Skip to content
2000
image of Comparative in Vitro Metabolic Profile Study of Five Cathinone Derivatives

Abstract

Background

Cathinone derivatives as new psychoactive substances have attracted worldwide attention in recent years. They have strong excitatory effects on the human central nervous system, which is extremely abusive and harmful. As they are easy to be structurally modified, and rapidly metabolized and excreted after taken, clarifying their metabolic profile is of significant importance to provide useful information for their identification or forensic purposes.

Objective

In this paper, a comparative metabolic profile study of five cathinone derivatives (4/3/2-methylmethcathinone and 4/3-methoxymethcathinone) was performed, including their metabolic stability in the simulated gastrointestinal tract, mass spectrometry fragmentation behavior, possible metabolic pathways and metabolites in human liver microsomal incubation system, and revealing the key metabolic enzyme isoforms involving in their biotransformation.

Methods

incubation was performed in simulated gastric/intestinal fluid and human liver microsomes, fragmentation behavior study and metabolite identification were investigated by LC-Q-TOF/MS, and metabolic stability study, along with metabolic enzyme screening were analyzed using LC-MS/MS.

Results

Almost all the cathinone derivatives tested were stable in the simulated gastric/intestinal fluid; characteristic fragmentation pathway and diagnostic fragment ions of the cathinone derivatives were analyzed; the key metabolic pathways of 4/3-methylmethcathinone and 4/3-methoxymethcathinone revealed were hydroxylation and demethylation, which were catalyzed by CYP2D6. The methyl-substituted position would significantly affect the metabolic pathway of the methylmethcathinone.

Conclusion

This study revealed the mass spectral fragmentation pattern and the metabolic behavior of the selected cathinone derivatives, providing meaningful information and scientific evidence in predicting their metabolic potential , and also promoting their analysis, detection, and clinical use.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002348484250309011657
2025-03-17
2025-05-13
Loading full text...

Full text loading...

References

  1. NPS Data Visualisations. 2024 Available from: unodc.org/LSS/Page/NPS/DataVisualisations
  2. Emonts P. Servais A. C. Ziemons E. Hubert P. Fillet M. Dispas A. Development of a sensitive MEKC-LIF method for synthetic cathinones analysis. Electrophoresis 2021 42 9-10 1127 1134
    [Google Scholar]
  3. Simmler L.D. Buser T.A. Donzelli M. Schramm Y. Dieu L-H. Huwyler J. Chaboz S. Hoener M.C. Liechti M.E. Pharmacological characterization of designer cathinones in vitro. Br. J. Pharmacol. 2013 168 2 458 470 10.1111/j.1476‑5381.2012.02145.x 22897747
    [Google Scholar]
  4. Coppola M. Mondola R. Synthetic cathinones: Chemistry, pharmacology and toxicology of a new class of designer drugs of abuse marketed as “bath salts” or “plant food”. Toxicol. Lett. 2012 211 2 144 149 10.1016/j.toxlet.2012.03.009 22459606
    [Google Scholar]
  5. Kelly J.P. Cathinone derivatives: A review of their chemistry, pharmacology and toxicology. Drug Test. Anal. 2011 3 7-8 439 453 10.1002/dta.313 21755607
    [Google Scholar]
  6. Paillet-Loilier M. Cesbron A. Le Boisselier R. Bourgine J. Debruyne D. Emerging drugs of abuse: Current perspectives on substituted cathinones. Subst. Abuse Rehabil. 2014 5 37 52 24966713
    [Google Scholar]
  7. Daziani G. Lo Faro A.F. Montana V. Goteri G. Pesaresi M. Bambagiotti G. Montanari E. Giorgetti R. Montana A. Synthetic cathinones and neurotoxicity risks: A systematic review. Int. J. Mol. Sci. 2023 24 7 6230 10.3390/ijms24076230 37047201
    [Google Scholar]
  8. Lo Faro A.F. Berretta P. Montana A. Synthetic cathinones and cardiotoxicity risks. Clin. Ter. 2022 173 6 524 525 36373448
    [Google Scholar]
  9. Pedersen A.J. Reitzel L.A. Johansen S.S. Linnet K. In vitro metabolism studies on mephedrone and analysis of forensic cases. Drug Test. Anal. 2013 5 6 430 438 10.1002/dta.1369 22573603
    [Google Scholar]
  10. Prosser J.M. Nelson L.S. The toxicology of bath salts: A review of synthetic cathinones. J. Med. Toxicol. 2012 8 1 33 42 10.1007/s13181‑011‑0193‑z 22108839
    [Google Scholar]
  11. Fratantonio J. Andrade L. Febo M. Designer drugs: A synthetic catastrophe. J. Reward Defic. Syndr. 2015 1 2 82 86 10.17756/jrds.2015‑014 27617301
    [Google Scholar]
  12. Riley A.L. Nelson K.H. To P. López-Arnau R. Xu P. Wang D. Wang Y. Shen H. Kuhn D.M. Angoa-Perez M. Anneken J.H. Muskiewicz D. Hall F.S. Abuse potential and toxicity of the synthetic cathinones (i.e., “Bath salts”). Neurosci. Biobehav. Rev. 2020 110 150 173 10.1016/j.neubiorev.2018.07.015 31101438
    [Google Scholar]
  13. Schneir A. Ly B.T. Casagrande K. Darracq M. Offerman S.R. Thornton S. Smollin C. Vohra R. Rangun C. Tomaszewski C. Gerona R.R. Comprehensive analysis of “bath salts” purchased from California stores and the internet. Clin. Toxicol. 2014 52 7 651 658 10.3109/15563650.2014.933231 25089721
    [Google Scholar]
  14. Winstock A.R. Mitcheson L.R. Deluca P. Davey Z. Corazza O. Schifano F. Mephedrone, new kid for the chop? Addiction 2011 106 1 154 161 10.1111/j.1360‑0443.2010.03130.x 20735367
    [Google Scholar]
  15. Fan S.Y. Zang C.Z. Shih P.H. Ko Y.C. Hsu Y.H. Lin M.C. Tseng S.H. Wang D.Y. A LC-MS/MS method for determination of 73 synthetic cathinones and related metabolites in urine. Forensic Sci. Int. 2020 315 110429 10.1016/j.forsciint.2020.110429 32784041
    [Google Scholar]
  16. Kohyama E. Chikumoto T. Tada H. Kitaichi K. Horiuchi T. Ito T. Differentiation of the isomers of n-alkylated cathinones by gc-ei-ms-ms and lc-pda. Anal. Sci. 2016 32 8 831 837 10.2116/analsci.32.831 27506708
    [Google Scholar]
  17. Majchrzak M. Celiński R. Kuś P. Kowalska T. Sajewicz M. The newest cathinone derivatives as designer drugs: An analytical and toxicological review. Forensic Toxicol. 2018 36 1 33 50 10.1007/s11419‑017‑0385‑6 29367861
    [Google Scholar]
  18. Meyer M.R. Wilhelm J. Peters F.T. Maurer H.H. Beta-keto amphetamines: Studies on the metabolism of the designer drug mephedrone and toxicological detection of mephedrone, butylone, and methylone in urine using gas chromatography–mass spectrometry. Anal. Bioanal. Chem. 2010 397 3 1225 1233 10.1007/s00216‑010‑3636‑5 20333362
    [Google Scholar]
  19. Nic Daeid N. Savage K.A. Ramsay D. Holland C. Sutcliffe O.B. Development of gas chromatography–mass spectrometry (GC–MS) and other rapid screening methods for the analysis of 16 ‘legal high’ cathinone derivatives. Sci. Justice 2014 54 1 22 31 10.1016/j.scijus.2013.08.004 24438774
    [Google Scholar]
  20. Aldubayyan A. Castrignanò E. Elliott S. Abbate V. A quantitative lc-ms/ms method for the detection of 16 synthetic cathinones and 10 metabolites and its application to suspicious clinical and forensic urine samples. Pharmaceuticals 2022 15 5 510 10.3390/ph15050510 35631341
    [Google Scholar]
  21. Zhao Y. Wu B. Hua Z. Xu P. Xu H. Shen W. Di B. Wang Y. Su M. Quantification of cathinone analogues without reference standard using (1)h quantitative nmr. Anal. Sci. 2021 37 11 1578 1582 10.2116/analsci.21P048 33994416
    [Google Scholar]
  22. Ji J. Zhang Y. Wang J. Rapid detection of nine synthetic cathinones in blood and urine by direct analysis in real‐time‐tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2021 35 15 e9136 10.1002/rcm.9136 34080240
    [Google Scholar]
  23. Fornal E. Formation of odd‐electron product ions in collision‐induced fragmentation of electrospray‐generated protonated cathinone derivatives: Aryl α‐primary amino ketones. Rapid Commun. Mass Spectrom. 2013 27 16 1858 1866 10.1002/rcm.6635 23857931
    [Google Scholar]
  24. Davidson J.T. Sasiene Z.J. Jackson G.P. Fragmentation pathways of odd- and even-electron N-alkylated synthetic cathinones. Int. J. Mass Spectrom. 2020 453 116354 10.1016/j.ijms.2020.116354
    [Google Scholar]
  25. Fornal E. Study of collision‐induced dissociation of electrospray‐generated protonated cathinones. Drug Test. Anal. 2014 6 7-8 705 715 10.1002/dta.1573 24259394
    [Google Scholar]
  26. Matsuta S. Shima N. Kakehashi H. Ishikawa A. Asai R. Nitta A. Wada M. Nakano S. Kamata H. Nishiyama Y. Nagatani H. Imura H. Katagi M. Dehydration‐fragmentation mechanism of cathinones and their metabolites in ESI‐CID. J. Mass Spectrom. 2020 55 9 e4538 10.1002/jms.4538 32627947
    [Google Scholar]
  27. Tyler Davidson J. Piacentino E.L. Sasiene Z.J. Abiedalla Y. DeRuiter J. Clark C.R. Berden G. Oomens J. Ryzhov V. Jackson G.P. Identification of novel fragmentation pathways and fragment ion structures in the tandem mass spectra of protonated synthetic cathinones. Forensic Chem. 2020 19 100245 10.1016/j.forc.2020.100245
    [Google Scholar]
  28. López-Arnau R. Martínez-Clemente J. Carbó M. Pubill D. Escubedo E. Camarasa J. An integrated pharmacokinetic and pharmacodynamic study of a new drug of abuse, methylone, a synthetic cathinone sold as “bath salts”. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013 45 64 72 10.1016/j.pnpbp.2013.04.007 23603357
    [Google Scholar]
  29. Martínez-Clemente J. López-Arnau R. Carbó M. Pubill D. Camarasa J. Escubedo E. Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics. Psychopharmacology 2013 229 2 295 306 10.1007/s00213‑013‑3108‑7 23649883
    [Google Scholar]
  30. Valente M.J. Guedes de Pinho P. de Lourdes Bastos M. Carvalho F. Carvalho M. Khat and synthetic cathinones: A review. Arch. Toxicol. 2014 88 1 15 45 10.1007/s00204‑013‑1163‑9 24317389
    [Google Scholar]
  31. Lopes B.T. Caldeira M.J. Gaspar H. Antunes A.M.M. Metabolic profile of four selected cathinones in microsome incubations: Identification of phase i and ii metabolites by liquid chromatography high resolution mass spectrometry. Front Chem. 2021 8 609251 10.3389/fchem.2020.609251 33511100
    [Google Scholar]
  32. Araújo A.M. Carvalho M. Costa V.M. Duarte J.A. Dinis-Oliveira R.J. Bastos M.L. Guedes de Pinho P. Carvalho F. In vivo toxicometabolomics reveals multi-organ and urine metabolic changes in mice upon acute exposure to human-relevant doses of 3,4-methylenedioxypyrovalerone (MDPV). Arch. Toxicol. 2021 95 2 509 527 10.1007/s00204‑020‑02949‑2 33215236
    [Google Scholar]
  33. Czerwinska J. Parkin M.C. George C. Kicman A.T. Dargan P.I. Abbate V. Excretion of mephedrone and its phase I metabolites in urine after a controlled intranasal administration to healthy human volunteers. Drug Test. Anal. 2022 14 4 741 746 10.1002/dta.3214 34984836
    [Google Scholar]
  34. Olesti E. Farré M. Papaseit E. Krotonoulas A. Pujadas M. de la Torre R. Pozo Ó.J. J. Pharmacokinetics of mephedrone and its metabolites in human by lc-ms/ms. AAPS J. 2017 19 6 1767 1778 10.1208/s12248‑017‑0132‑2 28828691
    [Google Scholar]
  35. Lopes R.P. Ferro R.A. Milhazes M. Figueira M. Caldeira M.J. Antunes A.M.M. Gaspar H. Metabolic stability and metabolite profiling of emerging synthetic cathinones. Front. Pharmacol. 2023 14 1145140 10.3389/fphar.2023.1145140 37033613
    [Google Scholar]
  36. Wu L. Li D. Wang P. Dong L. Zhang W. Xu J. Jin X. In vitro stability and pharmacokinetic study of pedunculoside and its beta-cd polymer inclusion complex. Pharmaceutics 2024 16 5 591 10.3390/pharmaceutics16050591 38794253
    [Google Scholar]
  37. Wu L. Kang A. Jin X. Bao Y. Miao P. Lv T. Zhou Z. Ilexsaponin A1: In vitro metabolites identification and evaluation of inhibitory drug-drug interactions. Drug Metab. Pharmacokinet. 2021 40 100415 10.1016/j.dmpk.2021.100415 34461570
    [Google Scholar]
  38. Wu L. Kang A. Shan C. Chai C. Zhou Z. Lin Y. Bian Y. LC-Q-TOF/MS-oriented systemic metabolism study of pedunculoside with in vitro and in vivo biotransformation. J. Pharm. Biomed. Anal. 2019 175 112762 10.1016/j.jpba.2019.07.010 31336286
    [Google Scholar]
  39. Zhou S. Song X. Fang P. Xu J. Liu S. Zheng T. Wu G. Wu L. Lc-q-tof/ms-based fragmentation behavior study and in vitro metabolites identification of nine benzodiazepines. Curr. Drug Metab. 2023 24 3 223 237 10.2174/1389200224666230419090733 37114779
    [Google Scholar]
  40. Kim H.J. Lee H. Ji H.K. Lee T. Liu K.H. Screening of ten cytochrome P450 enzyme activities with 12 probe substrates in human liver microsomes using cocktail incubation and liquid chromatography–tandem mass spectrometry. Biopharm. Drug Dispos. 2019 40 3-4 101 111 10.1002/bdd.2174 30730576
    [Google Scholar]
  41. Peng Y. Wu H. Zhang X. Zhang F. Qi H. Zhong Y. Wang Y. Sang H. Wang G. Sun J. A comprehensive assay for nine major cytochrome P450 enzymes activities with 16 probe reactions on human liver microsomes by a single LC/MS/MS run to support reliable in vitro inhibitory drug–drug interaction evaluation. Xenobiotica 2015 45 11 961 977 10.3109/00498254.2015.1036954 26007223
    [Google Scholar]
  42. Wu L. Li L. Wang M. Shan C. Cui X. Wang J. Ding N. Yu D. Tang Y. Target and non‐target identification of chemical components in Lamiophlomis rotata by liquid chromatography/quadrupole time‐of‐flight mass spectrometry using a three‐step protocol. Rapid Commun. Mass Spectrom. 2016 30 19 2145 2154 10.1002/rcm.7695 27470976
    [Google Scholar]
  43. Strano Rossi S. Odoardi S. Gregori A. Peluso G. Ripani L. Ortar G. Serpelloni G. Romolo F.S. An analytical approach to the forensic identification of different classes of new psychoactive substances (NPSs) in seized materials. Rapid Commun. Mass Spectrom. 2014 28 17 1904 1916 10.1002/rcm.6969 25088134
    [Google Scholar]
  44. Khreit O.I.G. Grant M.H. Zhang T. Henderson C. Watson D.G. Sutcliffe O.B. Elucidation of the Phase I and Phase II metabolic pathways of (±)-4′-methylmethcathinone (4-MMC) and (±)-4′-(trifluoromethyl)methcathinone (4-TFMMC) in rat liver hepatocytes using LC–MS and LC–MS2. J. Pharm. Biomed. Anal. 2013 72 177 185 10.1016/j.jpba.2012.08.015 22985528
    [Google Scholar]
  45. Uralets V. Rana S. Morgan S. Ross W. Testing for designer stimulants: Metabolic profiles of 16 synthetic cathinones excreted free in human urine. J. Anal. Toxicol. 2014 38 5 233 241 10.1093/jat/bku021 24668489
    [Google Scholar]
  46. Che P. Davidson J.T. Still K. Kool J. Kohler I. In vitro metabolism of cathinone positional isomers: Does sex matter? Anal. Bioanal. Chem. 2023 415 22 5403 5420 10.1007/s00216‑023‑04815‑3 37452840
    [Google Scholar]
  47. Negreira N. Erratico C. Kosjek T. van Nuijs A.L.N. Heath E. Neels H. Covaci A. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal. Bioanal. Chem. 2015 407 19 5803 5816 10.1007/s00216‑015‑8763‑6 26014283
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002348484250309011657
Loading
/content/journals/cdm/10.2174/0113892002348484250309011657
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test