Full text loading...
-
Review of MARCH-INSIDE & Complex Networks Prediction of Drugs: ADMET, Anti-parasite Activity, Metabolizing Enzymes and Cardiotoxicity Proteome Biomarkers
- Source: Current Drug Metabolism, Volume 11, Issue 4, May 2010, p. 379 - 406
-
- 01 May 2010
- Previous Article
- Table of Contents
- Next Article
Abstract
In this communication we carry out an in-depth review of a very versatile QSPR-like method. The method name is MARCH-INSIDE (MARkov CHains Ivariants for Network Selection and DEsign) and is a simple but efficient computational approach to the study of QSPR-like problems in biomedical sciences. The method uses the theory of Markov Chains to generate parameters that numerically describe the structure of a system. This approach generates two principal types of parameters Stochastic Topological Indices (sto-TIs). The use of these parameters allows the rapid collection, annotation, retrieval, comparison and mining structures of molecular, macromolecular, supramolecular, and non-molecular systems within large databases. Here, we review and comment by the first time on the several applications of MARCH-INSIDE to predict drugs ADMET, Activity, Metabolizing Enzymes, and Toxico-Proteomics biomarkers discovery. The MARCH-INSIDE models reviewed are: a) drug-tissue distribution profiles, b) assembling drug-tissue complex networks, c) multi-target models for anti-parasite/anti-microbial activity, c) assembling drug-target networks, d) drug toxicity and side effects, e) web-server for drug metabolizing enzymes, f) models in drugs toxico-proteomics. We close the review with some legal remarks related to the use of this class of QSPR-like models.