Skip to content
2000
image of Exploring the Gut-Brain Axis: Microbiome Contributions to Pathophysiology of  Attention  Deficit  Hyperactivity  Disorder  and  Potential  Therapeutic Strategies

Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by symptoms of hyperactivity, inattention, and impulsivity, significantly impacting individuals' daily functioning and quality of life. This manuscript explores the intricate relationship between the gut microbiome and ADHD, emphasizing the role of the gut-brain axis, a bidirectional communication pathway linking the central nervous system (CNS) and the gastrointestinal tract (GIT). The composition of gut microbiota influences several physiological processes, including immune function, metabolism, and the production of neuroactive metabolites, which are critical for cognitive functions such as memory and decision-making. The review discusses alternative therapeutic options, including dietary modifications, synbiotics, and specific diets like the ketogenic diet, which may offer promising outcomes in managing ADHD symptoms. Further research is necessary to establish the efficacy and mechanisms of action of synbiotics and dietary interventions, despite preliminary studies suggesting their potential benefits. This review article aims to provide a comprehensive overview of the current understanding of the gut microbiome's impact on ADHD, highlighting the need for continued investigation into innovative treatment strategies that leverage the gut-brain connection.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002361676250325082424
2025-04-08
2025-07-03
Loading full text...

Full text loading...

References

  1. Mahone E.M. Denckla M.B. Attention-deficit/hyperactivity disorder: A historical neuropsychological perspective. J. Int. Neuropsychol. Soc. 2017 23 9-10 916 929 10.1017/S1355617717000807 29198277
    [Google Scholar]
  2. Lange K.W. Reichl S. Lange K.M. Tucha L. Tucha O. The history of attention deficit hyperactivity disorder. Atten. Defic. Hyperact. Disord. 2010 2 4 241 255 10.1007/s12402‑010‑0045‑8 21258430
    [Google Scholar]
  3. Gerstner T. Henning O. Løhaugen G. Skranes J. Reduced interhemispheric coherence and cognition in children with fetal alcohol spectrum disorder (FASD)—a quantitative EEG study. Neuropediatrics 2024 55 4 241 249 10.1055/a‑2262‑7781 38320603
    [Google Scholar]
  4. Aliye K. Tesfaye E. Soboka M. High rate of attention deficit hyperactivity disorder among children 6 to 17 years old in Southwest Ethiopia findings from a community-based study. BMC Psychiat. 2023 23 1 144 10.1186/s12888‑023‑04636‑9 36890504
    [Google Scholar]
  5. Song P. Zha M. Yang Q. Zhang Y. Li X. Rudan I. The prevalence of adult attention-deficit hyperactivity disorder: A global systematic review and meta-analysis. J. Glob. Health 2021 11 04009 10.7189/jogh.11.04009 33692893
    [Google Scholar]
  6. Grimm O. Kranz T.M. Reif A. Genetics of ADHD: What should the clinician know? Curr. Psychiatry Rep. 2020 22 4 18 10.1007/s11920‑020‑1141‑x 32108282
    [Google Scholar]
  7. Chang Z. Lichtenstein P. D’Onofrio B.M. Sjölander A. Larsson H. Serious transport accidents in adults with attention-deficit/hyperactivity disorder and the effect of medication: A population-based study. JAMA Psychiat. 2014 71 3 319 325 10.1001/jamapsychiatry.2013.4174 24477798
    [Google Scholar]
  8. Danckaerts M. Sonuga-Barke E.J.S. Banaschewski T. Buitelaar J. Döpfner M. Hollis C. Santosh P. Rothenberger A. Sergeant J. Steinhausen H.C. Taylor E. Zuddas A. Coghill D. The quality of life of children with attention deficit/hyperactivity disorder: A systematic review. Eur. Child Adolesc. Psychiat. 2010 19 2 83 105 10.1007/s00787‑009‑0046‑3 19633992
    [Google Scholar]
  9. Mohammadi M.R. Farokhzadi F. Alipour A. Rostami R. Dehestani M. Salmanian M. Marital satisfaction amongst parents of children with attention deficit hyperactivity disorder and normal children. Iran. J. Psychiat. 2012 7 3 120 125 23139693
    [Google Scholar]
  10. Ayano G. Yohannes K. Abraha M. Epidemiology of attention-deficit/hyperactivity disorder (ADHD) in children and adolescents in Africa: A systematic review and meta-analysis. Ann. Gen. Psychiat. 2020 19 1 21 10.1186/s12991‑020‑00271‑w 32190100
    [Google Scholar]
  11. Luo Y. Weibman D. Halperin J.M. Li X. A review of heterogeneity in attention deficit/hyperactivity disorder (ADHD). Front. Hum. Neurosci. 2019 13 42 10.3389/fnhum.2019.00042 30804772
    [Google Scholar]
  12. Gnanavel S. Sharma P. Kaushal P. Hussain S. Attention deficit hyperactivity disorder and comorbidity: A review of literature. World J. Clin. Cases 2019 7 17 2420 2426 10.12998/wjcc.v7.i17.2420 31559278
    [Google Scholar]
  13. Nazarova V.A. Sokolov A.V. Chubarev V.N. Tarasov V.V. Schiöth H.B. Treatment of ADHD: Drugs, psychological therapies, devices, complementary and alternative methods as well as the trends in clinical trials. Front. Pharmacol. 2022 13 1066988 10.3389/fphar.2022.1066988 36467081
    [Google Scholar]
  14. Leon L. Tran T. Navadia M. Patel J. Vanderveen A. Cruz M.I. Le T.M. Assuah F.B. Prager V. Patel D. Costin J.M. Alternative treatments to pharmacological therapy in pediatric populations with attention-deficit/hyperactivity disorder (ADHD): A scoping review. Cureus 2024 16 3 e55792 10.7759/cureus.55792 38586804
    [Google Scholar]
  15. Johnson J. Yang J. Complementary and Alternative Treatment of ADHD in Adolescents. ADHD in Adolescents. Schonwald A. Springer Cham 2020 49 70 10.1007/978‑3‑030‑62393‑7_5
    [Google Scholar]
  16. Cortese S. Ferrin M. Brandeis D. Buitelaar J. Daley D. Dittmann R.W. Holtmann M. Santosh P. Stevenson J. Stringaris A. Zuddas A. Sonuga-Barke E.J.S. Cognitive training for attention-deficit/hyperactivity disorder: Meta-analysis of clinical and neuropsychological outcomes from randomized controlled trials. J. Am. Acad. Child Adolesc. Psychiat. 2015 54 3 164 174 10.1016/j.jaac.2014.12.010 25721181
    [Google Scholar]
  17. Rambler R.M. Rinehart E. Boehmler W. Gait P. Moore J. Schlenker M. Kashyap R. A review of the association of blue food coloring with attention deficit hyperactivity disorder symptoms in children. Cureus 2022 14 9 e29241 10.7759/cureus.29241 36262950
    [Google Scholar]
  18. Checa-Ros A. Jeréz-Calero A. Molina-Carballo A. Campoy C. Muñoz-Hoyos A. Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications. Nutrients 2021 13 1 249 10.3390/nu13010249 33467150
    [Google Scholar]
  19. Cickovski T. Mathee K. Aguirre G. Tatke G. Hermida A. Narasimhan G. Stollstorff M. Attention deficit hyperactivity disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One 2023 18 8 e0273890 10.1371/journal.pone.0273890 37594987
    [Google Scholar]
  20. Carabotti M. Scirocco A. Maselli M.A. Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. 2015 28 2 203 209 25830558
    [Google Scholar]
  21. Chaudhry T.S. Senapati S.G. Gadam S. Mannam H.P.S.S. Voruganti H.V. Abbasi Z. Abhinav T. Challa A.B. Pallipamu N. Bheemisetty N. Arunachalam S.P. The impact of microbiota on the gut–brain axis: Examining the complex interplay and implications. J. Clin. Med. 2023 12 16 5231 10.3390/jcm12165231 37629273
    [Google Scholar]
  22. Gwak M.G. Chang S.Y. Gut-brain connection: Microbiome, gut barrier, and environmental sensors. Immune Netw. 2021 21 3 e20 10.4110/in.2021.21.e20 34277110
    [Google Scholar]
  23. Altan-Bonnet G. Mukherjee R. Cytokine-mediated communication: A quantitative appraisal of immune complexity. Nat. Rev. Immunol. 2019 19 4 205 217 10.1038/s41577‑019‑0131‑x 30770905
    [Google Scholar]
  24. Marano G. Mazza M. Lisci F.M. Ciliberto M. Traversi G. Kotzalidis G.D. De Berardis D. Laterza L. Sani G. Gasbarrini A. Gaetani E. The microbiota–gut–brain axis: Psychoneuroimmunological insights. Nutrients 2023 15 6 1496 10.3390/nu15061496 36986226
    [Google Scholar]
  25. DiSabato D.J. Quan N. Godbout J.P. Neuroinflammation: The devil is in the details. J. Neurochem. 2016 139 Suppl 2 136 153 10.1111/jnc.13607 26990767
    [Google Scholar]
  26. Kim Y.S. Choi J. Yoon B.E. Neuron-glia interactions in neurodevelopmental disorders. Cells 2020 9 10 2176 10.3390/cells9102176 32992620
    [Google Scholar]
  27. Bull-Larsen S. Mohajeri M.H. The potential influence of the bacterial microbiome on the development and progression of ADHD. Nutrients 2019 11 11 2805 10.3390/nu11112805 31744191
    [Google Scholar]
  28. DeGruttola A.K. Low D. Mizoguchi A. Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016 22 5 1137 1150 10.1097/MIB.0000000000000750 27070911
    [Google Scholar]
  29. Zamanian M.Y. Taheri N. Opulencia M.J.C. Bokov D.O. Abdullaev S.Y. Gholamrezapour M. Heidari M. Bazmandegan G. Neuroprotective and anti-inflammatory effects of pioglitazone on traumatic brain injury. Mediators Inflamm. 2022 2022 1 10 10.1155/2022/9860855 35757108
    [Google Scholar]
  30. Park J.H. Potential inflammatory biomarker in patients with attention deficit hyperactivity disorder. Int. J. Mol. Sci. 2022 23 21 13054 10.3390/ijms232113054 36361835
    [Google Scholar]
  31. Solanki R. Karande A. Ranganathan P. Emerging role of gut microbiota dysbiosis in neuroinflammation and neurodegeneration. Front. Neurol. 2023 14 1149618 10.3389/fneur.2023.1149618 37255721
    [Google Scholar]
  32. Steckler R. Magzal F. Kokot M. Walkowiak J. Tamir S. Disrupted gut harmony in attention-deficit/hyperactivity disorder: Dysbiosis and decreased short-chain fatty acids. Brain, Behavior, & Immunity - Health 2024 40 100829 10.1016/j.bbih.2024.100829 39184374
    [Google Scholar]
  33. Wang L.J. Li S.C. Li S.W. Kuo H.C. Lee S.Y. Huang L.H. Chin C.Y. Yang C.Y. Gut microbiota and plasma cytokine levels in patients with attention-deficit/hyperactivity disorder. Transl. Psychiat. 2022 12 1 76 10.1038/s41398‑022‑01844‑x 35197458
    [Google Scholar]
  34. Lawrence K. Myrissa K. Toribio-Mateas M. Minini L. Gregory A.M. Trialling a microbiome-targeted dietary intervention in children with ADHD—the rationale and a non-randomised feasibility study. Pilot Feasibility Stud. 2022 8 1 108 10.1186/s40814‑022‑01058‑4 35606889
    [Google Scholar]
  35. Redondo-Useros N. Nova E. González-Zancada N. Díaz L.E. Gómez-Martínez S. Marcos A. Microbiota and lifestyle: A special focus on diet. Nutrients 2020 12 6 1776 10.3390/nu12061776 32549225
    [Google Scholar]
  36. Wang Q. Yang Q. Liu X. The microbiota–gut–brain axis and neurodevelopmental disorders. Protein Cell 2023 14 10 762 775 10.1093/procel/pwad026 37166201
    [Google Scholar]
  37. Pinto S. Correia-de-Sá T. Sampaio-Maia B. Vasconcelos C. Moreira P. Ferreira-Gomes J. Eating patterns and dietary interventions in ADHD: A narrative review. Nutrients 2022 14 20 4332 10.3390/nu14204332 36297016
    [Google Scholar]
  38. Liu L. Huh J.R. Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine 2022 77 103908 10.1016/j.ebiom.2022.103908 35255456
    [Google Scholar]
  39. Berthoud H.R. Albaugh V.L. Neuhuber W.L. Gut-brain communication and obesity: Understanding functions of the vagus nerve. J. Clin. Invest. 2021 131 10 e143770 10.1172/JCI143770 33998597
    [Google Scholar]
  40. Musser E.D. Backs R.W. Schmitt C.F. Ablow J.C. Measelle J.R. Nigg J.T. Emotion regulation via the autonomic nervous system in children with attention-deficit/hyperactivity disorder (ADHD). J. Abnorm. Child Psychol. 2011 39 6 841 852 10.1007/s10802‑011‑9499‑1 21394506
    [Google Scholar]
  41. Khanna H.N. Roy S. Shaikh A. Bandi V. Emerging role and place of probiotics in the management of pediatric neurodevelopmental disorders. Euroasi. J. Hepatogastroenterol. 2023 12 2 102 108 10.5005/jp‑journals‑10018‑1384 36959989
    [Google Scholar]
  42. Sandgren A.M. Brummer R.J.M. ADHD-originating in the gut? The emergence of a new explanatory model. Med. Hypotheses 2018 120 135 145 10.1016/j.mehy.2018.08.022 30220333
    [Google Scholar]
  43. Mathee K. Cickovski T. Deoraj A. Stollstorff M. Narasimhan G. The gut microbiome and neuropsychiatric disorders: Implications for attention deficit hyperactivity disorder (ADHD). J. Med. Microbiol. 2020 69 1 14 24 10.1099/jmm.0.001112 31821133
    [Google Scholar]
  44. Marković M. Petronijević N. Stašević M. Stašević Karličić I. Velimirović M. Stojković T. Ristić S. Stojković M. Milić N. Nikolić T. Decreased plasma levels of kynurenine and kynurenic acid in previously treated and first-episode antipsychotic-naive schizophrenia patients. Cells 2023 12 24 2814 10.3390/cells12242814 38132134
    [Google Scholar]
  45. Cavaleri D. Crocamo C. Morello P. Bartoli F. Carrà G. The kynurenine pathway in attention-deficit/hyperactivity disorder: A systematic review and meta-analysis of blood concentrations of tryptophan and its catabolites. J. Clin. Med. 2024 13 2 583 10.3390/jcm13020583 38276089
    [Google Scholar]
  46. Anand N. Gorantla V.R. Chidambaram S.B. The role of gut dysbiosis in the pathophysiology of neuropsychiatric disorders. Cells 2022 12 1 54 10.3390/cells12010054 36611848
    [Google Scholar]
  47. Brotman M.A. Rich B.A. Guyer A.E. Lunsford J.R. Horsey S.E. Reising M.M. Thomas L.A. Fromm S.J. Towbin K. Pine D.S. Leibenluft E. Amygdala activation during emotion processing of neutral faces in children with severe mood dysregulation versus ADHD or bipolar disorder. Am. J. Psychiat. 2010 167 1 61 69 10.1176/appi.ajp.2009.09010043 19917597
    [Google Scholar]
  48. Šimić G. Tkalčić M. Vukić V. Mulc D. Španić E. Šagud M. Olucha-Bordonau F.E. Vukšić M. R Hof P. Understanding emotions: Origins and roles of the amygdala. Biomolecules 2021 11 6 823 10.3390/biom11060823 34072960
    [Google Scholar]
  49. Luczynski P. Whelan S.O. O’Sullivan C. Clarke G. Shanahan F. Dinan T.G. Cryan J.F. Adult microbiota‐deficient mice have distinct dendritic morphological changes: Differential effects in the amygdala and hippocampus. Eur. J. Neurosci. 2016 44 9 2654 2666 10.1111/ejn.13291 27256072
    [Google Scholar]
  50. Browning K.N. Verheijden S. Boeckxstaens G.E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 2017 152 4 730 744 10.1053/j.gastro.2016.10.046 27988382
    [Google Scholar]
  51. Rash J.A. Aguirre-Camacho A. Attention-deficit hyperactivity disorder and cardiac vagal control: A systematic review. Atten. Defic. Hyperact. Disord. 2012 4 4 167 177 10.1007/s12402‑012‑0087‑1 22773368
    [Google Scholar]
  52. Brennan A.R. Arnsten A.F.T. Neuronal mechanisms underlying attention deficit hyperactivity disorder: The influence of arousal on prefrontal cortical function. Ann. N. Y. Acad. Sci. 2008 1129 1 236 245 10.1196/annals.1417.007 18591484
    [Google Scholar]
  53. Ross J.A. Van Bockstaele E.J. The locus coeruleus- norepinephrine system in stress and arousal: Unraveling historical, current, and future perspectives. Front. Psychiat. 2021 11 601519 10.3389/fpsyt.2020.601519 33584368
    [Google Scholar]
  54. Faraji N. Payami B. Ebadpour N. Gorji A. Vagus nerve stimulation and gut microbiota interactions: A novel therapeutic avenue for neuropsychiatric disorders. Neurosci. Biobehav. Rev. 2025 169 105990 10.1016/j.neubiorev.2024.105990 39716559
    [Google Scholar]
  55. You M. Chen N. Yang Y. Cheng L. He H. Cai Y. Liu Y. Liu H. Hong G. The gut microbiota-brain axis in neurological disorders. MedComm. 2024 5 8 e656 10.1002/mco2.656 39036341
    [Google Scholar]
  56. Imeraj L. Antrop I. Roeyers H. Deschepper E. Bal S. Deboutte D. Diurnal variations in arousal: A naturalistic heart rate study in children with ADHD. Eur. Child Adolesc. Psychiat. 2011 20 8 381 392 10.1007/s00787‑011‑0188‑y 21626226
    [Google Scholar]
  57. Huo R. Zeng B. Zeng L. Cheng K. Li B. Luo Y. Wang H. Zhou C. Fang L. Li W. Niu R. Wei H. Xie P. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis. Front. Cell. Infect. Microbiol. 2017 7 489 10.3389/fcimb.2017.00489 29250490
    [Google Scholar]
  58. P S. Vellapandian C. Hypothalamic-pituitary-adrenal (HPA) axis: Unveiling the potential mechanisms involved in stress-induced alzheimer’s disease and depression. Cureus 2024 16 8 e67595 10.7759/cureus.67595 39310640
    [Google Scholar]
  59. Jue H. Fang-fang L. Dan-fei C. Nuo C. Chun-lu Y. Ke-pin Y. Jian C. Xiao-bo X. A bidirectional Mendelian randomization study about the role of morning plasma cortisol in attention deficit hyperactivity disorder. Front. Psychiat. 2023 14 1148759 10.3389/fpsyt.2023.1148759 37389173
    [Google Scholar]
  60. Ma L. Chen Y.H. Chen H. Liu Y.Y. Wang Y.X. The function of hypothalamus–pituitary–adrenal axis in children with ADHD. Brain Res. 2011 1368 159 162 10.1016/j.brainres.2010.10.045 20971091
    [Google Scholar]
  61. Arnsten A.F.T. Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 2009 10 6 410 422 10.1038/nrn2648 19455173
    [Google Scholar]
  62. Mbiydzenyuy N.E. Qulu L.A. Stress, hypothalamic-pituitary-adrenal axis, hypothalamic-pituitary-gonadal axis, and aggression. Metab. Brain Dis. 2024 39 8 1613 1636 10.1007/s11011‑024‑01393‑w 39083184
    [Google Scholar]
  63. Leeuwendaal N.K. Cryan J.F. Schellekens H. Gut peptides and the microbiome: Focus on ghrelin. Curr. Opin. Endocrinol. Diabetes Obes. 2021 28 2 243 252 10.1097/MED.0000000000000616 33481425
    [Google Scholar]
  64. Chu D.M. Meyer K.M. Prince A.L. Aagaard K.M. Impact of maternal nutrition in pregnancy and lactation on offspring gut microbial composition and function. Gut Microbes 2016 7 6 459 470 10.1080/19490976.2016.1241357 27686144
    [Google Scholar]
  65. Chen Y. Xu J. Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients 2021 13 6 2099 10.3390/nu13062099 34205336
    [Google Scholar]
  66. Jenkins T. Nguyen J. Polglaze K. Bertrand P. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016 8 1 56 10.3390/nu8010056 26805875
    [Google Scholar]
  67. Gao K. Mu C. Farzi A. Zhu W. Tryptophan metabolism: A link between the gut microbiota and brain. Adv. Nutr. 2020 11 3 709 723 10.1093/advances/nmz127 31825083
    [Google Scholar]
  68. Hamamah S. Aghazarian A. Nazaryan A. Hajnal A. Covasa M. Role of microbiota-gut-brain axis in regulating dopaminergic signaling. Biomedicines 2022 10 2 436 10.3390/biomedicines10020436 35203645
    [Google Scholar]
  69. Parker A. Fonseca S. Carding S.R. Gut microbes and metabolites as modulators of blood-brain barrier integrity and brain health. Gut Microbes 2020 11 2 135 157 10.1080/19490976.2019.1638722 31368397
    [Google Scholar]
  70. Abdel-Haq R. Schlachetzki J.C.M. Glass C.K. Mazmanian S.K. Microbiome–microglia connections via the gut–brain axis. J. Exp. Med. 2019 216 1 41 59 10.1084/jem.20180794 30385457
    [Google Scholar]
  71. Wu H.J. Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes 2012 3 1 4 14 10.4161/gmic.19320 22356853
    [Google Scholar]
  72. Sanidad K.Z. Zeng M.Y. Neonatal gut microbiome and immunity. Curr. Opin. Microbiol. 2020 56 30 37 10.1016/j.mib.2020.05.011 32634598
    [Google Scholar]
  73. Braga J.D. Thongngam M. Kumrungsee T. Gamma-aminobutyric acid as a potential postbiotic mediator in the gut–brain axis. NPJ Sci. Food 2024 8 1 16 10.1038/s41538‑024‑00253‑2 38565567
    [Google Scholar]
  74. Badawy A.A.B. Kynurenine pathway of tryptophan metabolism: Regulatory and functional aspects. Int. J. Tryptophan Res. 2017 10 1178646917691938 10.1177/1178646917691938 28469468
    [Google Scholar]
  75. Aarsland T.I.M. Landaas E.T. Hegvik T.A. Ulvik A. Halmøy A. Ueland P.M. Haavik J. Serum concentrations of kynurenines in adult patients with attention-deficit hyperactivity disorder (ADHD): A case–control study. Behav. Brain Funct. 2015 11 1 36 10.1186/s12993‑015‑0080‑x 26542774
    [Google Scholar]
  76. Silva Y.P. Bernardi A. Frozza R.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front. Endocrinol. (Lausanne) 2020 11 25 10.3389/fendo.2020.00025 32082260
    [Google Scholar]
  77. Mirzaei R. Dehkhodaie E. Bouzari B. Rahimi M. Gholestani A. Hosseini-Fard S.R. Keyvani H. Teimoori A. Karampoor S. Dual role of microbiota-derived short-chain fatty acids on host and pathogen. Biomed. Pharmacother. 2022 145 112352 10.1016/j.biopha.2021.112352 34840032
    [Google Scholar]
  78. Yang L.L. Stiernborg M. Skott E. Gillberg T. Landberg R. Giacobini M. Lavebratt C. Lower plasma concentrations of short-chain fatty acids (SCFAs) in patients with ADHD. J. Psychiatr. Res. 2022 156 36 43 10.1016/j.jpsychires.2022.09.042 36228390
    [Google Scholar]
  79. Anand D. Colpo G.D. Zeni G. Zeni C.P. Teixeira A.L. Attention-deficit/hyperactivity disorder and inflammation: What does current knowledge tell us? a systematic review. Front. Psychiat. 2017 8 228 10.3389/fpsyt.2017.00228 29170646
    [Google Scholar]
  80. Chang S.J. Kuo H.C. Chou W.J. Tsai C.S. Lee S.Y. Wang L.J. Cytokine levels and neuropsychological function among patients with attention-deficit/hyperactivity disorder and atopic diseases. J. Pers. Med. 2022 12 7 1155 10.3390/jpm12071155 35887652
    [Google Scholar]
  81. Pei-Chen Chang J. Personalised medicine in child and Adolescent Psychiatry: Focus on omega-3 polyunsaturated fatty acids and ADHD. Brain, Behavior, & Immunity - Health 2021 16 100310 10.1016/j.bbih.2021.100310 34589802
    [Google Scholar]
  82. Kwak M. Kim S.H. Kim H.H. Tanpure R. Kim J.I. Jeon B.H. Park H.K. Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: Microbiome modulation and therapeutic mechanisms. Front. Cell. Infect. Microbiol. 2023 13 1238005 10.3389/fcimb.2023.1238005 37554355
    [Google Scholar]
  83. Markowiak P. Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017 9 9 1021 10.3390/nu9091021 28914794
    [Google Scholar]
  84. Davani-Davari D. Negahdaripour M. Karimzadeh I. Seifan M. Mohkam M. Masoumi S. Berenjian A. Ghasemi Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 2019 8 3 92 10.3390/foods8030092 30857316
    [Google Scholar]
  85. Mussatto S.I. Mancilha I.M. Non-digestible oligosaccharides: A review. Carbohydr. Polym. 2007 68 3 587 597 10.1016/j.carbpol.2006.12.011
    [Google Scholar]
  86. Latif A. Shehzad A. Niazi S. Zahid A. Ashraf W. Iqbal M.W. Rehman A. Riaz T. Aadil R.M. Khan I.M. Özogul F. Rocha J.M. Esatbeyoglu T. Korma S.A. Probiotics: Mechanism of action, health benefits and their application in food industries. Front. Microbiol. 2023 14 1216674 10.3389/fmicb.2023.1216674 37664108
    [Google Scholar]
  87. Leeuwendaal N.K. Stanton C. O’Toole P.W. Beresford T.P. Fermented foods, health and the gut microbiome. Nutrients 2022 14 7 1527 10.3390/nu14071527 35406140
    [Google Scholar]
  88. Pärtty A. Kalliomäki M. Wacklin P. Salminen S. Isolauri E. A possible link between early probiotic intervention and the risk of neuropsychiatric disorders later in childhood: A randomized trial. Pediatr. Res. 2015 77 6 823 828 10.1038/pr.2015.51 25760553
    [Google Scholar]
  89. Kumperscak H.G. Gricar A. Ülen I. Micetic-Turk D. A pilot randomized control trial with the probiotic strain Lactobacillus rhamnosus GG (LGG) in ADHD: Children and adolescents report better health-related quality of life. Front. Psychiat. 2020 11 181 10.3389/fpsyt.2020.00181 32256407
    [Google Scholar]
  90. Zielińska D. Karbowiak M. Brzezicka A. The role of psychobiotics to ensure mental health during the COVID-19 pandemic: A current state of knowledge. Int. J. Environ. Res. Publ. Heal. 2022 19 17 11022 10.3390/ijerph191711022 36078738
    [Google Scholar]
  91. Sharma R. Gupta D. Mehrotra R. Mago P. Psychobiotics: The next-generation probiotics for the brain. Curr. Microbiol. 2021 78 2 449 463 10.1007/s00284‑020‑02289‑5 33394083
    [Google Scholar]
  92. Del Toro-Barbosa M. Hurtado-Romero A. Garcia-Amezquita L.E. García-Cayuela T. Psychobiotics: Mechanisms of action, evaluation methods and effectiveness in applications with food products. Nutrients 2020 12 12 3896 10.3390/nu12123896 33352789
    [Google Scholar]
  93. Kamal N. Saharan B.S. Duhan J.S. Kumar A. Chaudhary P. Goyal C. Kumar M. Goyat N. Sindhu M. Mudgil P. Exploring the promise of psychobiotics: Bridging gut microbiota and mental health for a flourishing society. Medic. Microecol. 2025 23 100118 10.1016/j.medmic.2024.100118
    [Google Scholar]
  94. Ito D. Yamamoto Y. Maekita T. Yamagishi N. Kawashima S. Yoshikawa T. Tanioka K. Yoshida T. Iguchi M. Kunitatsu K. Kanai Y. Kato S. Kitano M. Do synbiotics really enhance beneficial synbiotics effect on defecation symptoms in healthy adults? Medicine (Baltimore) 2022 101 8 e28858 10.1097/MD.0000000000028858 35212286
    [Google Scholar]
  95. Skott E. Yang L.L. Stiernborg M. Söderström Å. Rȕegg J. Schalling M. Forsell Y. Giacobini M. Lavebratt C. Effects of a synbiotic on symptoms, and daily functioning in attention deficit hyperactivity disorder – A double-blind randomized controlled trial. Brain Behav. Immun. 2020 89 9 19 10.1016/j.bbi.2020.05.056 32497779
    [Google Scholar]
  96. Djuricic I. Calder P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021 13 7 2421 10.3390/nu13072421 34371930
    [Google Scholar]
  97. Grosso G. Galvano F. Marventano S. Malaguarnera M. Bucolo C. Drago F. Caraci F. Omega-3 fatty acids and depression: Scientific evidence and biological mechanisms. Oxid. Med. Cell. Longev. 2014 2014 1 16 10.1155/2014/313570 24757497
    [Google Scholar]
  98. Rodríguez-Iglesias N. Nadjar A. Sierra A. Valero J. Susceptibility of female mice to the dietary omega-3/omega-6 fatty-acid ratio: Effects on adult hippocampal neurogenesis and glia. Int. J. Mol. Sci. 2022 23 6 3399 10.3390/ijms23063399 35328825
    [Google Scholar]
  99. Malinowska D. Żendzian-Piotrowska M. Ketogenic diet: A review of composition diversity, mechanism of action and clinical application. J. Nutr. Metab. 2024 2024 1 6666171 10.1155/2024/6666171 39463845
    [Google Scholar]
  100. Liu Y. Yang C. Meng Y. Dang Y. Yang L. Ketogenic diet ameliorates attention deficit hyperactivity disorder in rats via regulating gut microbiota. PLoS One 2023 18 8 e0289133 10.1371/journal.pone.0289133 37585373
    [Google Scholar]
  101. Packer R.M.A. Law T.H. Davies E. Zanghi B. Pan Y. Volk H.A. Effects of a ketogenic diet on ADHD-like behavior in dogs with idiopathic epilepsy. Epilepsy Behav. 2016 55 62 68 10.1016/j.yebeh.2015.11.014 26773515
    [Google Scholar]
  102. Tosti V. Bertozzi B. Fontana L. Health benefits of the mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci. 2018 73 3 318 326 10.1093/gerona/glx227 29244059
    [Google Scholar]
  103. Franco G.A. Interdonato L. Cordaro M. Cuzzocrea S. Di Paola R. Bioactive compounds of the mediterranean diet as nutritional support to fight neurodegenerative disease. Int. J. Mol. Sci. 2023 24 8 7318 10.3390/ijms24087318 37108480
    [Google Scholar]
  104. Ríos-Hernández A. Alda J.A. Farran-Codina A. Ferreira-García E. Izquierdo-Pulido M. The mediterranean diet and ADHD in children and adolescents. Pediatrics. 2017 139 2 e20162027 10.1542/peds.2016‑2027 28138007
    [Google Scholar]
  105. Obeid R. Heil S.G. Verhoeven M.M.A. van den Heuvel E.G.H.M. de Groot L.C.P.G.M. Eussen S.J.P.M. Vitamin B12 intake from animal foods, biomarkers, and health aspects. Front. Nutr. 2019 6 93 10.3389/fnut.2019.00093 31316992
    [Google Scholar]
  106. Wang L.J. Yu Y.H. Fu M.L. Yeh W.T. Hsu J.L. Yang Y.H. Yang H.T. Huang S.Y. Wei I.L. Chen W.J. Chiang B.L. Pan W.H. Dietary profiles, nutritional biochemistry status, and attention-deficit/hyperactivity disorder: Path analysis for a case-control study. J. Clin. Med. 2019 8 5 709 10.3390/jcm8050709 31109092
    [Google Scholar]
  107. Ryu S. Choi Y.J. An H. Kwon H.J. Ha M. Hong Y.C. Hong S.J. Hwang H.J. Associations between dietary intake and attention deficit hyperactivity disorder (ADHD) scores by repeated measurements in school-age children. Nutrients 2022 14 14 2919 10.3390/nu14142919 35889876
    [Google Scholar]
  108. Gupta S. Allen-Vercoe E. Petrof E.O. Fecal microbiota transplantation: In perspective. Therap. Adv. Gastroenterol. 2016 9 2 229 239 10.1177/1756283X15607414 26929784
    [Google Scholar]
  109. Zhang J. Zhu G. Wan L. Liang Y. Liu X. Yan H. Zhang B. Yang G. Effect of fecal microbiota transplantation in children with autism spectrum disorder: A systematic review. Front. Psychiat. 2023 14 1123658 10.3389/fpsyt.2023.1123658 36937721
    [Google Scholar]
  110. Wang J. Yang R. Zhong H. Liu Y.J. Fecal microbiota transplants in pediatric autism: Opportunities and challenges. World J. Pediatr. 2024 20 12 1201 1204 10.1007/s12519‑024‑00855‑6 39548040
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002361676250325082424
Loading
/content/journals/cdm/10.2174/0113892002361676250325082424
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gut microbiome ; Synbiotics ; prebiotics ; ADHD ; gut-brain axis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test