Skip to content
2000
image of Characterizing Pharmacokinetic Variability of Topiroxostat in Chinese Population: Insights from a Phase I Randomized Clinical Trial

Abstract

Objective

This Phase I clinical trial aimed to address the knowledge gap regarding topiroxostat's use outside Japan by characterizing its pharmacokinetic profile, safety, and efficacy in healthy Chinese subjects.

Methods

The trial followed a randomized, open-label, three-dose group design, enrolling 12 healthy participants and administering topiroxostat at three different dose levels. The study utilized NONMEM software for pharmacokinetic analysis, evaluating the impact of demographic and biochemical covariates on drug disposition.

Results

Pharmacokinetic analysis shows the peak drug concentration (Cmax) under a single oral administration of 20, 40, and 80 mg of Topiroxostat, which was found in healthy subjects to be 215.46 ± 94.04 ng/mL, 473.74 ± 319.83 ng/mL and 1009.63 ± 585.98 ng/mL, respectively. The time to peak drug concentration (Tmax) was longer in females (0.79–0.98 h) than in males (0.53–0.93 h). Activated partial thromboplastin time (APTT) and triglycerides (TG) were included as covariates for the typical value of the absorption rate constant (TVKA) in our pharmacokinetic model. The dose (DOSE) was considered a covariate for the typical value of bioavailability (TVF1), and sex (SEX) was considered a covariate for the typical value of clearance (TVCL). The typical population values for topiroxostat included Q/F at 4.91 L/h, KA at 0.657 h-1, Vc/F at 32.5 L, Vp/F at 30 L, and CL/F at 124 L/h.

Conclusion

The trial successfully established the pharmacokinetic parameters of topiroxostat in a Chinese population, confirming its safety and efficacy. The results support the need for individualized dosing strategies and optimize therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002348045241210071452
2024-12-16
2025-01-24
Loading full text...

Full text loading...

References

  1. Puig J.G. Martínez M.A. Hyperuricemia, gout and the metabolic syndrome. Curr. Opin. Rheumatol. 2008 20 2 187 191 10.1097/BOR.0b013e3282f4b1ed 18349749
    [Google Scholar]
  2. Borghi C. Agabiti-Rosei E. Johnson R.J. Kielstein J.T. Lurbe E. Mancia G. Redon J. Stack A.G. Tsioufis K.P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med. 2020 80 1 11 10.1016/j.ejim.2020.07.006 32739239
    [Google Scholar]
  3. Wu J. Qiu L. Cheng X. Xu T. Wu W. Zeng X. Ye Y. Guo X. Cheng Q. Liu Q. Liu L. Xu C. Zhu G. Hyperuricemia and clustering of cardiovascular risk factors in the Chinese adult population. Sci. Rep. 2017 7 1 5456 10.1038/s41598‑017‑05751‑w 28710367
    [Google Scholar]
  4. Liu F. Du G.L. Song N. Ma Y.T. Li X.M. Gao X.M. Yang Y.N. Hyperuricemia and its association with adiposity and dyslipidemia in Northwest China: results from cardiovascular risk survey in Xinjiang (CRS 2008–2012). Lipids Health Dis. 2020 19 1 58 10.1186/s12944‑020‑01211‑z 32238146
    [Google Scholar]
  5. Li C. Hsieh M.C. Chang S.J. Metabolic syndrome, diabetes, and hyperuricemia. Curr. Opin. Rheumatol. 2013 25 2 210 216 10.1097/BOR.0b013e32835d951e 23370374
    [Google Scholar]
  6. Abrahim M. Non-alcoholic fatty kidney disease (NAFKD): A novel disease that explains the etiology of hyperuricemia and gout in metabolic syndrome. Med. Hypotheses 2021 146 110461 10.1016/j.mehy.2020.110461 33360672
    [Google Scholar]
  7. Huang J. Ma Z. Zhang Y. Geographical distribution of hyperuricemia in mainland China: A comprehensive systematic review and meta-analysis. Glob. Health Res. Policy. 2020 5 52 S41256-020-00178-9 10.1186/s41256‑020‑00178‑9
    [Google Scholar]
  8. Nakamura T. Murase T. Nampei M. Morimoto N. Ashizawa N. Iwanaga T. Sakamoto R. Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur. J. Pharmacol. 2016 780 224 231 10.1016/j.ejphar.2016.03.055 27038523
    [Google Scholar]
  9. Luo Z. Yu G. Han X. Yang T. Ji Y. Huang H. Wang G. Liu Y. Sun W. Prediction of the pharmacokinetics and pharmacodynamics of topiroxostat in humans by integrating the physiologically based pharmacokinetic model with the drug-target residence time model. Biomed. Pharmacother. 2020 121 109660 10.1016/j.biopha.2019.109660 31733581
    [Google Scholar]
  10. Ramasamy S.N. Korb-Wells C.S. Kannangara D.R.W. Smith M.W.H. Wang N. Roberts D.M. Graham G.G. Williams K.M. Day R.O. Allopurinol hypersensitivity: A systematic review of all published cases, 1950-2012. Drug Saf. 2013 36 10 953 980 10.1007/s40264‑013‑0084‑0 23873481
    [Google Scholar]
  11. White W.B. Saag K.G. Becker M.A. Borer J.S. Gorelick P.B. Whelton A. Hunt B. Castillo M. Gunawardhana L. Cardiovascular safety of febuxostat or allopurinol in patients with gout. N. Engl. J. Med. 2018 378 13 1200 1210 10.1056/NEJMoa1710895 29527974
    [Google Scholar]
  12. Strilchuk L. Fogacci F. Cicero A.F. Safety and tolerability of available urate-lowering drugs: A critical review. Expert Opin. Drug Saf. 2019 18 4 261 271 10.1080/14740338.2019.1594771 30915866
    [Google Scholar]
  13. Horino T. Hatakeyama Y. Ichii O. Matsumoto T. Shimamura Y. Inoue K. Terada Y. Okuhara Y. Effects of topiroxostat in hyperuricemic patients with chronic kidney disease. Clin. Exp. Nephrol. 2018 22 2 337 345 10.1007/s10157‑017‑1452‑3 28752287
    [Google Scholar]
  14. Sakuma M. Toyoda S. Arikawa T. Koyabu Y. Kato T. Adachi T. Suwa H. Narita J. Anraku K. Ishimura K. Yamauchi F. Sato Y. Inoue T. Topiroxostat versus allopurinol in patients with chronic heart failure complicated by hyperuricemia: A prospective, randomized, open-label, blinded-end-point clinical trial. PLoS One 2022 17 1 e0261445 10.1371/journal.pone.0261445 35077456
    [Google Scholar]
  15. Kim D.D. Barr A.M. Rafizadeh R. Procyshyn R.M. Population pharmacokinetics and dosing of long-acting injectable antipsychotics. J. Psychiatry Neurosci. 2021 46 5 E516 E517 10.1503/jpn.210079 34467748
    [Google Scholar]
  16. Duan J.Z. Applications of population pharmacokinetics in current drug labelling. J. Clin. Pharm. Ther. 2007 32 1 57 79 10.1111/j.1365‑2710.2007.00799.x 17286790
    [Google Scholar]
  17. Jonsson E.N. Karlsson M.O. Xpose—an S-PLUS based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput. Methods Programs Biomed. 1998 58 1 51 64 10.1016/S0169‑2607(98)00067‑4 10195646
    [Google Scholar]
  18. Keizer R.J. Karlsson M.O. Hooker A. Modeling and simulation workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT Pharmacometrics Syst. Pharmacol. 2013 2 6 1 9 10.1038/psp.2013.24 23836189
    [Google Scholar]
  19. Lindbom L. Pihlgren P. Jonsson N. PsN-Toolkit—A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput. Methods Programs Biomed. 2005 79 3 241 257 10.1016/j.cmpb.2005.04.005 16023764
    [Google Scholar]
  20. Lindbom L. Ribbing J. Jonsson E.N. Perl-speaks-NONMEM (PsN)—a Perl module for NONMEM related programming. Comput. Methods Programs Biomed. 2004 75 2 85 94 10.1016/j.cmpb.2003.11.003 15212851
    [Google Scholar]
  21. Flühler H. Huber H. Widmer E. Brechbühler S. Experiences in the application of NONMEM to pharmacokinetic data analysis. Drug Metab. Rev. 1984 15 1-2 317 339 10.3109/03602538409015069 6547665
    [Google Scholar]
  22. Nakazawa T. Pharmacokinetics and pharmacodynamics study of topiroxostat by oral administration in subjects with renal impairment. Pharmacol. Treat. 2015 43 5 639 645
    [Google Scholar]
  23. Oyama S. Hirose C. Hori K. Sugano K. Zhang J. Tamura M. Tomita K. Effects, safety, and plasma levels of topiroxostat and its metabolites in patients receiving hemodialysis. Renal Replacement Therapy 2016 2 1 56 10.1186/s41100‑016‑0068‑5
    [Google Scholar]
  24. Zhang T. Zhang X. Xu E. Wang Z. Zhang Z. Wang Q. Wang L. Wen Y. Meng F. A possible covalent xanthine oxidase inhibitor TS10: Inhibition mechanism, metabolites identification and PDPK assessment. Bioorg. Chem. 2022 128 106064 10.1016/j.bioorg.2022.106064 35987190
    [Google Scholar]
  25. Tsuchiya Y. Nakajima M. Yokoi T. Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett. 2005 227 2 115 124 10.1016/j.canlet.2004.10.007 16112414
    [Google Scholar]
  26. Palmer O. Reference Intervals for Clinical Chemistry Analytes for Effect of patient-related factors on clinical laboratory test results. Accurate Results in the Clinical Laboratory, Elsevier 2019 45 56
    [Google Scholar]
  27. Ishikawa T. Maeda T. Hashimoto T. Nakagawa T. Ichikawa K. Sato Y. Kanno Y. Long-term safety and effectiveness of the xanthine oxidoreductase inhibitor, topiroxostat in Japanese hyperuricemic patients with or without gout: A 54-week open-label, multicenter, post-marketing observational study. Clin. Drug Investig. 2020 40 9 847 859 10.1007/s40261‑020‑00941‑3 32621143
    [Google Scholar]
  28. Hosoya T. Ishikawa T. Ogawa Y. Sakamoto R. Ohashi T. Multicenter, open-label study of long-term topiroxostat (FYX-051) administration in Japanese hyperuricemic patients with or without gout. Clin. Drug Investig. 2018 38 12 1135 1143 10.1007/s40261‑018‑0699‑0 30219951
    [Google Scholar]
  29. Diep U. Chudow M. Sunjic K.M. Pharmacokinetic changes in liver failure and impact on drug therapy. AACN Adv. Crit. Care 2017 28 2 93 101 10.4037/aacnacc2017948 28592464
    [Google Scholar]
  30. SUSLA G.M. Effect of liver disease on pharmacokinetics, Principles of clinical pharmacology. Elsevier 2007 73 87
    [Google Scholar]
  31. Lau W.C. Gurbel P.A. Watkins P.B. Neer C.J. Hopp A.S. Carville D.G.M. Guyer K.E. Tait A.R. Bates E.R. Contribution of hepatic cytochrome P450 3A4 metabolic activity to the phenomenon of clopidogrel resistance. Circulation 2004 109 2 166 171 10.1161/01.CIR.0000112378.09325.F9 14707025
    [Google Scholar]
  32. Sjögren E. Thörn H. Tannergren C. In silico modeling of gastrointestinal drug absorption: Predictive performance of three physiologically based absorption models. Mol. Pharm. 2016 13 6 1763 1778 10.1021/acs.molpharmaceut.5b00861 26926043
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002348045241210071452
Loading
/content/journals/cdm/10.2174/0113892002348045241210071452
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test