Skip to content
2000
Volume 22, Issue 11
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Background: Herbal medicine Angelica dahurica is widely employed for the treatment of rheumatism and pain relief in China. Oxypeucedanin is a major component in the herb. Objectives: The objectives of this study are aimed at the investigation of mechanism-based inactivation of CYP2B6 and CYP2D6 by oxypeucedanin, characterization of the reactive metabolites associated with the enzyme inactivation, and identification of the P450s participating in the bioactivation of oxypeucedanin. Methods: Oxypeucedanin was incubated with liver microsomes or recombinant CYPs2B6 and 2D6 under designed conditions, and the enzyme activities were measured by monitoring the generation of the corresponding products. The resulting reactive intermediates were trapped with GSH and analyzed by LC-MS/MS. Results: Microsomal incubation with oxypeucedanin induced a time-, concentration-, and NADPH-dependent inhibition of CYPs2B6 and 2D6 with kinetic values of K/k 1.82 μM/0.07 min-1 (CYP2B6) and 8.47 μM/0.044 min-1 (CYP2D6), respectively. Ticlopidine and quinidine attenuated the observed time-dependent enzyme inhibitions. An epoxide and/or γ-ketoenal intermediate(s) derived from oxypeucedanin was/were trapped in microsomal incubations. CYP3A4 was the primary enzyme involved in the bioactivation of oxypeucedanin. Conclusion: Oxypeucedanin was a mechanism-based inactivator of CYP2B6 and CYP2D6. An epoxide and/or γ- ketoenal intermediate(s) may be responsible for the inactivation of the two enzymes.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/1389200222666210629114830
2021-09-01
2025-07-11
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/1389200222666210629114830
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test