detected and identified, among which 25 metabolites were found in rat plasma, while 48 and 16 metabolites were characterized from rat urine and faeces, respectively. These metabolites were produced by demethylation, demethoxylation, hydroxylation, methoxylation, glucuronidation, glycosylation, sulfation, and their composite reactions. Interestingly, tangeretin is easy to lose methyl in vivo and becomes an intermediate product, and then other phase I and phase II reactions occur. Moreover, the characteristic fragmentation pathways of tangeretin were summarized for the subsequent metabolite identification. Conclusion: The analytical method based on UHPLC-Q-Exactive mass spectrometer has the ability to quickly clarify unknown metabolism. And the the comprehensive metabolism study of tangeretin provided an overall metabolic profile, which will be of great scientific basis for further studies on tangeretin in determining its pharmacokinetics, the bioactivity of the metabolites, and clinical applications.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/1389200224666221124103611
2022-10-01
2025-01-24
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/1389200224666221124103611
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test