Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1389-2002
  • E-ISSN: 1875-5453

Abstract

Drug metabolizing enzymes play a crucial role in the pharmacokinetics and pharmacodynamics of therapeutic drugs, influencing their efficacy and safety. This review explores the impact of genetic polymorphisms in drug-metabolizing genes on drug response within Arab populations. We examine the genetic diversity specific to Arab countries, focusing on the variations in key drug-metabolizing enzymes such as CYP450, GST, and UGT families. The review highlights recent research on polymorphisms in these genes and their implications for drug metabolism, including variations in allele frequencies and their effects on therapeutic outcomes. Additionally, the paper discusses how these genetic variations contribute to the variability in drug response and adverse drug reactions among individuals in Arab populations. By synthesizing current findings, this review aims to provide a comprehensive understanding of the pharmacogenetic landscape in Arab countries and offer insights into personalized medicine approaches tailored to genetic profiles. The findings underscore the importance of incorporating pharmacogenetic data into clinical practice to enhance drug efficacy and minimize adverse effects, ultimately paving the way for more effective and individualized treatment strategies in the region.

Loading

Article metrics loading...

/content/journals/cdm/10.2174/0113892002323910240924145310
2024-10-04
2025-01-24
Loading full text...

Full text loading...

References

  1. JohnsonJ.A. WeitzelK.W. Advancing pharmacogenomics as a component of precision medicine: How, where, and who?Clin. Pharmacol. Ther.201699215415610.1002/cpt.27326440500
    [Google Scholar]
  2. GurwitzD. LunshofJ.E. DedoussisG. FlordellisC.S. FuhrU. KirchheinerJ. LicinioJ. LlerenaA. ManolopoulosV.G. SheffieldL.J. SiestG. TorricelliF. VasiliouV. WongS. Pharmacogenomics education: International Society of Pharmacogenomics recommendations for medical, pharmaceutical, and health schools deans of education.Pharmacogenomics J.20055422122510.1038/sj.tpj.650031215852053
    [Google Scholar]
  3. GinsburgG.S. WillardH.F. Genomic and personalized medicine: Foundations and applications.Transl. Res.2009154627728710.1016/j.trsl.2009.09.00519931193
    [Google Scholar]
  4. RodenD.M. WilkeR.A. KroemerH.K. SteinC.M. Pharmacogenomics.Circulation2011123151661167010.1161/CIRCULATIONAHA.109.91482021502584
    [Google Scholar]
  5. AhmedS. ZhouZ. ZhouJ. ChenS.Q. Pharmacogenomics of drug metabolizing enzymes and transporters: Relevance to precision medicine.Genom. Proteom. Bioinformat.201614529831310.1016/j.gpb.2016.03.00827729266
    [Google Scholar]
  6. EhmannF. CanevaL. PrasadK. PaulmichlM. MaliepaardM. LlerenaA. Ingelman-SundbergM. Papaluca-AmatiM. Pharmacogenomic information in drug labels: European medicines agency perspective.Pharmacogenomics J.201515320121010.1038/tpj.2014.8625707393
    [Google Scholar]
  7. KimJ.A. CeccarelliR. LuC.Y. Pharmacogenomic biomarkers in US FDA-approved drug labels (2000-2020).J. Pers. Med.202111317910.3390/jpm1103017933806453
    [Google Scholar]
  8. (a KleinM.E. ParvezM.M. ShinJ.G. Clinical implementation of pharmacogenomics for personalized precision medicine: Barriers and solutions.J. Pharm. Sci.201710692368237910.1016/j.xphs.2017.04.05128619604
    [Google Scholar]
  9. (a KleinM.E. ParvezM.M. ShinJ.G. Clinical implementation of pharmacogenomics for personalized precision medicine: Barriers and solutions.J. Pharm. Sci.201710692368237910.1016/j.xphs.2017.04.05128619604
    [Google Scholar]
  10. MiniE. NobiliS. Pharmacogenetics: Implementing personalized medicine.Clin. Cases Miner. Bone Metab.200961172422461093
    [Google Scholar]
  11. TeebiA.S. TeebiS.A. Genetic diversity among the Arabs.Community Genet.200581212615767750
    [Google Scholar]
  12. ThierR. BrüningT. RoosP.H. RihsH.P. GolkaK. KoY. BoltH.M. Markers of genetic susceptibility in human environmental hygiene and toxicology: The role of selected CYP, NAT and GST genes.Int. J. Hyg. Environ. Health2003206314917110.1078/1438‑4639‑0020912872524
    [Google Scholar]
  13. AbdelaalM.A. AnyaegbuC.C. al SobhiE.M. al BazN.M. HodanK. Blood group phenotype distribution in Saudi Arabs.Afr. J. Med. Med. Sci.1999283-413313511205816
    [Google Scholar]
  14. CrettolS. PetrovicN. MurrayM. Pharmacogenetics of phase I and phase II drug metabolism.Curr. Pharm. Des.201016220421910.2174/13816121079011267419835560
    [Google Scholar]
  15. JancovaP. AnzenbacherP. AnzenbacherovaE. Phase II drug metabolizing enzymes.Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub.2010154210311610.5507/bp.2010.01720668491
    [Google Scholar]
  16. WuB. Pharmacokinetic interplay of phase II metabolism and transport: A theoretical study.J. Pharm. Sci.2012101138139310.1002/jps.2273821905031
    [Google Scholar]
  17. NebertD.W. McKinnonR.A. PugaA. Human drug-metabolizing enzyme polymorphisms: Effects on risk of toxicity and cancer.DNA Cell Biol.199615427328010.1089/dna.1996.15.2738639263
    [Google Scholar]
  18. NebertD.W. WikvallK. MillerW.L. Human cytochromes P450 in health and disease.Philos. Trans. R. Soc. Lond. B Biol. Sci.201336816122012043110.1098/rstb.2012.043123297354
    [Google Scholar]
  19. StavropoulouE. PircalabioruG.G. BezirtzoglouE. The role of cytochromes P450 in infection.Front. Immunol.201898910.3389/fimmu.2018.0008929445375
    [Google Scholar]
  20. BackmanJ.T. FilppulaA.M. NiemiM. NeuvonenP.J. Role of cytochrome P450 2C8 in drug metabolism and interactions.Pharmacol. Rev.201668116824110.1124/pr.115.01141126721703
    [Google Scholar]
  21. ChenowethM.J. O’LoughlinJ. SylvestreM.P. TyndaleR.F. CYP2A6 slow nicotine metabolism is associated with increased quitting by adolescent smokers.Pharmacogenet. Genomics201323423223510.1097/FPC.0b013e32835f834d23462429
    [Google Scholar]
  22. BernhardtR. Cytochromes P450 as versatile biocatalysts.J. Biotechnol.2006124112814510.1016/j.jbiotec.2006.01.02616516322
    [Google Scholar]
  23. McDonnellA.M. DangC.H. Basic review of the cytochrome p450 system.J. Adv. Pract. Oncol.20134426326825032007
    [Google Scholar]
  24. ZangerU.M. SchwabM. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation.Pharmacol. Ther.2013138110314110.1016/j.pharmthera.2012.12.00723333322
    [Google Scholar]
  25. NebertD.W. DaltonT.P. The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis.Nat. Rev. Cancer200661294796010.1038/nrc201517128211
    [Google Scholar]
  26. TukeyR.H. StrassburgC.P. Human UDP-glucuronosyltransferases: Metabolism, expression, and disease.Annu. Rev. Pharmacol. Toxicol.200040158161610.1146/annurev.pharmtox.40.1.58110836148
    [Google Scholar]
  27. RowlandA. MinersJ.O. MackenzieP.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification.Int. J. Biochem. Cell Biol.20134561121113210.1016/j.biocel.2013.02.01923500526
    [Google Scholar]
  28. OuzzineM. GulbertiS. RamalanjaonaN. MagdalouJ. Fournel-GigleuxS. The UDP-glucuronosyltransferases of the blood-brain barrier: Their role in drug metabolism and detoxication.Front. Cell. Neurosci.2014834910.3389/fncel.2014.0034925389387
    [Google Scholar]
  29. MinersJ.O. SmithP.A. SorichM.J. McKinnonR.A. MackenzieP.I. Predicting human drug glucuronidation parameters: application of in vitro and in silico modeling approaches.Annu. Rev. Pharmacol. Toxicol.200444112510.1146/annurev.pharmtox.44.101802.12154614744236
    [Google Scholar]
  30. MackenzieP.I. Walter BockK. BurchellB. GuillemetteC. IkushiroS. IyanagiT. MinersJ.O. OwensI.S. NebertD.W. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily.Pharmacogenet. Genomics2005151067768510.1097/01.fpc.0000173483.13689.5616141793
    [Google Scholar]
  31. KiangT. EnsomM. ChangT. UDP-glucuronosyltransferases and clinical drug-drug interactions.Pharmacol. Ther.200510619713210.1016/j.pharmthera.2004.10.01315781124
    [Google Scholar]
  32. GaganisP. MinersJ.O. KnightsK.M. Glucuronidation of fenamates: Kinetic studies using human kidney cortical microsomes and recombinant UDP-glucuronosyltransferase (UGT) 1A9 and 2B7.Biochem. Pharmacol.200773101683169110.1016/j.bcp.2007.01.03017343829
    [Google Scholar]
  33. MacKenzieP.I. RogersA. ElliotD.J. ChauN. HulinJ.A. MinersJ.O. MeechR. The novel UDP glycosyltransferase 3A2: Cloning, catalytic properties, and tissue distribution.Mol. Pharmacol.201179347247810.1124/mol.110.06933621088224
    [Google Scholar]
  34. OhnoS. NakajinS. Determination of mRNA expression of human UDP-glucuronosyltransferases and application for localization in various human tissues by real-time reverse transcriptase-polymerase chain reaction.Drug Metab. Dispos.2009371324010.1124/dmd.108.02359818838504
    [Google Scholar]
  35. Radominska-PandyaA. CzernikP.J. LittleJ.M. BattagliaE. MacKenzieP. Structural and functional studies of UDP-glucuronosyltransferases.Drug Metab. Rev.199931481789910.1081/DMR‑10010194410575553
    [Google Scholar]
  36. GoughA.C. SmithC.A.D. HowellS.M. WolfC.R. BryantS.P. SpurrN.K. Localization of the CYP2D gene locus to human chromosome 22q13.1 by polymerase chain reaction, in situ hybridization, and linkage analysis.Genomics199315243043210.1006/geno.1993.10828449513
    [Google Scholar]
  37. Ingelman-SundbergM. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): Clinical consequences, evolutionary aspects and functional diversity.Pharmacogenomics J.20055161310.1038/sj.tpj.650028515492763
    [Google Scholar]
  38. ZhouS.F. Ming DiY. ChanE. DuY.M. ChowV. XueC. LaiX. WangJ.C. LiC. TianM. DuanW. Clinical pharmacogenetics and potential application in personalized medicine.Curr. Drug Metab.20089873878410.2174/13892000878604930218855611
    [Google Scholar]
  39. SachseC. BrockmöllerJ. BauerS. RootsI. Cytochrome P450 2D6 variants in a Caucasian population: Allele frequencies and phenotypic consequences.Am. J. Hum. Genet.19976022842959012401
    [Google Scholar]
  40. MarezD. LegrandM. SabbaghN. Lo GuidiceJ-M. SpireC. LafitteJ-J. MeyerU.A. BrolyF. Polymorphism of the cytochrome P450 CYP2D6 gene in a European population: characterization of 48 mutations and 53 alleles, their frequencies and evolution.Pharmacogenetics19977319320210.1097/00008571‑199706000‑000049241659
    [Google Scholar]
  41. BradfordL.D. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants.Pharmacogenomics20023222924310.1517/14622416.3.2.22911972444
    [Google Scholar]
  42. JiL. PanS. Marti-JaunJ. HänselerE. RentschK. HersbergerM. Single-step assays to analyze CYP2D6 gene polymorphisms in Asians: Allele frequencies and a novel *14B allele in mainland Chinese.Clin. Chem.200248798398810.1093/clinchem/48.7.98312089164
    [Google Scholar]
  43. BorgesS. DestaZ. LiL. SkaarT. WardB. NguyenA. JinY. StornioloA. NikoloffD. WuL. HillmanG. HayesD.F. StearnsV. FlockhartD.A. Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: Implication for optimization of breast cancer treatment.Clin. Pharmacol. Ther.2006801617410.1016/j.clpt.2006.03.01316815318
    [Google Scholar]
  44. GaedigkA. SangkuhlK. Whirl-CarrilloM. KleinT. LeederJ.S. Prediction of CYP2D6 phenotype from genotype across world populations.Genet. Med.2017191697610.1038/gim.2016.8027388693
    [Google Scholar]
  45. MinersJ.O. BirkettD.J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism.Br. J. Clin. Pharmacol.199845652553810.1046/j.1365‑2125.1998.00721.x9663807
    [Google Scholar]
  46. WangD. SunX. GongY. GawronskiB.E. LangaeeT.Y. ShahinM.H.A. KhalifaS.I. JohnsonJ.A. CYP2C9 promoter variable number tandem repeat polymorphism regulates mRNA expression in human livers.Drug Metab. Dispos.201240588489110.1124/dmd.111.04425522289258
    [Google Scholar]
  47. YasmeenF. GhafoorM.B. KhalidA.W. LatifW. MohsinS. KhaliqS. Analysis of CYP2C9 polymorphisms (*2 and *3) in warfarin therapy patients in Pakistan. Association of CYP2C9 polymorphisms (*2 and*3) with warfarin dose, age, PT and INR.J. Thromb. Thrombolysis201540221822410.1007/s11239‑015‑1215‑525904339
    [Google Scholar]
  48. WeiL. LocusonC.W. TracyT.S. Polymorphic variants of CYP2C9: Mechanisms involved in reduced catalytic activity.Mol. Pharmacol.20077251280128810.1124/mol.107.03617817686967
    [Google Scholar]
  49. JungF. RichardsonT.H. RaucyJ.L. JohnsonE.F. Diazepam metabolism by cDNA-expressed human 2C P450s: Identification of P4502C18 and P4502C19 as low K(M) diazepam N-demethylases.Drug Metab. Dispos.19972521331399029042
    [Google Scholar]
  50. KanekoA. LumJ.K. YaviongJ. TakahashiN. IshizakiT. BertilssonL. KobayakawaT. BjörkmanA. High and variable frequencies of CYP2C19 mutations.Pharmacogenet. Genomics19999558159010.1097/01213011‑199910000‑0000510591538
    [Google Scholar]
  51. XieH.G. KimR.B. WoodA.J.J. SteinC.M. Molecular basis of ethnic differences in drug disposition and response.Annu. Rev. Pharmacol. Toxicol.200141181585010.1146/annurev.pharmtox.41.1.81511264478
    [Google Scholar]
  52. de MoraisS.M. WilkinsonG.R. BlaisdellJ. NakamuraK. MeyerU.A. GoldsteinJ.A. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans.J. Biol. Chem.199426922154191542210.1016/S0021‑9258(17)40694‑68195181
    [Google Scholar]
  53. BedairK.F. SmithB. PalmerC.N.A. DoneyA.S.F. PearsonE.R. Pharmacogenetics at scale in real-world bioresources: CYP2C19 and clopidogrel outcomes in UK Biobank.Pharmacogenet. Genomics2024343738210.1097/FPC.000000000000051938179710
    [Google Scholar]
  54. GladdingP. WhiteH. VossJ. OrmistonJ. StewartJ. RuygrokP. BvaldiviaB. BaakR. WhiteC. WebsterM. Pharmacogenetic testing for clopidogrel using the rapid INFINITI analyzer: A dose-escalation study.JACC Cardiovasc. Interv.20092111095110110.1016/j.jcin.2009.08.01819926050
    [Google Scholar]
  55. WangD. YongL. ZhangQ. ChenH. Impact of CYP2C19 gene polymorphisms on warfarin dose requirement: A systematic review and meta-analysis.Pharmacogenomics2022231690391110.2217/pgs‑2022‑010636222113
    [Google Scholar]
  56. MaedaA. AndoH. AsaiT. IshiguroH. UmemotoN. OhtaM. MorishimaM. SumidaA. KobayashiT. HosohataK. UshijimaK. FujimuraA. Differential impacts of CYP2C19 gene polymorphisms on the antiplatelet effects of clopidogrel and ticlopidine.Clin. Pharmacol. Ther.201189222923310.1038/clpt.2010.26821178986
    [Google Scholar]
  57. LiuT. YinT. LiY. SongL.Q. YuJ. SiR. ZhangY.M. HeY. GuoW.Y. WangH.C. CYP2C19 polymorphisms and coronary heart disease risk factors synergistically impact clopidogrel response variety after percutaneous coronary intervention.Coron. Artery Dis.201425541242010.1097/MCA.000000000000009224608794
    [Google Scholar]
  58. OrrS.T.M. RippS.L. BallardT.E. HendersonJ.L. ScottD.O. ObachR.S. SunH. KalgutkarA.S. Mechanism-based inactivation (MBI) of cytochrome P450 enzymes: structure-activity relationships and discovery strategies to mitigate drug-drug interaction risks.J. Med. Chem.201255114896493310.1021/jm300065h22409598
    [Google Scholar]
  59. DanielsonP.B. The cytochrome P450 superfamily: Biochemistry, evolution and drug metabolism in humans.Curr. Drug Metab.20023656159710.2174/138920002333705412369887
    [Google Scholar]
  60. LambaJ.K. LinY.S. ThummelK. DalyA. WatkinsP.B. StromS. ZhangJ. SchuetzE.G. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations.Pharmacogenetics200212212113210.1097/00008571‑200203000‑0000611875366
    [Google Scholar]
  61. WrightonS.A. RingB.J. WatkinsP.B. VandenBrandenM. Identification of a polymorphically expressed member of the human cytochrome P-450III family.Mol. Pharmacol.1989361971052747634
    [Google Scholar]
  62. Christopher GorskiJ. HallS.D. JonesD.R. VandenBrandenM. WrightonS.A. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily.Biochem. Pharmacol.19944791643165310.1016/0006‑2952(94)90543‑68185679
    [Google Scholar]
  63. RoyJ.N. LajoieJ. ZijenahL.S. BaramaA. PoirierC. WardB.J. RogerM. CYP3A5 genetic polymorphisms in different ethnic populations.Drug Metab. Dispos.200533788488710.1124/dmd.105.00382215833928
    [Google Scholar]
  64. KuehlP. ZhangJ. LinY. LambaJ. AssemM. SchuetzJ. WatkinsP.B. DalyA. WrightonS.A. HallS.D. MaurelP. RellingM. BrimerC. YasudaK. VenkataramananR. StromS. ThummelK. BoguskiM.S. SchuetzE. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression.Nat. Genet.200127438339110.1038/8688211279519
    [Google Scholar]
  65. ParmarS. StinglJ.C. Huber-WechselbergerA. KainzA. RennerW. LangsenlehnerU. KripplP. BrockmöllerJ. Haschke-BecherE. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant epirubicin treatment in breast cancer.Breast Cancer Res.2011133R5710.1186/bcr289421658222
    [Google Scholar]
  66. ZhouJ. ArgikarU.A. RemmelR.P. Functional analysis of UGT1A4(P24T) and UGT1A4(L48V) variant enzymes.Pharmacogenomics201112121671167910.2217/pgs.11.10522047493
    [Google Scholar]
  67. El RoubyN. ShahinM.H. BaderL. KhalifaS.I. ElewaH. Genomewide association analysis of warfarin dose requirements in Middle Eastern and North African populations.Clin. Transl. Sci.202215255856610.1111/cts.1317634729928
    [Google Scholar]
  68. TongH.Y. Dávila-FajardoC.L. BorobiaA.M. Martínez-GonzálezL.J. LubomirovR. Perea LeónL.M. Blanco BañaresM.J. Díaz-VillamarínX. Fernández-CapitánC. Cabeza BarreraJ. CarcasA.J. A new pharmacogenetic algorithm to predict the most appropriate dosage of acenocoumarol for stable anticoagulation in a Mixed Spanish Population.PLoS One2016113e015045610.1371/journal.pone.015045626977927
    [Google Scholar]
  69. AL-EitanL. AlmasriA. Al-HabahbehS. Impact of a variable number tandem repeat in the CYP2C9 promoter on warfarin sensitivity and responsiveness in Jordanians with cardiovascular disease.Pharm. Genomics Pers. Med.201912152210.2147/PGPM.S18983830962704
    [Google Scholar]
  70. AL-EitanL.N. AlmasriA.Y. KhasawnehR.H. Impact of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness in jordanian cardiovascular patients during the initiation therapy.Genes (Basel)201891257810.3390/genes912057830486437
    [Google Scholar]
  71. EsmerianM.O. MitriZ. HabbalM.Z. GeryessE. ZaatariG. AlamS. SkouriH.N. MahfouzR.A. TaherA. ZgheibN.K. Influence of CYP2C9 and VKORC1 polymorphisms on warfarin and acenocoumarol in a sample of Lebanese people.J. Clin. Pharmacol.201151101418142810.1177/009127001038291021148049
    [Google Scholar]
  72. OssailyS. ZgheibN.K. The pharmacogenetics of drug metabolizing enzymes in the Lebanese population.Drug Metabol. Drug Interact.2014292819010.1515/dmdi‑2013‑005824413215
    [Google Scholar]
  73. KhalilB.M. ShahinM.H. SolaymanM.H.M. LangaeeT. SchaalanM.F. GongY. HammadL.N. Al-MesallamyH.O. HamdyN.M. El-HammadyW.A. JohnsonJ.A. Genetic and nongenetic factors affecting clopidogrel response in the egyptian population.Clin. Transl. Sci.201691232810.1111/cts.1238326757134
    [Google Scholar]
  74. El-HalabiM.M. ZgheibN. MansourN.M. MalliA. GhaithO.A. MahfouzR. AlamS. ShararaA.I. CYP2C19 genetic polymorphism, rabeprazole and esomeprazole have no effect on the antiplatelet action of clopidogrel.J. Cardiovasc. Pharmacol.2013621414910.1097/FJC.0b013e31828ecf4423474843
    [Google Scholar]
  75. CharfiR. MzoughiK. BoughallebM. HosniH. KouidhiS. SfarI. HammamiN. ZaïriI. LimamM. ZediniC. MrabetA. KlouzA. GorgiY. KharratM. BaccarH. TrabelsiS. Response to clopidogrel and of the cytochrome CYP2C19 gene polymorphism.Tunis. Med.201896320921830325490
    [Google Scholar]
  76. Al-AzzamS.I. AlzoubiK.H. KhabourO.F. NusairM.B. Al-HadidiH. AwidiA. SalehA. Factors that contribute to clopidogrel resistance in cardiovascular disease patients: Environmental and genetic approach.Int. J. Clin. Pharmacol. Ther.201351317918610.5414/CP20178423357840
    [Google Scholar]
  77. MohammadA.M. Al-AllawiN.A.S. CYP2C19 genotype is an independent predictor of adverse cardiovascular outcome in iraqi patients on clopidogrel after percutaneous coronary intervention.J. Cardiovasc. Pharmacol.201871634735110.1097/FJC.000000000000057729554005
    [Google Scholar]
  78. ZalloumI. HakoozN. ArafatT. Genetic polymorphism of CYP2C19 in a jordanian population: Influence of allele frequencies of CYP2C19*1 and CYP2C19*2 on the pharmacokinetic profile of lansoprazole.Mol. Biol. Rep.20123944195420010.1007/s11033‑011‑1204‑521769476
    [Google Scholar]
  79. van SchaikR.H.N. de WildtS.N. BrosensR. van FessemM. van den AnkerJ.N. LindemansJ. The CYP3A4*3 allele: Is it really rare?Clin. Chem.20014761104110610.1093/clinchem/47.6.110411375299
    [Google Scholar]
  80. WangB.S. LiuZ. XuW.X. SunS.L. CYP3A5*3 polymorphism and cancer risk: A meta-analysis and meta-regression.Tumour Biol.20133442357236610.1007/s13277‑013‑0783‑223584898
    [Google Scholar]
  81. Fernández-SantanderA. NovilloA. GaibarM. Romero-LorcaA. MoralP. Sánchez-CuencaD. AmirN. ChaabaniH. HarichN. EstebanM.E. Cytochrome and sulfotransferase gene variation in north African populations.Pharmacogenomics201617131415142310.2217/pgs‑2016‑001627471773
    [Google Scholar]
  82. RadouaniF. ZassL. HamdiY. RochaJ. SallamR. AbdelhakS. AhmedS. AzzouziM. BenamriI. BenkahlaA. Bouhaouala-ZaharB. ChaouchM. JmelH. KefiR. KsouriA. KumuthiniJ. MasilelaP. MasimirembwaC. OthmanH. PanjiS. RomdhaneL. SamtalC. SibiraR. GhediraK. FadlelmolaF. KassimS.K. MulderN. A review of clinical pharmacogenetics studies in African populations.Per. Med.202017215517010.2217/pme‑2019‑011032125935
    [Google Scholar]
  83. ElghannamD.M. IbrahimL. EbrahimM.A. AzmyE. HakemH. Association of MDR1 gene polymorphism (G2677T) with imatinib response in Egyptian chronic myeloid leukemia patients.Hematology201419312312810.1179/1607845413Y.000000010223683876
    [Google Scholar]
  84. JmelH. RomdhaneL. Ben HalimaY. HechmiM. NaoualiC. DallaliH. HamdiY. ShanJ. AbidA. JamoussiH. TrabelsiS. ChouchaneL. LuiselliD. AbdelhakS. KefiR. Pharmacogenetic landscape of metabolic syndrome components drug response in tunisia and comparison with worldwide populations.PLoS One2018134e019484210.1371/journal.pone.019484229652911
    [Google Scholar]
  85. TfayliA. P4-01-16: the influence of cyp2d6 genetic polymorphisms on variability of tamoxifen metabolism in the lebanese breast cancer population.Cancer Res20117124 SupplementP4-01-1610.1158/0008‑5472.SABCS11‑P4‑01‑16
    [Google Scholar]
  86. ShrifN.E.M.A. WonH.H. LeeS.T. ParkJ.H. KimK.K. KimM.J. KimS. LeeS.Y. KiC.S. OsmanI.M. RhmanE.A. AliI.A. IdrisM.N.A. KimJ.W. Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients.Eur. J. Clin. Pharmacol.201167111119113010.1007/s00228‑011‑1060‑121590310
    [Google Scholar]
  87. AouamK. KolsiA. KerkeniE. Ben FredjN. ChaabaneA. MonastiriK. BoughattasN. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: A study according to the post-transplant phase.Pharmacogenomics201516182045205410.2217/pgs.15.13826615671
    [Google Scholar]
  88. AjmiM. OmezzineA. AchourS. AmorD. HamdouniH. IsmaïlF.B.F. RejebN.B. KechridC.L. BoughzelaE. BouslamaA. Influence of genetic and non-genetic factors on acenocoumarol maintenance dose requirement in a Tunisian population.Eur. J. Clin. Pharmacol.201874671172210.1007/s00228‑018‑2423‑729479633
    [Google Scholar]
  89. Ben HassineI. GharbiH. SoltaniI. Ben Hadj OthmanH. FarrahA. AmouriH. TeberM. GhediraH. Ben YoussefY. SafraI. AbbesS. MenifS. Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia.Cancer Chemother. Pharmacol.201780482983910.1007/s00280‑017‑3424‑428836054
    [Google Scholar]
  90. CheX. YuD. WuZ. ZhangJ. ChenY. HanY. WangC. QiJ. Association of genetic polymorphisms in UDP-glucuronosyltransferases 2B17 with the risk of pancreatic cancer in chinese han population.Clin. Lab.20156112/20151905191010.7754/Clin.Lab.2015.15032926882814
    [Google Scholar]
  91. Romero-LorcaA. NovilloA. GaibarM. BandrésF. Fernández-SantanderA. Impacts of the glucuronidase genotypes UGT1A4, UGT2B7, UGT2B15 and UGT2B17 on Tamoxifen metabolism in breast cancer patients.PLoS One2015107e013226910.1371/journal.pone.013226926176234
    [Google Scholar]
  92. ShibaH.F. El-GhamrawyM.K. ShaheenI.A.E.M. AliR.A.E.G. MousaS.M. Glutathione S-transferase gene polymorphisms (GSTM1, GSTT1, and GSTP1) in Egyptian pediatric patients with sickle cell disease.Pediatr. Dev. Pathol.201417426527010.2350/14‑03‑1452‑OA.124840051
    [Google Scholar]
  93. KwaraA. LarteyM. SagoeK.W. CourtM.H. Paradoxically elevated efavirenz concentrations in HIV/tuberculosis-coinfected patients with CYP2B6 516TT genotype on rifampin-containing antituberculous therapy.AIDS201125338839010.1097/QAD.0b013e3283427e0521150552
    [Google Scholar]
  94. UedaK. CardarelliC. GottesmanM.M. PastanI. Expression of a full-length cDNA for the human MDR1 gene confers resistance to colchicine, doxorubicin, and vinblastine.Proc. Natl. Acad. Sci. USA19878493004300810.1073/pnas.84.9.30043472246
    [Google Scholar]
  95. AlhazzaniA. Al- GahtanyM. MunisamyM. KarunakaranG. Pharmacogenetics of ATP binding cassette transporter - MDR1 gene polymorphism (C3435T) and response to antiepileptic drug phenytoin pharmacokinetics in epilepsy.J. Neurol. Sci.2015357e14210.1016/j.jns.2015.08.486
    [Google Scholar]
  96. AlzoubiK.H. KhabourO.F. Al-azzamS.I. MayyasF. MhaidatN.M. The role of Multidrug Resistance-1 (MDR1) variants in response to atorvastatin among Jordanians.Cytotechnology201567226727410.1007/s10616‑013‑9682‑z24414406
    [Google Scholar]
  97. JohnsonJ.A. Drug target pharmacogenomics: An overview.Am. J. Pharmacogenomics20011427128110.2165/00129785‑200101040‑0000412083959
    [Google Scholar]
  98. OwenR.P. GongL. SagreiyaH. KleinT.E. AltmanR.B. VKORC1 pharmacogenomics summary.Pharmacogenet. Genomics2010201064264410.1097/FPC.0b013e32833433b619940803
    [Google Scholar]
  99. AbdelhediR. BouayedN.A. AlfadhliS. AbidL. RebaiA. KharratN. Characterization of drug-metabolizing enzymes CYP2C9, CYP2C19 polymorphisms in Tunisian, Kuwaiti and Bahraini populations.J. Genet.201594476577010.1007/s12041‑015‑0581‑226690534
    [Google Scholar]
  100. BazanN.S. SabryN.A. RizkA. MokhtarS. BadaryO.A. Factors affecting warfarin dose requirements and quality of anticoagulation in adult Egyptian patients: role of gene polymorphism.Ir. J. Med. Sci.2014183216117210.1007/s11845‑013‑0978‑y23800980
    [Google Scholar]
  101. AL-EitanL.N. AlmasriA.Y. AlnaamnehA.H. AmanH.A. AlrabadiN.N. KhasawnehR.H. AlghamdiM.A. Influence of CYP4F2, ApoE, and CYP2A6 gene polymorphisms on the variability of Warfarin dosage requirements and susceptibility to cardiovascular disease in Jordan.Int. J. Med. Sci.202118382683410.7150/ijms.5154633437219
    [Google Scholar]
  102. Al AmmariM. AlBalwiM. SultanaK. AlabdulkareemI.B. AlmuzzainiB. AlmakhlafiN.S. AldreesM. AlghamdiJ. The effect of the VKORC1 promoter variant on warfarin responsiveness in the Saudi WArfarin Pharmacogenetic (SWAP) cohort.Sci. Rep.20201011161310.1038/s41598‑020‑68519‑932669629
    [Google Scholar]
  103. PathareA. Al KhaboriM. AlkindiS. Al ZadjaliS. MisquithR. KhanH. LapoumeroulieC. PaldiA. KrishnamoorthyR. Warfarin pharmacogenetics: development of a dosing algorithm for Omani patients.J. Hum. Genet.2012571066566910.1038/jhg.2012.9422854539
    [Google Scholar]
  104. JabrR. GharaibehM. ZayedA.A. ZihlifM. The association between apolipoprotein E polymorphism and response to statins in group of hyperlipidemic patients.Endocr. Metab. Immune Disord. Drug Targets202121472072510.2174/187153032066620070521165632628603
    [Google Scholar]
  105. LvS. FanH. LiJ. YangH. HuangJ. ShuX. ZhangL. XuY. LiX. ZuoJ. XiaoC. Genetic polymorphisms of TYMS, MTHFR, ATIC, MTR, and MTRR are related to the outcome of methotrexate therapy for rheumatoid arthritis in a chinese population.Front. Pharmacol.20189139010.3389/fphar.2018.0139030546311
    [Google Scholar]
  106. AL-EitanL.N. Rababa’hD.M. AlghamdiM.A. KhasawnehR.H. Association of CYP gene polymorphisms with breast cancer risk and prognostic factors in the Jordanian population.BMC Med. Genet.201920114810.1186/s12881‑019‑0884‑x31477036
    [Google Scholar]
  107. Al-MukayniziF. AlanaziM. AlDaihanS. ParineN.R. AlmadiM. AljebreenA. AzzamN. AlharbiO. ArafahM. WarsyA. CYP19A1 gene polymorphism and colorectal cancer etiology in Saudi population: Case-control study.OncoTargets Ther.2017104559456710.2147/OTT.S12155729066910
    [Google Scholar]
  108. AL-EitanL.N. AlmasriA.Y. KhasawnehR.H. Effects of CYP2C9 and VKORC1 polymorphisms on warfarin sensitivity and responsiveness during the stabilization phase of therapy.Saudi Pharm. J.201927448449010.1016/j.jsps.2019.01.01131061616
    [Google Scholar]
  109. JabirF.A. HoidyW.H. Pharmacogenetics as personalized medicine: Association investigation of SOD2 rs4880, CYP2C19 rs4244285, and FCGR2A rs1801274 polymorphisms in a breast cancer population in iraqi women.Clin. Breast Cancer2018185e863e86810.1016/j.clbc.2018.01.00929482947
    [Google Scholar]
  110. AL-EitanL.N. AlmomaniF.A. Al-KhatibS.M. Association of CYP2C19, TNF-α, NOD1, NOD2, and PPARγ polymorphisms with peptic ulcer disease enhanced by Helicobacter pylori infection.Saudi Med. J.2021421212910.15537/smj.2021.1.2565433399167
    [Google Scholar]
  111. AL-EitanL.N. Al-DalalahI.M. MustafaM.M. AlghamdiM.A. ElshammariA.K. KhreisatW.H. Al-QuasmiM.N. AljamalH.A. Genetic polymorphisms of CYP3A5, CHRM2, and ZNF498 and their association with epilepsy susceptibility: A pharmacogenetic and case-control study.Pharm. Genomics Pers. Med.20191222523310.2147/PGPM.S21243331564953
    [Google Scholar]
  112. HoidyW.H. JaberF.A. Al-AskariM.A. Association of CYP1A1 rs1048943 polymorphism with prostate cancer in iraqi men patients.Asian Pac. J. Cancer Prev.201920123839384210.31557/APJCP.2019.20.12.383931870130
    [Google Scholar]
  113. AL-EitanL.N. Rababa’hD.M. AlghamdiM.A. KhasawnehR.H. Association between ESR1, ESR2, HER2, UGT1A4, and UGT2B7 polymorphisms and breast Cancer in Jordan: A case-control study.BMC Cancer2019191125710.1186/s12885‑019‑6490‑731888550
    [Google Scholar]
  114. AL-EitanL.N. JamousR.I. KhasawnehR.H. Candidate Gene Analysis of Breast Cancer in the Jordanian Population of Arab Descent: A Case-Control Study.Cancer Invest.201735425627010.1080/07357907.2017.128921728272917
    [Google Scholar]
  115. AL-EitanL.N. Rababa’hD.M. AlghamdiM.A. KhasawnehR.H. Correlation between candidate single nucleotide variants and several clinicopathological risk factors related to breast cancer in jordanian women: A genotype-phenotype study.J. Cancer201910194647465410.7150/jca.3385731528229
    [Google Scholar]
  116. KamalA. ElgengehyF.T. Abd ElazizM.M. GamalS.M. SobhyN. MedhatA. El DakronyA.H.M. Matrix metalloproteinase-9 rs17576 gene polymorphism and Behçet’s disease: Is there an association?Immunol. Invest.201746546046810.1080/08820139.2017.129685728388268
    [Google Scholar]
  117. AL-EitanL. M Rababa’hD. AmanH.A. The associations of common genetic susceptibility variants with breast cancer in Jordanian Arabs: A case-control study.Asian Pac. J. Cancer Prev.202021103045305410.31557/APJCP.2020.21.10.304533112566
    [Google Scholar]
  118. AlmomaniB.A. AL-EitanL.N. Al-SawalhaN.A. SamrahS.M. Al-QuasmiM.N. Association of genetic variants with level of asthma control in the Arab population.J. Asthma Allergy201912354210.2147/JAA.S18625230774389
    [Google Scholar]
  119. AlmomaniB.A. Al-EitanL.N. SamrahS.M. Al-QuasmiM.N. McKnightA.J. Candidate gene analysis of asthma in a population of Arab descent: a case-control study in Jordan.Per. Med.2017141516110.2217/pme‑2016‑005929749828
    [Google Scholar]
  120. HabelA.F. GhaliR.M. BouazizH. DaldoulA. Hadj-AhmedM. MokraniA. ZaiedS. HechicheM. RahalK. Yacoubi-LoueslatiB. AlmawiW.Y. Common matrix metalloproteinase-2 gene variants and altered susceptibility to breast cancer and associated features in Tunisian women.Tumour Biol.201941410.1177/101042831984574931014197
    [Google Scholar]
  121. Al-SaikhanF.I. Abd-ElazizM.A. AshourR.H. Association between risk of type 2 diabetes mellitus and angiotensin-converting enzyme insertion/deletion gene polymorphisms in a Saudi Arabian population.Biomed. Rep.201771566010.3892/br.2017.92028685061
    [Google Scholar]
  122. Al-AwadhiA.M. HasanE.A. SharmaP.N. HaiderM.Z. Al-SaeidK. Angiotensin-converting enzyme gene polymorphism in patients with psoriatic arthritis.Rheumatol. Int.200727121119112310.1007/s00296‑007‑0349‑y17440728
    [Google Scholar]
  123. Al-AwadhiA.M. HaiderM.Z. SharmaP.N. HasanE.A. BotaibanF. Al-HerzA. NaharI. Al-EneziH. Al-SaeidK. Angiotensin-converting enzyme gene polymorphism in Kuwaiti patients with systemic lupus erythematosus.Clin. Exp. Rheumatol.200725343744217631741
    [Google Scholar]
  124. ShehabD.K. Al-JarallahK.F. AlawadhiA.M. Al-HerzA. NaharI. HaiderM.Z. Prevalence of angiotensin-converting enzyme gene insertion-deletion polymorphism in patients with primary knee osteoarthritis.Clin. Exp. Rheumatol.200826230531018565253
    [Google Scholar]
  125. AlsaeidM. MoussaM.A.A. HaiderM.Z. RefaiT.M.K. AbdellaN. Al-SheikhN. GomezJ.E. Angiotensin-converting enzyme gene polymorphism and lipid profiles in Kuwaiti children with type 1 diabetes.Pediatr. Diabetes200452879410.1111/j.1399‑543X.2004.00040.x15189494
    [Google Scholar]
  126. Al-RadeefM.Y. FawziH.A. AllawiA.A. ACE gene polymorphism and its association with serum erythropoietin and hemoglobin ‎in Iraqi hemodialysis patients.Appl. Clin. Genet.20191210711210.2147/TACG.S19899231303780
    [Google Scholar]
  127. FakhouryH. FawwazS. BalbaaM. BorjacJ. FakhouryR. Association between angiotensin-converting enzyme insertion/deletion gene polymorphism and end-stage renal disease in lebanese patients with diabetic nephropathy.Saudi J. Kidney Dis. Transpl.201728232532910.4103/1319‑2442.20278928352015
    [Google Scholar]
  128. ChmaisseH.N. JammalM. FakhouryH. FakhouryR. A study on the association between angiotensin-I converting enzyme I/D dimorphism and type-2 diabetes mellitus.Saudi J. Kidney Dis. Transpl.20092061038104619861867
    [Google Scholar]
  129. Akra-IsmailM. MakkiR.F. ChmaisseH.N. KazmaA. ZgheibN.K. Association between angiotensin-converting enzyme insertion/deletion genetic polymorphism and hypertension in a sample of Lebanese patients.Genet. Test. Mol. Biomarkers201014678779210.1089/gtmb.2010.009620939740
    [Google Scholar]
  130. El EzziA.A. ClawsonJ.M. El-SaidiM.A. ZaidanW.R. KovashA. OrellanaJ. ThornockA. KuddusR.H. Association of angiotensin I converting enzyme insertion/287 bp deletion polymorphisms and proliferative prostatic diseases among lebanese men.Prostate Cancer202020201610.1155/2020/595913432089890
    [Google Scholar]
  131. IbdahR.K. AL-EitanL.N. AlrabadiN.N. AlmasriA.Y. AlnaamnehA.H. KhasawnehR.H. AlghamdiM.A. Impact of PCSK9, WDR12, CDKN2A, and CXCL12 polymorphisms in jordanian cardiovascular patients on warfarin responsiveness and sensitivity.Int. J. Gen. Med.20211410311810.2147/IJGM.S28723833488114
    [Google Scholar]
  132. AL-EitanL.N. AlmasriA.Y. KhasawnehR.H. AlghamdiM.A. Influence of SH2B3, MTHFD1L, GGCX, and ITGB3 gene polymorphisms on the variability on warfarin dosage requirements and susceptibility to CVD in the jordanian population.J. Pers. Med.202010311710.3390/jpm1003011732916786
    [Google Scholar]
  133. AL-EitanL.N. Al-DalalahI.M. MustafaM.M. AlghamdiM.A. ElshammariA.K. KhreisatW.H. AljamalH.A. Effects of MTHFR and ABCC2 gene polymorphisms on antiepileptic drug responsiveness in Jordanian epileptic patients.Pharm. Genomics Pers. Med.201912879510.2147/PGPM.S21149031354331
    [Google Scholar]
  134. BoughraraW. AberkaneM. FodilM. BenzaouiA. DorghamS. ZemaniF. DahmaniC. Petit TeixeiraE. BoudjemaA. Impact of MTHFR rs1801133, MTHFR rs1801131 and ABCB1 rs1045642 polymorphisms with increased susceptibility of rheumatoid arthritis in the West Algerian population: A case-control study.Acta Reumatol. Port.201540436337126922200
    [Google Scholar]
  135. Al-EitanL. Al-HabahbehS. AlkhatibR. Genetic association analysis of ERBB4 polymorphisms with the risk ofschizophrenia susceptibility in a Jordanian population of Arab descent.Turk. J. Med. Sci.201747254255310.3906/sag‑1603‑2528425244
    [Google Scholar]
  136. AL-EitanL. Alqa’qa’K. AmayrehW. KhasawnehR. AljamalH. Al-AbedM. HaddadY. RawashdehT. JaradatZ. HaddadH. Identification and characterization of BTD gene mutations in Jordanian children with biotinidase deficiency.J. Pers. Med.2020101410.3390/jpm1001000431973013
    [Google Scholar]
  137. ALEitanL. Alqa’qa’K. AmayrehW. AljamalH. KhasawnehR. Al-ZoubiB. OkourI. HaddadA. HaddadY. HaddadH. Novel mutations in the SMPD1 gene in Jordanian children with Acid sphingomyelinase deficiency (Niemann-Pick types A and B).Gene202074714468310.1016/j.gene.2020.14468332311413
    [Google Scholar]
  138. Al-KhatibS. AbdoN. Al-EitanL.N. Al-MistarehiA.H. ZahranD.J. Al AjlouniM. KewanT. The impact of the genetic polymorphism in DNA repair pathways on increased risk of glioblastoma multiforme in the arab jordanian population: A case-control study.Appl. Clin. Genet.20201311512610.2147/TACG.S24899432606887
    [Google Scholar]
  139. HammoudaS. GhzaielI. KhamlaouiW. HammamiS. MhenniS.Y.O.U.N.E.S. SametS. HammamiM. ZarroukA. Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer’s disease in the Tunisian population.Prostaglandins Leukot. Essent. Fatty Acids202016010215910.1016/j.plefa.2020.10215932682282
    [Google Scholar]
  140. MaroufC. GöhlerS. FilhoM.I.D.S. HajjiO. HemminkiK. NadifiS. FörstiA. Analysis of functional germline variants in APOBEC3 and driver genes on breast cancer risk in Moroccan study population.BMC Cancer201616116510.1186/s12885‑016‑2210‑826920143
    [Google Scholar]
  141. MimouniA. RouleauE. SaulnierP. MarouaniA. AbdelaliM.L. FilaliT. BeddarL. LakehalA. HirecheA. BoudersaA. AissaouiM. RamtaniH. BouhedjarK. AbdelloucheD. OudjehihM. BoudokhaneI. AbadiN. SattaD. Association of TERT, OGG1, and CHRNA5 polymorphisms and the predisposition to lung cancer in eastern algeria.Pulm. Med.2020202011210.1155/2020/764903832257438
    [Google Scholar]
  142. MohamedR.H. El-ShalA.S. El-ShahawyE.E. Abdel GalilS.M. Association of XRCC1 and OGG1 DNA repair gene polymorphisms with rheumatoid arthritis in Egyptian patients.Gene2016578111211610.1016/j.gene.2015.12.02126692147
    [Google Scholar]
  143. ShakerO.G. EL BoghdadyN.A. El SayedA.E.D. Association of MiRNA-146a, MiRNA-499, IRAK1 and PADI4 polymorphisms with rheumatoid arthritis in egyptian population.Cell. Physiol. Biochem.20184662239224910.1159/00048959229734142
    [Google Scholar]
  144. Al-ShaqhaW.M. AlkharfyK.M. Al-DaghriN.M. MohammedA.K. N-acetyltransferase 1 and 2 polymorphisms and risk of diabetes mellitus type 2 in a Saudi population.Ann. Saudi Med.201535321422110.5144/0256‑4947.2015.21426409796
    [Google Scholar]
  145. DahuiQ. Next-generation sequencing and its clinical application.Cancer Biol. Med.201916141010.20892/j.issn.2095‑3941.2018.005531119042
    [Google Scholar]
  146. KhehraN. PaddaI.S. SwiftC.J. Polymerase Chain Reaction (PCR).StatPearlsTreasure Island (FL)2024
    [Google Scholar]
  147. Totomoch-SerraA. MarquezM.F. Cervantes-BarragánD.E. Sanger sequencing as a first-line approach for molecular diagnosis of Andersen-Tawil syndrome.F1000 Res.20176101610.12688/f1000research.11610.129093808
    [Google Scholar]
  148. BumgarnerR. Overview of DNA microarrays: Types, applications, and their future.Curr Protoc Mol Biol2013222210
    [Google Scholar]
  149. CuiC. ShuW. LiP. Fluorescence in situ hybridization: Cell-based genetic diagnostic and research applications.Front. Cell Dev. Biol.201648910.3389/fcell.2016.0008927656642
    [Google Scholar]
  150. JovicD. LiangX. ZengH. LinL. XuF. LuoY. Single-cell RNA sequencing technologies and applications: A brief overview.Clin. Transl. Med.2022123e69410.1002/ctm2.69435352511
    [Google Scholar]
  151. LiJ.H. ZhangD.Y. ZhuJ.M. DongL. Clinical applications and perspectives of circulating tumor DNA in gastric cancer.Cancer Cell Int.20242411310.1186/s12935‑024‑03209‑438184573
    [Google Scholar]
  152. ArafahA. RehmanM.U. SyedW. BabelghaithS.D. AlwhaibiA. Al ArifiM.N. Knowledge, attitude and perception of pharmacy students towards pharmacogenomics and genetics: An observational study from king saud university.Genes (Basel)202213226910.3390/genes1302026935205314
    [Google Scholar]
  153. RahmaA.T. AliB.R. PatrinosG.P. AhmedL.A. ElbaraziI. AbdullahiA.S. ElsheikM. AbbasM. AfandiF. AlnaqbiA. Al MaskariF. Knowledge, attitudes, and perceptions of the multi-ethnic population of the United Arab Emirates on genomic medicine and genetic testing.Hum. Genomics20231716310.1186/s40246‑023‑00509‑037454085
    [Google Scholar]
  154. AntounJ. ZgheibN.K. AshkarK. Education may improve the underutilization of genetic services by Middle Eastern primary care practitioners.Genet. Test. Mol. Biomarkers201014444745410.1089/gtmb.2010.002120649434
    [Google Scholar]
  155. SirisenaN.D. DissanayakeV.H.W. Strategies for genomic medicine education in low- and middle-income countries.Front. Genet.20191094410.3389/fgene.2019.0094431649727
    [Google Scholar]
  156. RahmaA.T. ElsheikM. AliB.R. ElbaraziI. PatrinosG.P. AhmedL.A. Al MaskariF. Knowledge, attitudes, and perceived barriers toward genetic testing and pharmacogenomics among healthcare workers in the united arab emirates: A cross-sectional study.J. Pers. Med.202010421610.3390/jpm1004021633182317
    [Google Scholar]
  157. AlRasheedM.M. AlAliH. AlsuwaidA.F. KhalafS. AtaS.I. BinDhimN.F. BakheetD. KhurshidF. AlhawassiT.M. Gene therapy knowledge and attitude among healthcare professionals: A cross-sectional study.Front. Public Health2021977317510.3389/fpubh.2021.77317534869185
    [Google Scholar]
/content/journals/cdm/10.2174/0113892002323910240924145310
Loading
/content/journals/cdm/10.2174/0113892002323910240924145310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test