Skip to content
2000
Volume 11, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

The human breast cancer resistance protein (BCRP/ABCG2) is the second member of the G subfamily of the large ATPbinding cassette (ABC) transporter superfamily. BCRP was initially discovered in multidrug resistant breast cancer cell lines where it confers resistance to chemotherapeutic agents such as mitoxantrone, topotecan and methotrexate by extruding these compounds out of the cell. BCRP is capable of transporting non-chemotherapy drugs and xenobiotiocs as well, including nitrofurantoin, prazosin, glyburide, and 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. BCRP is frequently detected at high levels in stem cells, likely providing xenobiotic protection. BCRP is also highly expressed in normal human tissues including the small intestine, liver, brain endothelium, and placenta. Therefore, BCRP has been increasingly recognized for its important role in the absorption, elimination, and tissue distribution of drugs and xenobiotics. At present, little is known about the transport mechanism of BCRP, particularly how it recognizes and transports a large number of structurally and chemically unrelated drugs and xenobiotics. Here, we review current knowledge of structure and function of this medically important ABC efflux drug transporter.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/138920010792927325
2010-09-01
2025-05-25
Loading full text...

Full text loading...

/content/journals/cdm/10.2174/138920010792927325
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test