Skip to content
2000
image of Drug Metabolizing Enzymes: An Exclusive Guide into Latest Research in Pharmaco-genetic Dynamics in Arab Countries

Abstract

Drug metabolizing enzymes play a crucial role in the pharmacokinetics and pharmacodynamics of therapeutic drugs, influencing their efficacy and safety. This review explores the impact of genetic polymorphisms in drug-metabolizing genes on drug response within Arab populations. We examine the genetic diversity specific to Arab countries, focusing on the variations in key drug-metabolizing enzymes such as CYP450, GST, and UGT families. The review highlights recent research on polymorphisms in these genes and their implications for drug metabolism, including variations in allele frequencies and their effects on therapeutic outcomes. Additionally, the paper discusses how these genetic variations contribute to the variability in drug response and adverse drug reactions among individuals in Arab populations. By synthesizing current findings, this review aims to provide a comprehensive understanding of the pharmacogenetic landscape in Arab countries and offer insights into personalized medicine approaches tailored to genetic profiles. The findings underscore the importance of incorporating pharmacogenetic data into clinical practice to enhance drug efficacy and minimize adverse effects, ultimately paving the way for more effective and individualized treatment strategies in the region.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002323910240924145310
2024-10-08
2024-11-22
Loading full text...

Full text loading...

References

  1. Johnson J.A. Weitzel K.W. Advancing pharmacogenomics as a component of precision medicine: How, where, and who? Clin. Pharmacol. Ther. 2016 99 2 154 156 10.1002/cpt.273 26440500
    [Google Scholar]
  2. Gurwitz D. Lunshof J.E. Dedoussis G. Flordellis C.S. Fuhr U. Kirchheiner J. Licinio J. Llerena A. Manolopoulos V.G. Sheffield L.J. Siest G. Torricelli F. Vasiliou V. Wong S. Pharmacogenomics education: International Society of Pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education. Pharmacogenomics J. 2005 5 4 221 225 10.1038/sj.tpj.6500312 15852053
    [Google Scholar]
  3. Ginsburg G.S. Willard H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009 154 6 277 287 10.1016/j.trsl.2009.09.005 19931193
    [Google Scholar]
  4. Roden D.M. Wilke R.A. Kroemer H.K. Stein C.M. Pharmacogenomics. Circulation 2011 123 15 1661 1670 10.1161/CIRCULATIONAHA.109.914820 21502584
    [Google Scholar]
  5. Ahmed S. Zhou Z. Zhou J. Chen S.Q. Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genomics Proteomics Bioinformatics 2016 14 5 298 313 10.1016/j.gpb.2016.03.008 27729266
    [Google Scholar]
  6. Ehmann F. Caneva L. Prasad K. Paulmichl M. Maliepaard M. Llerena A. Ingelman-Sundberg M. Papaluca-Amati M. Pharmacogenomic information in drug labels: European Medicines Agency perspective. Pharmacogenomics J. 2015 15 3 201 210 10.1038/tpj.2014.86 25707393
    [Google Scholar]
  7. Kim J.A. Ceccarelli R. Lu C.Y. Pharmacogenomic Biomarkers in US FDA-Approved Drug Labels (2000–2020). J. Pers. Med. 2021 11 3 179 10.3390/jpm11030179 33806453
    [Google Scholar]
  8. Klein M.E. Parvez M.M. Shin J.G. Clinical Implementation of Pharmacogenomics for Personalized Precision Medicine: Barriers and Solutions. J. Pharm. Sci. 2017 106 9 2368 2379 10.1016/j.xphs.2017.04.051 28619604
    [Google Scholar]
  9. Mini E. Nobili S. Pharmacogenetics: implementing personalized medicine. Clin. Cases Miner. Bone Metab. 2009 6 1 17 24 22461093
    [Google Scholar]
  10. Teebi A.S. Teebi S.A. Genetic diversity among the Arabs. Community Genet. 2005 8 1 21 26 15767750
    [Google Scholar]
  11. Thier R. Brüning T. Roos P.H. Rihs H.P. Golka K. Ko Y. Bolt H.M. Markers of genetic susceptibility in human environmental hygiene and toxicology: The role of selected CYP, NAT and GST genes. Int. J. Hyg. Environ. Health 2003 206 3 149 171 10.1078/1438‑4639‑00209 12872524
    [Google Scholar]
  12. Abdelaal M.A. Anyaegbu C.C. al Sobhi E.M. al Baz N.M. Hodan K. Blood group phenotype distribution in Saudi Arabs. Afr. J. Med. Med. Sci. 1999 28 3-4 133 135 11205816
    [Google Scholar]
  13. Crettol S. Petrovic N. Murray M. Pharmacogenetics of phase I and phase II drug metabolism. Curr. Pharm. Des. 2010 16 2 204 219 10.2174/138161210790112674 19835560
    [Google Scholar]
  14. Jancova P. Anzenbacher P. Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2010 154 2 103 116 10.5507/bp.2010.017 20668491
    [Google Scholar]
  15. Wu B. Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study. J. Pharm. Sci. 2012 101 1 381 393 10.1002/jps.22738 21905031
    [Google Scholar]
  16. Nebert D.W. McKinnon R.A. Puga A. Human drug-metabolizing enzyme polymorphisms: effects on risk of toxicity and cancer. DNA Cell Biol. 1996 15 4 273 280 10.1089/dna.1996.15.273 8639263
    [Google Scholar]
  17. Nebert D.W. Wikvall K. Miller W.L. Human cytochromes P450 in health and disease. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013 368 1612 20120431 10.1098/rstb.2012.0431 23297354
    [Google Scholar]
  18. Stavropoulou E. Pircalabioru G.G. Bezirtzoglou E. The Role of Cytochromes P450 in Infection. Front. Immunol. 2018 9 89 10.3389/fimmu.2018.00089 29445375
    [Google Scholar]
  19. Backman J.T. Filppula A.M. Niemi M. Neuvonen P.J. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions. Pharmacol. Rev. 2016 68 1 168 241 10.1124/pr.115.011411 26721703
    [Google Scholar]
  20. Chenoweth M.J. O’Loughlin J. Sylvestre M.P. Tyndale R.F. CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers. Pharmacogenet. Genomics 2013 23 4 232 235 10.1097/FPC.0b013e32835f834d 23462429
    [Google Scholar]
  21. Bernhardt R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol. 2006 124 1 128 145 10.1016/j.jbiotec.2006.01.026 16516322
    [Google Scholar]
  22. McDonnell A.M. Dang C.H. Basic review of the cytochrome p450 system. J. Adv. Pract. Oncol. 2013 4 4 263 268 25032007
    [Google Scholar]
  23. Zanger U.M. Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol. Ther. 2013 138 1 103 141 10.1016/j.pharmthera.2012.12.007 23333322
    [Google Scholar]
  24. Nebert D.W. Dalton T.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat. Rev. Cancer 2006 6 12 947 960 10.1038/nrc2015 17128211
    [Google Scholar]
  25. Tukey R.H. Strassburg C.P. Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu. Rev. Pharmacol. Toxicol. 2000 40 1 581 616 10.1146/annurev.pharmtox.40.1.581 10836148
    [Google Scholar]
  26. Rowland A. Miners J.O. Mackenzie P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell Biol. 2013 45 6 1121 1132 10.1016/j.biocel.2013.02.019 23500526
    [Google Scholar]
  27. Ouzzine M. Gulberti S. Ramalanjaona N. Magdalou J. Fournel-Gigleux S. The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front. Cell. Neurosci. 2014 8 349 10.3389/fncel.2014.00349 25389387
    [Google Scholar]
  28. Miners J.O. Smith P.A. Sorich M.J. McKinnon R.A. Mackenzie P.I. Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches. Annu. Rev. Pharmacol. Toxicol. 2004 44 1 1 25 10.1146/annurev.pharmtox.44.101802.121546 14744236
    [Google Scholar]
  29. Mackenzie P.I. Walter Bock K. Burchell B. Guillemette C. Ikushiro S. Iyanagi T. Miners J.O. Owens I.S. Nebert D.W. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet. Genomics 2005 15 10 677 685 10.1097/01.fpc.0000173483.13689.56 16141793
    [Google Scholar]
  30. Kiang T. Ensom M. Chang T. UDP-glucuronosyltransferases and clinical drug-drug interactions. Pharmacol. Ther. 2005 106 1 97 132 10.1016/j.pharmthera.2004.10.013 15781124
    [Google Scholar]
  31. Gaganis P. Miners J.O. Knights K.M. Glucuronidation of fenamates: Kinetic studies using human kidney cortical microsomes and recombinant UDP-glucuronosyltransferase (UGT) 1A9 and 2B7. Biochem. Pharmacol. 2007 73 10 1683 1691 10.1016/j.bcp.2007.01.030 17343829
    [Google Scholar]
  32. MacKenzie P.I. Rogers A. Elliot D.J. Chau N. Hulin J.A. Miners J.O. Meech R. The novel UDP glycosyltransferase 3A2: cloning, catalytic properties, and tissue distribution. Mol. Pharmacol. 2011 79 3 472 478 10.1124/mol.110.069336 21088224
    [Google Scholar]
  33. Ohno S. Nakajin S. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction. Drug Metab. Dispos. 2009 37 1 32 40 10.1124/dmd.108.023598 18838504
    [Google Scholar]
  34. Radominska-Pandya A. Czernik P.J. Little J.M. Battaglia E. MacKenzie P. Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab. Rev. 1999 31 4 817 899 10.1081/DMR‑100101944 10575553
    [Google Scholar]
  35. Gough A.C. Smith C.A.D. Howell S.M. Wolf C.R. Bryant S.P. Spurr N.K. Localization of the CYP2D gene locus to human chromosome 22q13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis. Genomics 1993 15 2 430 432 10.1006/geno.1993.1082 8449513
    [Google Scholar]
  36. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005 5 1 6 13 10.1038/sj.tpj.6500285 15492763
    [Google Scholar]
  37. Zhou S.F. Ming Di Y. Chan E. Du Y.M. Chow V. Xue C. Lai X. Wang J.C. Li C. Tian M. Duan W. Clinical pharmacogenetics and potential application in personalized medicine. Curr. Drug Metab. 2008 9 8 738 784 10.2174/138920008786049302 18855611
    [Google Scholar]
  38. Sachse C. Brockmöller J. Bauer S. Roots I. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am. J. Hum. Genet. 1997 60 2 284 295 9012401
    [Google Scholar]
  39. Marez D. Legrand M. Sabbagh N. Lo Guidice J-M. Spire C. Lafitte J-J. Meyer U.A. Broly F. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution. Pharmacogenetics 1997 7 3 193 202 10.1097/00008571‑199706000‑00004 9241659
    [Google Scholar]
  40. Bradford L.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002 3 2 229 243 10.1517/14622416.3.2.229 11972444
    [Google Scholar]
  41. Ji L. Pan S. Marti-Jaun J. Hänseler E. Rentsch K. Hersberger M. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: allele frequencies and a novel *14B allele in mainland Chinese. Clin. Chem. 2002 48 7 983 988 10.1093/clinchem/48.7.983 12089164
    [Google Scholar]
  42. Borges S. Desta Z. Li L. Skaar T. Ward B. Nguyen A. Jin Y. Storniolo A. Nikoloff D. Wu L. Hillman G. Hayes D.F. Stearns V. Flockhart D.A. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: Implication for optimization of breast cancer treatment. Clin. Pharmacol. Ther. 2006 80 1 61 74 10.1016/j.clpt.2006.03.013 16815318
    [Google Scholar]
  43. Gaedigk A. Sangkuhl K. Whirl-Carrillo M. Klein T. Leeder J.S. Prediction of CYP2D6 phenotype from genotype across world populations. Genet. Med. 2017 19 1 69 76 10.1038/gim.2016.80 27388693
    [Google Scholar]
  44. Miners J.O. Birkett D.J. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 1998 45 6 525 538 10.1046/j.1365‑2125.1998.00721.x 9663807
    [Google Scholar]
  45. Wang D. Sun X. Gong Y. Gawronski B.E. Langaee T.Y. Shahin M.H.A. Khalifa S.I. Johnson J.A. CYP2C9 promoter variable number tandem repeat polymorphism regulates mRNA expression in human livers. Drug Metab. Dispos. 2012 40 5 884 891 10.1124/dmd.111.044255 22289258
    [Google Scholar]
  46. Yasmeen F. Ghafoor M.B. Khalid A.W. Latif W. Mohsin S. Khaliq S. Analysis of CYP2C9 polymorphisms (*2 and *3) in warfarin therapy patients in Pakistan. Association of CYP2C9 polymorphisms (*2 and*3) with warfarin dose, age, PT and INR. J. Thromb. Thrombolysis 2015 40 2 218 224 10.1007/s11239‑015‑1215‑5 25904339
    [Google Scholar]
  47. Wei L. Locuson C.W. Tracy T.S. Polymorphic variants of CYP2C9: mechanisms involved in reduced catalytic activity. Mol. Pharmacol. 2007 72 5 1280 1288 10.1124/mol.107.036178 17686967
    [Google Scholar]
  48. Jung F. Richardson T.H. Raucy J.L. Johnson E.F. Diazepam metabolism by cDNA-expressed human 2C P450s: identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases. Drug Metab. Dispos. 1997 25 2 133 139 9029042
    [Google Scholar]
  49. Kaneko A. Lum J.K. Yaviong J. Takahashi N. Ishizaki T. Bertilsson L. Kobayakawa T. Björkman A. High and variable frequencies of CYP2C19 mutations. Pharmacogenet. Genomics 1999 9 5 581 590 10.1097/01213011‑199910000‑00005 10591538
    [Google Scholar]
  50. Xie H.G. Kim R.B. Wood A.J.J. Stein C.M. Molecular basis of ethnic differences in drug disposition and response. Annu. Rev. Pharmacol. Toxicol. 2001 41 1 815 850 10.1146/annurev.pharmtox.41.1.815 11264478
    [Google Scholar]
  51. de Morais S.M. Wilkinson G.R. Blaisdell J. Nakamura K. Meyer U.A. Goldstein J.A. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 1994 269 22 15419 15422 10.1016/S0021‑9258(17)40694‑6 8195181
    [Google Scholar]
  52. Bedair K.F. Smith B. Palmer C.N.A. Doney A.S.F. Pearson E.R. Pharmacogenetics at scale in real-world bioresources: CYP2C19 and clopidogrel outcomes in UK Biobank. Pharmacogenet. Genomics 2024 34 3 73 82 10.1097/FPC.0000000000000519 38179710
    [Google Scholar]
  53. Gladding P. White H. Voss J. Ormiston J. Stewart J. Ruygrok P. Bvaldivia B. Baak R. White C. Webster M. Pharmacogenetic testing for clopidogrel using the rapid INFINITI analyzer: a dose-escalation study. JACC Cardiovasc. Interv. 2009 2 11 1095 1101 10.1016/j.jcin.2009.08.018 19926050
    [Google Scholar]
  54. Wang D. Yong L. Zhang Q. Chen H. Impact of CYP2C19 gene polymorphisms on warfarin dose requirement: a systematic review and meta-analysis. Pharmacogenomics 2022 23 16 903 911 10.2217/pgs‑2022‑0106 36222113
    [Google Scholar]
  55. Maeda A. Ando H. Asai T. Ishiguro H. Umemoto N. Ohta M. Morishima M. Sumida A. Kobayashi T. Hosohata K. Ushijima K. Fujimura A. Differential impacts of CYP2C19 gene polymorphisms on the antiplatelet effects of clopidogrel and ticlopidine. Clin. Pharmacol. Ther. 2011 89 2 229 233 10.1038/clpt.2010.268 21178986
    [Google Scholar]
  56. Liu T. Yin T. Li Y. Song L.Q. Yu J. Si R. Zhang Y.M. He Y. Guo W.Y. Wang H.C. CYP2C19 polymorphisms and coronary heart disease risk factors synergistically impact clopidogrel response variety after percutaneous coronary intervention. Coron. Artery Dis. 2014 25 5 412 420 10.1097/MCA.0000000000000092 24608794
    [Google Scholar]
  57. Orr S.T.M. Ripp S.L. Ballard T.E. Henderson J.L. Scott D.O. Obach R.S. Sun H. Kalgutkar A.S. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks. J. Med. Chem. 2012 55 11 4896 4933 10.1021/jm300065h 22409598
    [Google Scholar]
  58. Danielson P.B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr. Drug Metab. 2002 3 6 561 597 10.2174/1389200023337054 12369887
    [Google Scholar]
  59. Lamba J.K. Lin Y.S. Thummel K. Daly A. Watkins P.B. Strom S. Zhang J. Schuetz E.G. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002 12 2 121 132 10.1097/00008571‑200203000‑00006 11875366
    [Google Scholar]
  60. Wrighton S.A. Ring B.J. Watkins P.B. VandenBranden M. Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol. Pharmacol. 1989 36 1 97 105 2747634
    [Google Scholar]
  61. Christopher Gorski J. Hall S.D. Jones D.R. VandenBranden M. Wrighton S.A. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem. Pharmacol. 1994 47 9 1643 1653 10.1016/0006‑2952(94)90543‑6 8185679
    [Google Scholar]
  62. Roy J.N. Lajoie J. Zijenah L.S. Barama A. Poirier C. Ward B.J. Roger M. CYP3A5 genetic polymorphisms in different ethnic populations. Drug Metab. Dispos. 2005 33 7 884 887 10.1124/dmd.105.003822 15833928
    [Google Scholar]
  63. Kuehl P. Zhang J. Lin Y. Lamba J. Assem M. Schuetz J. Watkins P.B. Daly A. Wrighton S.A. Hall S.D. Maurel P. Relling M. Brimer C. Yasuda K. Venkataramanan R. Strom S. Thummel K. Boguski M.S. Schuetz E. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat. Genet. 2001 27 4 383 391 10.1038/86882 11279519
    [Google Scholar]
  64. Parmar S. Stingl J.C. Huber-Wechselberger A. Kainz A. Renner W. Langsenlehner U. Krippl P. Brockmöller J. Haschke-Becher E. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant epirubicin treatment in breast cancer. Breast Cancer Res. 2011 13 3 R57 10.1186/bcr2894 21658222
    [Google Scholar]
  65. Zhou J. Argikar U.A. Remmel R.P. Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes. Pharmacogenomics 2011 12 12 1671 1679 10.2217/pgs.11.105 22047493
    [Google Scholar]
  66. El Rouby N. Shahin M.H. Bader L. Khalifa S.I. Elewa H. Genomewide association analysis of warfarin dose requirements in Middle Eastern and North African populations. Clin. Transl. Sci. 2022 15 2 558 566 10.1111/cts.13176 34729928
    [Google Scholar]
  67. Tong H.Y. Dávila-Fajardo C.L. Borobia A.M. Martínez-González L.J. Lubomirov R. Perea León L.M. Blanco Bañares M.J. Díaz-Villamarín X. Fernández-Capitán C. Cabeza Barrera J. Carcas A.J. A new pharmacogenetic algorithm to predict the most appropriate dosage of acenocoumarol for stable anticoagulation in a Mixed Spanish Population. PLoS One 2016 11 3 e0150456 10.1371/journal.pone.0150456 26977927
    [Google Scholar]
  68. AL-Eitan L. Almasri A. Al-Habahbeh S. Impact of a variable number tandem repeat in the CYP2C9 promoter on warfarin sensitivity and responsiveness in Jordanians with cardiovascular disease. Pharm. Genomics Pers. Med. 2019 12 15 22 10.2147/PGPM.S189838 30962704
    [Google Scholar]
  69. AL-Eitan L.N. Almasri A.Y. Khasawneh R.H. Impact of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy. Genes (Basel) 2018 9 12 578 10.3390/genes9120578 30486437
    [Google Scholar]
  70. Esmerian M.O. Mitri Z. Habbal M.Z. Geryess E. Zaatari G. Alam S. Skouri H.N. Mahfouz R.A. Taher A. Zgheib N.K. Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of Lebanese people. J. Clin. Pharmacol. 2011 51 10 1418 1428 10.1177/0091270010382910 21148049
    [Google Scholar]
  71. Ossaily S. Zgheib N.K. The pharmacogenetics of drug metabolizing enzymes in the Lebanese population. Drug Metabol. Drug Interact. 2014 29 2 81 90 10.1515/dmdi‑2013‑0058 24413215
    [Google Scholar]
  72. Khalil B.M. Shahin M.H. Solayman M.H.M. Langaee T. Schaalan M.F. Gong Y. Hammad L.N. Al-Mesallamy H.O. Hamdy N.M. El-Hammady W.A. Johnson J.A. Genetic and Nongenetic Factors Affecting Clopidogrel Response in the Egyptian Population. Clin. Transl. Sci. 2016 9 1 23 28 10.1111/cts.12383 26757134
    [Google Scholar]
  73. El-Halabi M.M. Zgheib N. Mansour N.M. Malli A. Ghaith O.A. Mahfouz R. Alam S. Sharara A.I. CYP2C19 genetic polymorphism, rabeprazole and esomeprazole have no effect on the antiplatelet action of clopidogrel. J. Cardiovasc. Pharmacol. 2013 62 1 41 49 10.1097/FJC.0b013e31828ecf44 23474843
    [Google Scholar]
  74. Charfi R. Mzoughi K. Boughalleb M. Hosni H. Kouidhi S. Sfar I. Hammami N. Zaïri I. Limam M. Zedini C. Mrabet A. Klouz A. Gorgi Y. Kharrat M. Baccar H. Trabelsi S. Response to clopidogrel and of the cytochrome CYP2C19 gene polymorphism. Tunis. Med. 2018 96 3 209 218 30325490
    [Google Scholar]
  75. Al-Azzam S.I. Alzoubi K.H. Khabour O.F. Nusair M.B. Al-Hadidi H. Awidi A. Saleh A. Factors that contribute to clopidogrel resistance in cardiovascular disease patients: environmental and genetic approach. Int. J. Clin. Pharmacol. Ther. 2013 51 3 179 186 10.5414/CP201784 23357840
    [Google Scholar]
  76. Mohammad A.M. Al-Allawi N.A.S. CYP2C19 Genotype is an Independent Predictor of Adverse Cardiovascular Outcome in Iraqi Patients on Clopidogrel After Percutaneous Coronary Intervention. J. Cardiovasc. Pharmacol. 2018 71 6 347 351 10.1097/FJC.0000000000000577 29554005
    [Google Scholar]
  77. Zalloum I. Hakooz N. Arafat T. Genetic polymorphism of CYP2C19 in a Jordanian population: influence of allele frequencies of CYP2C19*1 and CYP2C19*2 on the pharmacokinetic profile of lansoprazole. Mol. Biol. Rep. 2012 39 4 4195 4200 10.1007/s11033‑011‑1204‑5 21769476
    [Google Scholar]
  78. van Schaik R.H.N. de Wildt S.N. Brosens R. van Fessem M. van den Anker J.N. Lindemans J. The CYP3A4*3 allele: is it really rare? Clin. Chem. 2001 47 6 1104 1106 10.1093/clinchem/47.6.1104 11375299
    [Google Scholar]
  79. Wang B.S. Liu Z. Xu W.X. Sun S.L. CYP3A5*3 polymorphism and cancer risk: a meta-analysis and meta-regression. Tumour Biol. 2013 34 4 2357 2366 10.1007/s13277‑013‑0783‑2 23584898
    [Google Scholar]
  80. Fernández-Santander A. Novillo A. Gaibar M. Romero-Lorca A. Moral P. Sánchez-Cuenca D. Amir N. Chaabani H. Harich N. Esteban M.E. Cytochrome and sulfotransferase gene variation in north African populations. Pharmacogenomics 2016 17 13 1415 1423 10.2217/pgs‑2016‑0016 27471773
    [Google Scholar]
  81. Radouani F. Zass L. Hamdi Y. Rocha J. Sallam R. Abdelhak S. Ahmed S. Azzouzi M. Benamri I. Benkahla A. Bouhaouala-Zahar B. Chaouch M. Jmel H. Kefi R. Ksouri A. Kumuthini J. Masilela P. Masimirembwa C. Othman H. Panji S. Romdhane L. Samtal C. Sibira R. Ghedira K. Fadlelmola F. Kassim S.K. Mulder N. A review of clinical pharmacogenetics Studies in African populations. Per. Med. 2020 17 2 155 170 10.2217/pme‑2019‑0110 32125935
    [Google Scholar]
  82. Elghannam D.M. Ibrahim L. Ebrahim M.A. Azmy E. Hakem H. Association of MDR1 gene polymorphism (G2677T) with imatinib response in Egyptian chronic myeloid leukemia patients. Hematology 2014 19 3 123 128 10.1179/1607845413Y.0000000102 23683876
    [Google Scholar]
  83. Jmel H. Romdhane L. Ben Halima Y. Hechmi M. Naouali C. Dallali H. Hamdi Y. Shan J. Abid A. Jamoussi H. Trabelsi S. Chouchane L. Luiselli D. Abdelhak S. Kefi R. Pharmacogenetic landscape of Metabolic Syndrome components drug response in Tunisia and comparison with worldwide populations. PLoS One 2018 13 4 e0194842 10.1371/journal.pone.0194842 29652911
    [Google Scholar]
  84. Tfayli A. P4-01-16: The Influence of CYP2D6 Genetic Polymorphisms on Variability of Tamoxifen Metabolism in the Lebanese Breast Cancer Population. Cancer Res 2011 71 24 Supplement P4-01-16 10.1158/0008‑5472.SABCS11‑P4‑01‑16
    [Google Scholar]
  85. Shrif N.E.M.A. Won H.H. Lee S.T. Park J.H. Kim K.K. Kim M.J. Kim S. Lee S.Y. Ki C.S. Osman I.M. Rhman E.A. Ali I.A. Idris M.N.A. Kim J.W. Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients. Eur. J. Clin. Pharmacol. 2011 67 11 1119 1130 10.1007/s00228‑011‑1060‑1 21590310
    [Google Scholar]
  86. Aouam K. Kolsi A. Kerkeni E. Ben Fredj N. Chaabane A. Monastiri K. Boughattas N. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics 2015 16 18 2045 2054 10.2217/pgs.15.138 26615671
    [Google Scholar]
  87. Ajmi M. Omezzine A. Achour S. Amor D. Hamdouni H. Ismaïl F.B.F. Rejeb N.B. Kechrid C.L. Boughzela E. Bouslama A. Influence of genetic and non-genetic factors on acenocoumarol maintenance dose requirement in a Tunisian population. Eur. J. Clin. Pharmacol. 2018 74 6 711 722 10.1007/s00228‑018‑2423‑7 29479633
    [Google Scholar]
  88. Ben Hassine I. Gharbi H. Soltani I. Ben Hadj Othman H. Farrah A. Amouri H. Teber M. Ghedira H. Ben Youssef Y. Safra I. Abbes S. Menif S. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother. Pharmacol. 2017 80 4 829 839 10.1007/s00280‑017‑3424‑4 28836054
    [Google Scholar]
  89. Che X. Yu D. Wu Z. Zhang J. Chen Y. Han Y. Wang C. Qi J. Association of Genetic Polymorphisms in UDP-Glucuronosyltransferases 2B17 with the Risk of Pancreatic Cancer in Chinese Han Population. Clin. Lab. 2015 61 12/2015 1905 1910 10.7754/Clin.Lab.2015.150329 26882814
    [Google Scholar]
  90. Romero-Lorca A. Novillo A. Gaibar M. Bandrés F. Fernández-Santander A. Impacts of the Glucuronidase Genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen Metabolism in Breast Cancer Patients. PLoS One 2015 10 7 e0132269 10.1371/journal.pone.0132269 26176234
    [Google Scholar]
  91. Shiba H.F. El-Ghamrawy M.K. Shaheen I.A.E.M. Ali R.A.E.G. Mousa S.M. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, and GSTP1) in Egyptian pediatric patients with sickle cell disease. Pediatr. Dev. Pathol. 2014 17 4 265 270 10.2350/14‑03‑1452‑OA.1 24840051
    [Google Scholar]
  92. Kwara A. Lartey M. Sagoe K.W. Court M.H. Paradoxically elevated efavirenz concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on rifampin-containing antituberculous therapy. AIDS 2011 25 3 388 390 10.1097/QAD.0b013e3283427e05 21150552
    [Google Scholar]
  93. Ueda K. Cardarelli C. Gottesman M.M. Pastan I. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 1987 84 9 3004 3008 10.1073/pnas.84.9.3004 3472246
    [Google Scholar]
  94. Alhazzani A. Al- Gahtany M. Munisamy M. Karunakaran G. Pharmacogenetics of ATP binding cassette transporter - MDR1 gene polymorphism (C3435T) and response to antiepileptic drug phenytoin pharmacokinetics in epilepsy. J. Neurol. Sci. 2015 357 e142 10.1016/j.jns.2015.08.486
    [Google Scholar]
  95. Alzoubi K.H. Khabour O.F. Al-azzam S.I. Mayyas F. Mhaidat N.M. The role of Multidrug Resistance-1 (MDR1) variants in response to atorvastatin among Jordanians. Cytotechnology 2015 67 2 267 274 10.1007/s10616‑013‑9682‑z 24414406
    [Google Scholar]
  96. Johnson J.A. Drug target pharmacogenomics: an overview. Am. J. Pharmacogenomics 2001 1 4 271 281 10.2165/00129785‑200101040‑00004 12083959
    [Google Scholar]
  97. Owen R.P. Gong L. Sagreiya H. Klein T.E. Altman R.B. VKORC1 pharmacogenomics summary. Pharmacogenet. Genomics 2010 20 10 642 644 10.1097/FPC.0b013e32833433b6 19940803
    [Google Scholar]
  98. Abdelhedi R. Bouayed N.A. Alfadhli S. Abid L. Rebai A. Kharrat N. Characterization of drug-metabolizing enzymes CYP2C9, CYP2C19 polymorphisms in Tunisian, Kuwaiti and Bahraini populations. J. Genet. 2015 94 4 765 770 10.1007/s12041‑015‑0581‑2 26690534
    [Google Scholar]
  99. Bazan N.S. Sabry N.A. Rizk A. Mokhtar S. Badary O.A. Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism. Ir. J. Med. Sci. 2014 183 2 161 172 10.1007/s11845‑013‑0978‑y 23800980
    [Google Scholar]
  100. AL-Eitan L.N. Almasri A.Y. Alnaamneh A.H. Aman H.A. Alrabadi N.N. Khasawneh R.H. Alghamdi M.A. Influence of CYP4F2, ApoE, and CYP2A6 gene polymorphisms on the variability of Warfarin dosage requirements and susceptibility to cardiovascular disease in Jordan. Int. J. Med. Sci. 2021 18 3 826 834 10.7150/ijms.51546 33437219
    [Google Scholar]
  101. Al Ammari M. AlBalwi M. Sultana K. Alabdulkareem I.B. Almuzzaini B. Almakhlafi N.S. Aldrees M. Alghamdi J. The effect of the VKORC1 promoter variant on warfarin responsiveness in the Saudi WArfarin Pharmacogenetic (SWAP) cohort. Sci. Rep. 2020 10 1 11613 10.1038/s41598‑020‑68519‑9 32669629
    [Google Scholar]
  102. Pathare A. Al Khabori M. Alkindi S. Al Zadjali S. Misquith R. Khan H. Lapoumeroulie C. Paldi A. Krishnamoorthy R. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients. J. Hum. Genet. 2012 57 10 665 669 10.1038/jhg.2012.94 22854539
    [Google Scholar]
  103. Jabr R. Gharaibeh M. Zayed A.A. Zihlif M. The Association between Apolipoprotein E Polymorphism and Response to Statins in Group of Hyperlipidemic Patients. Endocr. Metab. Immune Disord. Drug Targets 2021 21 4 720 725 10.2174/1871530320666200705211656 32628603
    [Google Scholar]
  104. Lv S. Fan H. Li J. Yang H. Huang J. Shu X. Zhang L. Xu Y. Li X. Zuo J. Xiao C. Genetic Polymorphisms of TYMS, MTHFR, ATIC, MTR, and MTRR Are Related to the Outcome of Methotrexate Therapy for Rheumatoid Arthritis in a Chinese Population. Front. Pharmacol. 2018 9 1390 10.3389/fphar.2018.01390 30546311
    [Google Scholar]
  105. AL-Eitan L.N. Rababa’h D.M. Alghamdi M.A. Khasawneh R.H. Association of CYP gene polymorphisms with breast cancer risk and prognostic factors in the Jordanian population. BMC Med. Genet. 2019 20 1 148 10.1186/s12881‑019‑0884‑x 31477036
    [Google Scholar]
  106. Al-Mukaynizi F. Alanazi M. AlDaihan S. Parine N.R. Almadi M. Aljebreen A. Azzam N. Alharbi O. Arafah M. Warsy A. CYP19A1 gene polymorphism and colorectal cancer etiology in Saudi population: case–control study. OncoTargets Ther. 2017 10 4559 4567 10.2147/OTT.S121557 29066910
    [Google Scholar]
  107. AL-Eitan L.N. Almasri A.Y. Khasawneh R.H. Effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness during the stabilization phase of therapy. Saudi Pharm. J. 2019 27 4 484 490 10.1016/j.jsps.2019.01.011 31061616
    [Google Scholar]
  108. Jabir F.A. Hoidy W.H. Pharmacogenetics as Personalized Medicine: Association Investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 Polymorphisms in a Breast Cancer Population in Iraqi Women. Clin. Breast Cancer 2018 18 5 e863 e868 10.1016/j.clbc.2018.01.009 29482947
    [Google Scholar]
  109. AL-Eitan L.N. Almomani F.A. Al-Khatib S.M. Association of CYP2C19, TNF-α, NOD1, NOD2, and PPARγ polymorphisms with peptic ulcer disease enhanced by Helicobacter pylori infection. Saudi Med. J. 2021 42 1 21 29 10.15537/smj.2021.1.25654 33399167
    [Google Scholar]
  110. AL-Eitan L.N. Al-Dalalah I.M. Mustafa M.M. Alghamdi M.A. Elshammari A.K. Khreisat W.H. Al-Quasmi M.N. Aljamal H.A. Genetic polymorphisms of CYP3A5, CHRM2, and ZNF498 and their association with epilepsy susceptibility: a pharmacogenetic and case–control study. Pharm. Genomics Pers. Med. 2019 12 225 233 10.2147/PGPM.S212433 31564953
    [Google Scholar]
  111. Hoidy W.H. Jaber F.A. Al-Askari M.A. Association of CYP1A1 rs1048943 Polymorphism with Prostate Cancer in Iraqi Men Patients. Asian Pac. J. Cancer Prev. 2019 20 12 3839 3842 10.31557/APJCP.2019.20.12.3839 31870130
    [Google Scholar]
  112. AL-Eitan L.N. Rababa’h D.M. Alghamdi M.A. Khasawneh R.H. Association between ESR1, ESR2, HER2, UGT1A4, and UGT2B7 polymorphisms and breast Cancer in Jordan: a case-control study. BMC Cancer 2019 19 1 1257 10.1186/s12885‑019‑6490‑7 31888550
    [Google Scholar]
  113. AL-Eitan L.N. Jamous R.I. Khasawneh R.H. Candidate Gene Analysis of Breast Cancer in the Jordanian Population of Arab Descent: A Case-Control Study. Cancer Invest. 2017 35 4 256 270 10.1080/07357907.2017.1289217 28272917
    [Google Scholar]
  114. AL-Eitan L.N. Rababa’h D.M. Alghamdi M.A. Khasawneh R.H. Correlation between Candidate Single Nucleotide Variants and Several Clinicopathological Risk Factors Related to Breast Cancer in Jordanian Women: A Genotype-Phenotype Study. J. Cancer 2019 10 19 4647 4654 10.7150/jca.33857 31528229
    [Google Scholar]
  115. Kamal A. Elgengehy F.T. Abd Elaziz M.M. Gamal S.M. Sobhy N. Medhat A. El Dakrony A.H.M. Matrix metalloproteinase-9 rs17576 gene polymorphism and Behçet’s disease: is there an association? Immunol. Invest. 2017 46 5 460 468 10.1080/08820139.2017.1296857 28388268
    [Google Scholar]
  116. AL-Eitan L. M Rababa’h D. Aman H.A. The Associations of Common Genetic Susceptibility Variants with Breast Cancer in Jordanian Arabs: A Case-Control Study. Asian Pac. J. Cancer Prev. 2020 21 10 3045 3054 10.31557/APJCP.2020.21.10.3045 33112566
    [Google Scholar]
  117. Almomani B.A. AL-Eitan L.N. Al-Sawalha N.A. Samrah S.M. Al-Quasmi M.N. Association of genetic variants with level of asthma control in the Arab population. J. Asthma Allergy 2019 12 35 42 10.2147/JAA.S186252 30774389
    [Google Scholar]
  118. Almomani B.A. Al-Eitan L.N. Samrah S.M. Al-Quasmi M.N. McKnight A.J. Candidate gene analysis of asthma in a population of Arab descent: a case-control study in Jordan. Per. Med. 2017 14 1 51 61 10.2217/pme‑2016‑0059 29749828
    [Google Scholar]
  119. Habel A.F. Ghali R.M. Bouaziz H. Daldoul A. Hadj-Ahmed M. Mokrani A. Zaied S. Hechiche M. Rahal K. Yacoubi-Loueslati B. Almawi W.Y. Common matrix metalloproteinase-2 gene variants and altered susceptibility to breast cancer and associated features in Tunisian women. Tumour Biol. 2019 41 4 10.1177/1010428319845749 31014197
    [Google Scholar]
  120. Al-Saikhan F.I. Abd-Elaziz M.A. Ashour R.H. Association between risk of type 2 diabetes mellitus and angiotensin-converting enzyme insertion/deletion gene polymorphisms in a Saudi Arabian population. Biomed. Rep. 2017 7 1 56 60 10.3892/br.2017.920 28685061
    [Google Scholar]
  121. Al-Awadhi A.M. Hasan E.A. Sharma P.N. Haider M.Z. Al-Saeid K. Angiotensin-converting enzyme gene polymorphism in patients with psoriatic arthritis. Rheumatol. Int. 2007 27 12 1119 1123 10.1007/s00296‑007‑0349‑y 17440728
    [Google Scholar]
  122. Al-Awadhi A.M. Haider M.Z. Sharma P.N. Hasan E.A. Botaiban F. Al-Herz A. Nahar I. Al-Enezi H. Al-Saeid K. Angiotensin-converting enzyme gene polymorphism in Kuwaiti patients with systemic lupus erythematosus. Clin. Exp. Rheumatol. 2007 25 3 437 442 17631741
    [Google Scholar]
  123. Shehab D.K. Al-Jarallah K.F. Alawadhi A.M. Al-Herz A. Nahar I. Haider M.Z. Prevalence of angiotensin-converting enzyme gene insertion-deletion polymorphism in patients with primary knee osteoarthritis. Clin. Exp. Rheumatol. 2008 26 2 305 310 18565253
    [Google Scholar]
  124. Alsaeid M. Moussa M.A.A. Haider M.Z. Refai T.M.K. Abdella N. Al-Sheikh N. Gomez J.E. Angiotensin-converting enzyme gene polymorphism and lipid profiles in Kuwaiti children with type 1 diabetes. Pediatr. Diabetes 2004 5 2 87 94 10.1111/j.1399‑543X.2004.00040.x 15189494
    [Google Scholar]
  125. Al-Radeef M.Y. Fawzi H.A. Allawi A.A. ACE gene polymorphism and its association with serum erythropoietin and hemoglobin ‎in Iraqi hemodialysis patients. Appl. Clin. Genet. 2019 12 107 112 10.2147/TACG.S198992 31303780
    [Google Scholar]
  126. Fakhoury H. Fawwaz S. Balbaa M. Borjac J. Fakhoury R. Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and end-stage renal disease in lebanese patients with diabetic nephropathy. Saudi J. Kidney Dis. Transpl. 2017 28 2 325 329 10.4103/1319‑2442.202789 28352015
    [Google Scholar]
  127. Chmaisse H.N. Jammal M. Fakhoury H. Fakhoury R. A study on the association between angiotensin-I converting enzyme I/D dimorphism and type-2 diabetes mellitus. Saudi J. Kidney Dis. Transpl. 2009 20 6 1038 1046 19861867
    [Google Scholar]
  128. Akra-Ismail M. Makki R.F. Chmaisse H.N. Kazma A. Zgheib N.K. Association between angiotensin-converting enzyme insertion/deletion genetic polymorphism and hypertension in a sample of Lebanese patients. Genet. Test. Mol. Biomarkers 2010 14 6 787 792 10.1089/gtmb.2010.0096 20939740
    [Google Scholar]
  129. El Ezzi A.A. Clawson J.M. El-Saidi M.A. Zaidan W.R. Kovash A. Orellana J. Thornock A. Kuddus R.H. Association of Angiotensin I Converting Enzyme Insertion/287 bp Deletion Polymorphisms and Proliferative Prostatic Diseases among Lebanese Men. Prostate Cancer 2020 2020 1 6 10.1155/2020/5959134 32089890
    [Google Scholar]
  130. Ibdah R.K. AL-Eitan L.N. Alrabadi N.N. Almasri A.Y. Alnaamneh A.H. Khasawneh R.H. Alghamdi M.A. Impact of PCSK9, WDR12, CDKN2A, and CXCL12 Polymorphisms in Jordanian Cardiovascular Patients on Warfarin Responsiveness and Sensitivity. Int. J. Gen. Med. 2021 14 103 118 10.2147/IJGM.S287238 33488114
    [Google Scholar]
  131. AL-Eitan L.N. Almasri A.Y. Khasawneh R.H. Alghamdi M.A. Influence of SH2B3, MTHFD1L, GGCX, and ITGB3 Gene Polymorphisms on theVariability on Warfarin Dosage Requirements and Susceptibility to CVD in the Jordanian Population. J. Pers. Med. 2020 10 3 117 10.3390/jpm10030117 32916786
    [Google Scholar]
  132. AL-Eitan L.N. Al-Dalalah I.M. Mustafa M.M. Alghamdi M.A. Elshammari A.K. Khreisat W.H. Aljamal H.A. Effects of MTHFR and ABCC2 gene polymorphisms on antiepileptic drug responsiveness in Jordanian epileptic patients. Pharm. Genomics Pers. Med. 2019 12 87 95 10.2147/PGPM.S211490 31354331
    [Google Scholar]
  133. Boughrara W. Aberkane M. Fodil M. Benzaoui A. Dorgham S. Zemani F. Dahmani C. Petit Teixeira E. Boudjema A. Impact of MTHFR rs1801133, MTHFR rs1801131 and ABCB1 rs1045642 polymorphisms with increased susceptibility of rheumatoid arthritis in the West Algerian population: A case-control study. Acta Reumatol. Port. 2015 40 4 363 371 26922200
    [Google Scholar]
  134. Al-Eitan L. Al-Habahbeh S. Alkhatib R. Genetic association analysis of ERBB4 polymorphisms with the risk ofschizophrenia susceptibility in a Jordanian population of Arab descent. Turk. J. Med. Sci. 2017 47 2 542 553 10.3906/sag‑1603‑25 28425244
    [Google Scholar]
  135. AL-Eitan L. Alqa’qa’ K. Amayreh W. Khasawneh R. Aljamal H. Al-Abed M. Haddad Y. Rawashdeh T. Jaradat Z. Haddad H. Identification and characterization of BTD gene mutations in Jordanian children with biotinidase deficiency. J. Pers. Med. 2020 10 1 4 10.3390/jpm10010004 31973013
    [Google Scholar]
  136. AL-Eitan L. Alqa’qa’ K. Amayreh W. Aljamal H. Khasawneh R. Al-Zoubi B. Okour I. Haddad A. Haddad Y. Haddad H. Novel mutations in the SMPD1 gene in Jordanian children with Acid sphingomyelinase deficiency (Niemann-Pick types A and B). Gene 2020 747 144683 10.1016/j.gene.2020.144683 32311413
    [Google Scholar]
  137. Al-Khatib S. Abdo N. Al-Eitan L.N. Al-Mistarehi A.H. Zahran D.J. Al Ajlouni M. Kewan T. The Impact of the Genetic Polymorphism in DNA Repair Pathways on Increased Risk of Glioblastoma Multiforme in the Arab Jordanian Population: A Case–Control Study. Appl. Clin. Genet. 2020 13 115 126 10.2147/TACG.S248994 32606887
    [Google Scholar]
  138. Hammouda S. Ghzaiel I. Khamlaoui W. Hammami S. Mhenni S.Y.O.U.N.E.S. Samet S. Hammami M. Zarrouk A. Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer’s disease in the Tunisian population. Prostaglandins Leukot. Essent. Fatty Acids 2020 160 102159 10.1016/j.plefa.2020.102159 32682282
    [Google Scholar]
  139. Marouf C. Göhler S. Filho M.I.D.S. Hajji O. Hemminki K. Nadifi S. Försti A. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population. BMC Cancer 2016 16 1 165 10.1186/s12885‑016‑2210‑8 26920143
    [Google Scholar]
  140. Mimouni A. Rouleau E. Saulnier P. Marouani A. Abdelali M.L. Filali T. Beddar L. Lakehal A. Hireche A. Boudersa A. Aissaoui M. Ramtani H. Bouhedjar K. Abdellouche D. Oudjehih M. Boudokhane I. Abadi N. Satta D. Association of TERT, OGG1, and CHRNA5 Polymorphisms and the Predisposition to Lung Cancer in Eastern Algeria. Pulm. Med. 2020 2020 1 12 10.1155/2020/7649038 32257438
    [Google Scholar]
  141. Mohamed R.H. El-Shal A.S. El-Shahawy E.E. Abdel Galil S.M. Association of XRCC1 and OGG1 DNA repair gene polymorphisms with rheumatoid arthritis in Egyptian patients. Gene 2016 578 1 112 116 10.1016/j.gene.2015.12.021 26692147
    [Google Scholar]
  142. Shaker O.G. EL Boghdady N.A. El Sayed A.E.D. Association of MiRNA-146a, MiRNA-499, IRAK1 and PADI4 Polymorphisms with Rheumatoid Arthritis in Egyptian Population. Cell. Physiol. Biochem. 2018 46 6 2239 2249 10.1159/000489592 29734142
    [Google Scholar]
  143. Al-Shaqha W.M. Alkharfy K.M. Al-Daghri N.M. Mohammed A.K. N-acetyltransferase 1 and 2 polymorphisms and risk of diabetes mellitus type 2 in a Saudi population. Ann. Saudi Med. 2015 35 3 214 221 10.5144/0256‑4947.2015.214 26409796
    [Google Scholar]
  144. Dahui Q. Next-generation sequencing and its clinical application. Cancer Biol. Med. 2019 16 1 4 10 10.20892/j.issn.2095‑3941.2018.0055 31119042
    [Google Scholar]
  145. Khehra N. Padda I.S. Swift C.J. Polymerase Chain Reaction (PCR). StatPearls Treasure Island (FL) 2024
    [Google Scholar]
  146. Totomoch-Serra A. Marquez M.F. Cervantes-Barragán D.E. Sanger sequencing as a first-line approach for molecular diagnosis of Andersen-Tawil syndrome. F1000 Res. 2017 6 1016 10.12688/f1000research.11610.1 29093808
    [Google Scholar]
  147. Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol 2013
    [Google Scholar]
  148. Cui C. Shu W. Li P. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications. Front. Cell Dev. Biol. 2016 4 89 10.3389/fcell.2016.00089 27656642
    [Google Scholar]
  149. Jovic D. Liang X. Zeng H. Lin L. Xu F. Luo Y. Single‐cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med. 2022 12 3 e694 10.1002/ctm2.694 35352511
    [Google Scholar]
  150. Li J.H. Zhang D.Y. Zhu J.M. Dong L. Clinical applications and perspectives of circulating tumor DNA in gastric cancer. Cancer Cell Int. 2024 24 1 13 10.1186/s12935‑024‑03209‑4 38184573
    [Google Scholar]
  151. Arafah A. Rehman M.U. Syed W. Babelghaith S.D. Alwhaibi A. Al Arifi M.N. Knowledge, attitude and perception of pharmacy students towards pharmacogenomics and genetics: An Observational Study from King Saud University. Genes (Basel) 2022 13 2 269 10.3390/genes13020269 35205314
    [Google Scholar]
  152. Rahma A.T. Ali B.R. Patrinos G.P. Ahmed L.A. Elbarazi I. Abdullahi A.S. Elsheik M. Abbas M. Afandi F. Alnaqbi A. Al Maskari F. Knowledge, attitudes, and perceptions of the multi-ethnic population of the United Arab Emirates on genomic medicine and genetic testing. Hum. Genomics 2023 17 1 63 10.1186/s40246‑023‑00509‑0 37454085
    [Google Scholar]
  153. Antoun J. Zgheib N.K. Ashkar K. Education may improve the underutilization of genetic services by Middle Eastern primary care practitioners. Genet. Test. Mol. Biomarkers 2010 14 4 447 454 10.1089/gtmb.2010.0021 20649434
    [Google Scholar]
  154. Sirisena N.D. Dissanayake V.H.W. Strategies for Genomic Medicine Education in Low- and Middle-Income Countries. Front. Genet. 2019 10 944 10.3389/fgene.2019.00944 31649727
    [Google Scholar]
  155. Rahma A.T. Elsheik M. Ali B.R. Elbarazi I. Patrinos G.P. Ahmed L.A. Al Maskari F. Knowledge, Attitudes, and Perceived Barriers toward Genetic Testing and Pharmacogenomics among Healthcare Workers in the United Arab Emirates: A Cross-Sectional Study. J. Pers. Med. 2020 10 4 216 10.3390/jpm10040216 33182317
    [Google Scholar]
  156. AlRasheed M.M. AlAli H. Alsuwaid A.F. Khalaf S. Ata S.I. BinDhim N.F. Bakheet D. Khurshid F. Alhawassi T.M. Gene Therapy Knowledge and Attitude Among Healthcare Professionals: A Cross-Sectional Study. Front. Public Health 2021 9 773175 10.3389/fpubh.2021.773175 34869185
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002323910240924145310
Loading
/content/journals/cdm/10.2174/0113892002323910240924145310
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: drug metabolism ; haplotype ; arab world ; polymorphisms ; Pharmacogenetics ; genetic testing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test