Skip to content
2000
image of Recent Development, Applications, and Patents of Artificial Intelligence in Drug Design and Development

Abstract

Drug design and development are crucial areas of study for chemists and pharmaceutical companies. Nevertheless, the significant expenses, lengthy process, inaccurate delivery, and limited effectiveness present obstacles and barriers that affect the development and exploration of new drugs. Moreover, big and complex datasets from clinical trials, genomics, proteomics, and microarray data also disrupt the drug discovery approach. The integration of Artificial Intelligence (AI) into drug design is both timely and crucial due to several pressing challenges in the pharmaceutical industry, including the escalating costs of drug development, high failure rates in clinical trials, and the increasing complexity of disease biology. AI offers innovative solutions to address these challenges, promising to improve the efficiency, precision, and success rates of drug discovery and development. Artificial intelligence (AI) and machine learning (ML) technology are crucial tools in the field of drug discovery and development. More precisely, the field has been revolutionized by the utilization of deep learning (DL) techniques and artificial neural networks (ANNs). DL algorithms & ML have been employed in drug design using various approaches such as physiochemical activity, polypharmacology, drug repositioning, quantitative structure-activity relationship, pharmacophore modeling, drug monitoring and release, toxicity prediction, ligand-based virtual screening, structure-based virtual screening, and peptide synthesis. The use of DL and AI in this field is supported by historical evidence. Furthermore, management strategies, curation, and unconventional data mining aided assistance in modern modeling algorithms. In summary, the progress made in artificial intelligence and deep learning algorithms offers a promising opportunity for the development and discovery of effective drugs, ultimately leading to significant benefits for humanity. In this review, several tools and algorithmic programs have been discussed which are being used in drug design along with the descriptions of the patents that have been granted for the use of AI in this field, which constitutes the main focus of this review and differentiates it fromalready published materials.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638364199250123062248
2025-02-10
2025-07-11
Loading full text...

Full text loading...

References

  1. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  2. Zhang L. Tan J. Han D. Zhu H. From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discov. Today 2017 22 11 1680 1685 10.1016/j.drudis.2017.08.010 28881183
    [Google Scholar]
  3. Xu Y. Liu X. Cao X. Huang C. Liu E. Qian S. Liu X. Wu Y. Dong F. Qiu C.W. Qiu J. Hua K. Su W. Wu J. Xu H. Han Y. Fu C. Yin Z. Liu M. Roepman R. Dietmann S. Virta M. Kengara F. Zhang Z. Zhang L. Zhao T. Dai J. Yang J. Lan L. Luo M. Liu Z. An T. Zhang B. He X. Cong S. Liu X. Zhang W. Lewis J.P. Tiedje J.M. Wang Q. An Z. Wang F. Zhang L. Huang T. Lu C. Cai Z. Wang F. Zhang J. Artificial intelligence: A powerful paradigm for scientific research. Innovation (Camb.) 2021 2 4 100179 10.1016/j.xinn.2021.100179 34877560
    [Google Scholar]
  4. Zhuang D. Ibrahim A.K. Deep learning for drug discovery: A study of identifying high efficacy drug compounds using a cascade transfer learning approach. Appl. Sci. 2021 11 17 7772 10.3390/app11177772
    [Google Scholar]
  5. Pu L. Naderi M. Liu T. Wu H.C. Mukhopadhyay S. Brylinski M. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol. Toxicol. 2019 20 1 2 10.1186/s40360‑018‑0282‑6 30621790
    [Google Scholar]
  6. Rees C. The Ethics of Artificial Intelligence. Unimagined Futures – ICT Opportunities and Challenges CRC Press 2020 55 69 10.1007/978‑3‑030‑64246‑4_5
    [Google Scholar]
  7. Zhong F. Xing J. Li X. Liu X. Fu Z. Xiong Z. Lu D. Wu X. Zhao J. Tan X. Li F. Luo X. Li Z. Chen K. Zheng M. Jiang H. Artificial intelligence in drug design. Sci. China Life Sci. 2018 61 10 1191 1204 10.1007/s11427‑018‑9342‑2 30054833
    [Google Scholar]
  8. Brown N. Ertl P. Lewis R. Luksch T. Reker D. Schneider N. Artificial intelligence in chemistry and drug design. J. Comput. Aided Mol. Des. 2020 34 7 709 715 10.1007/s10822‑020‑00317‑x 32468207
    [Google Scholar]
  9. Reker D. Practical considerations for active machine learning in drug discovery. Drug Discov. Today. Technol. 2019 32-33 73 79 10.1016/j.ddtec.2020.06.001 33386097
    [Google Scholar]
  10. Beneke F. Mackenrodt M.O. Artificial intelligence and collusion. IIC Int. Rev. Intellect. Prop. Compet. Law 2019 50 1 109 134
    [Google Scholar]
  11. Steels L. Brooks R. The Artificial Life Route to Artificial Intelligence. Building Embodied, Situated Agents. 1st ed Routledge 2018 10.4324/9781351001885
    [Google Scholar]
  12. Bielecki A. Foundations of artificial neural networks. Models of Neurons and Perceptrons: Selected Problems and Challenges. Springer Cham 2020 15 28
    [Google Scholar]
  13. Kalyane D. Sanap G. Paul D. Shenoy S. Anup N. Polaka S. Tambe V. Tekade R.K. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. The Future of Pharmaceutical Product Development and Research (Tekade, RK). Elsevier 2020 73 107 10.1016/B978‑0‑12‑814455‑8.00003‑7
    [Google Scholar]
  14. da Silva I.N. Spatti D.H. Flauzino R.A. Bartocci Liboni L.H. dos Reis Alves S.F. Artificial Neural Networks. 1st ed Springer Cham 2017 10.1007/978‑3‑319‑43162‑8
    [Google Scholar]
  15. Medsker L. Jain L.C. Recurrent Neural Networks: Design and Applications. 1st ed CRC Press 1999 10.1201/9781420049176
    [Google Scholar]
  16. Hänggi M Moschytz GS Cellular Neural Networks: Analysis, Design and Optimization Springer New York 2000 10.1007/978‑1‑4757‑3220‑7
    [Google Scholar]
  17. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 2007 13 14 1497 1508 10.2174/138161207780765954 17504169
    [Google Scholar]
  18. Blasiak A. Khong J. Kee T. CURATE.AI: Optimizing personalized medicine with artificial intelligence. SLAS Technol. 2020 25 2 95 105 10.1177/2472630319890316 31771394
    [Google Scholar]
  19. Baronzio G. Parmar G. Baronzio M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front. Oncol. 2015 5 165 10.3389/fonc.2015.00165 26258072
    [Google Scholar]
  20. Koza J.R. Bennett F.H. Andre D. Keane M.A. Automated design of both the topology and sizing of analog electrical circuits using genetic programming. Artificial Intelligence in Design ’96. Gero J.S. Sudweeks F. Dordrecht Springer 1996 151 170 10.1007/978‑94‑009‑0279‑4_9
    [Google Scholar]
  21. Kitchin R. McArdle G. What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets. Big Data Soc. 2016 3 1 2053951716631130 10.1177/2053951716631130
    [Google Scholar]
  22. Bhadani A Jothimani D. Big Data: Challenges, opportunities and realities. ArXiv 2017
    [Google Scholar]
  23. Larose D.T. Larose C.D. Data mining and predictive analytics. 2nd ed Wiley Publishing 2015
    [Google Scholar]
  24. Fernández A. del Río S. Chawla N.V. Herrera F. An insight into imbalanced Big Data classification: Outcomes and challenges. Complex Intell. Syst. 2017 3 2 105 120 10.1007/s40747‑017‑0037‑9
    [Google Scholar]
  25. Hasanin T. Khoshgoftaar T.M. Leevy J.L. Bauder R.A. Severely imbalanced Big Data challenges: Investigating data sampling approaches. J. Big Data 2019 6 1 107 10.1186/s40537‑019‑0274‑4
    [Google Scholar]
  26. Nath A. Subbiah K. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion. Comput. Biol. Chem. 2015 59 Pt A 101 110 10.1016/j.compbiolchem.2015.09.011 26433483
    [Google Scholar]
  27. Nath A. Karthikeyan S. Enhanced prediction and characterization of CDK inhibitors using optimal class distribution. Interdiscip. Sci. 2017 9 2 292 303 10.1007/s12539‑016‑0151‑1 26879961
    [Google Scholar]
  28. Wei Q. Dunbrack R.L. Jr The role of balanced training and testing data sets for binary classifiers in bioinformatics. PLoS One 2013 8 7 e67863 10.1371/journal.pone.0067863 23874456
    [Google Scholar]
  29. Nath A. Subbiah K. The role of pertinently diversified and balanced training as well as testing data sets in achieving the true performance of classifiers in predicting the antifreeze proteins. Neurocomputing. 2018 272 294 305 10.1016/j.neucom.2017.07.004
    [Google Scholar]
  30. Turki T. Taguchi Y. Machine learning algorithms for predicting drugs–tissues relationships. Expert Syst. Appl. 2019 127 167 186 10.1016/j.eswa.2019.02.013
    [Google Scholar]
  31. Rantanen J. Khinast J. The future of pharmaceutical manufacturing sciences. J. Pharm. Sci. 2015 104 11 3612 3638 10.1002/jps.24594 26280993
    [Google Scholar]
  32. Popova M. Isayev O. Tropsha A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018 4 7 eaap7885 10.1126/sciadv.aap7885 30050984
    [Google Scholar]
  33. Taroni J.N. Grayson P.C. Hu Q. Eddy S. Kretzler M. Merkel P.A. Greene C.S. MultiPLIER: A transfer learning framework for transcriptomics reveals systemic features of rare disease. Cell Syst. 2019 8 5 380 394.e4 10.1016/j.cels.2019.04.003 31121115
    [Google Scholar]
  34. Li L. He X. Borgwardt K. Multi-target drug repositioning by bipartite block-wise sparse multi-task learning. BMC Syst. Biol. 2018 12 S4 Suppl. 4 55 10.1186/s12918‑018‑0569‑7 29745839
    [Google Scholar]
  35. Weng Y. Lin C. Zeng X. Liang Y. Drug Target interaction prediction using multi-task learning and co-attention. Proceeding of the IEEE international conference bioinformatics and biomedicine (BIBM) San Diego, CA, USA, 2019, pp. 528-533. 10.1109/BIBM47256.2019.8983254
    [Google Scholar]
  36. Han L. Zhang Y. Learning multi-level task groups in multi-task learning. AAAI Conf. Artif. Intell. 2015 29 1 2638 44 10.1609/aaai.v29i1.9581
    [Google Scholar]
  37. Kadurin I. Rothwell S. Ferron L. Meyer O. Dolphin A. Investigation of the proteolytic cleavage of α2δ subunits: a mechanistic switch from nhibition to activation of voltage-gated calcium channels? Biophys. J. 2017 112 3 244a 10.1016/j.bpj.2016.11.1335
    [Google Scholar]
  38. Al-Safarini M.Y. El-Sayed H.H. The role of artificial intelligence in revealing the results of the interaction of biological materials with each other or with chemicals. Mater. Today Proc. 2021 45 6 4954 4959 10.1016/j.matpr.2021.01.387
    [Google Scholar]
  39. Unterthiner T Mayr A Klambauer G Hochreiter S. Toxicity Prediction using deep learning. ArXiv 2015
    [Google Scholar]
  40. Avdagic Z. Begic Fazlic L. Konjicija S. Optimized detection of tar content in the manufacturing process using adaptive neuro-fuzzy inference systems. Stud. Health Technol. Inform. 2009 150 615 619 19745385
    [Google Scholar]
  41. Zhavoronkov A Ivanenkov YA Aliper A Veselov M.S. Aladinskiy V.A. Aladinskaya A.V. Terentiev V.A. Polykovskiy D.A Kuznetsov M.D Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019 37 9 1038 10.1038/s41587‑019‑0224‑x
    [Google Scholar]
  42. Lee H. Kim W. Comparison of target features for predicting drug-target interactions by deep neural network based on large-scale drug-induced transcriptome data. Pharmaceutics 2019 11 8 377 10.3390/pharmaceutics11080377 31382356
    [Google Scholar]
  43. Putin E. Asadulaev A. Ivanenkov Y. Aladinskiy V. Sanchez-Lengeling B. Aspuru-Guzik A. Zhavoronkov A. Reinforced adversarial neural computer for de novo molecular design. J. Chem. Inf. Model. 2018 58 6 1194 1204 10.1021/acs.jcim.7b00690 29762023
    [Google Scholar]
  44. Dash S. Shakyawar S.K. Sharma M. Kaushik S. Big data in healthcare: Management, analysis and future prospects. J. Big Data 2019 6 1 54 10.1186/s40537‑019‑0217‑0
    [Google Scholar]
  45. Grelck C. Niewiadomska-Szynkiewicz E. Aldinucci M. Bracciali A. Larsson E. Why high-performance modelling and simulation for big data applications matters. High-Performance Modelling and Simulation for Big Data Applications Springer Cham. 1st ed González-Vélez H. Kołodziej J. 2019 1 35
    [Google Scholar]
  46. Lake F. Artificial intelligence in drug discovery: What is new, and what is next? Future. Drug. Discov. 2019 1 2 FDD19 10.4155/fdd‑2019‑0025
    [Google Scholar]
  47. Ramesh A.N. Kambhampati C. Monson J.R.T. Drew P.J. Artificial intelligence in medicine. Ann. R. Coll. Surg. Engl. 2004 86 5 334 338 10.1308/147870804290 15333167
    [Google Scholar]
  48. Mak K.K. Pichika M.R. Artificial intelligence in drug development: present status and future prospects. Drug Discov. Today 2019 24 3 773 780 10.1016/j.drudis.2018.11.014 30472429
    [Google Scholar]
  49. Vyas M. Thakur S. Riyaz B. Bansal K. Tomar B. Mishra V. Artificial intelligence: The beginning of a new era in pharmacy profession. Asian J. Pharm. 2018 12 72 76
    [Google Scholar]
  50. Sellwood M.A. Ahmed M. Segler M.H.S. Brown N. Artificial intelligence in drug discovery. Future Med. Chem. 2018 10 17 2025 2028 10.4155/fmc‑2018‑0212 30101607
    [Google Scholar]
  51. Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu. Rev. Pharmacol. Toxicol. 2020 60 1 573 589 10.1146/annurev‑pharmtox‑010919‑023324 31518513
    [Google Scholar]
  52. Ciallella H.L. Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: Data-driven and mechanism-driven modeling for chemical toxicity. Chem. Res. Toxicol. 2019 32 4 536 547 10.1021/acs.chemrestox.8b00393 30907586
    [Google Scholar]
  53. Chan H.C.S. Shan H. Dahoun T. Vogel H. Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 2019 40 8 592 604 10.1016/j.tips.2019.06.004 31320117
    [Google Scholar]
  54. Brown N. In Silico Medicinal Chemistry: Computational Methods to Support Drug Design(Theoretical and Computational Chemistry Series). Royal Society of Chemistry 2015 10.1039/9781782622604
    [Google Scholar]
  55. Pereira J.C. Caffarena E.R. dos Santos C.N. Boosting docking-based virtual screening with deep learning. J. Chem. Inf. Model. 2016 56 12 2495 2506 10.1021/acs.jcim.6b00355 28024405
    [Google Scholar]
  56. Firth N.C. Atrash B. Brown N. Blagg J. MOARF, an integrated workflow for multiobjective optimization: Implementation, synthesis, and biological evaluation. J. Chem. Inf. Model. 2015 55 6 1169 1180 10.1021/acs.jcim.5b00073 26054755
    [Google Scholar]
  57. Jain N. Gupta S. Sapre N. Sapre N.S. In silico de novo design of novel NNRTIs: A bio-molecular modelling approach. RSC Advances 2015 5 19 14814 14827 10.1039/C4RA15478A
    [Google Scholar]
  58. Wang Y. Guo Y. Kuang Q. Pu X. Ji Y. Zhang Z. Li M. A comparative study of family-specific protein–ligand complex affinity prediction based on random forest approach. J. Comput. Aided Mol. Des. 2015 29 4 349 360 10.1007/s10822‑014‑9827‑y 25527073
    [Google Scholar]
  59. King R.D. Hirst J.D. Sternberg M.J. Comparison of artificial intelligence methods for modelling pharmaceutical QSARs. Appl. Artif. Intell. 1995 9 2 213 233 10.1080/08839519508945474
    [Google Scholar]
  60. Nguyen G. Dlugolinsky S. Bobák M. Tran V. López García Á. Heredia I. Malík P. Hluchý L. Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019 52 1 77 124 10.1007/s10462‑018‑09679‑z
    [Google Scholar]
  61. Paszke A. Gross S. Massa F. Lerer A. Larochelle H. Beygelzimer A. Bradbury J. Chanan G. Killeen T. PyTorch: An imperative style, high-performance deep learning library. Advances in neural information processing systems. Wallach H. Larochelle H. Beygelzimer A. Curran Associates Inc 2009
    [Google Scholar]
  62. Lysenko A. Sharma A. Boroevich K.A. Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci. Alliance 2018 1 6 e201800098 10.26508/lsa.201800098 30515477
    [Google Scholar]
  63. Yang Y. Heffernan R. Paliwal K. Lyons J. Dehzangi A. Sharma A. Wang J. Sattar A. Zhou Y. SPIDER2: A package to predict secondary structure, accessible surface area, and main-chain torsional angles by deep neural networks. Methods. Mol. Biol. 2017 1484 55 63 10.1007/978‑1‑4939‑6406‑2_6 27787820
    [Google Scholar]
  64. Matlock M.K. Hughes T.B. Swamidass S.J. XenoSite server: A web-available site of metabolism prediction tool. Bioinformatics 2015 31 7 1136 1137 10.1093/bioinformatics/btu761 25411327
    [Google Scholar]
  65. Šícho M. de Bruyn Kops C. Stork C. Svozil D. Kirchmair J. FAME 2: Simple and effective machine learning model of cytochrome P450 Regioselectivity. J. Chem. Inf. Model. 2017 57 8 1832 1846 10.1021/acs.jcim.7b00250 28782945
    [Google Scholar]
  66. Rydberg P. Gloriam D.E. Zaretzki J. Breneman C. Olsen L. SMARTCyp: A 2D method for prediction of cytochrome P450-mediated drug metabolism. ACS Med. Chem. Lett. 2010 1 3 96 100 10.1021/ml100016x 24936230
    [Google Scholar]
  67. Blaschke T. Arús-Pous J. Chen H. Margreitter C. Tyrchan C. Engkvist O. Papadopoulos K. Patronov A. REINVENT 2.0: An AI tool for de novo drug design. J. Chem. Inf. Model. 2020 60 12 5918 5922 10.1021/acs.jcim.0c00915 33118816
    [Google Scholar]
  68. Yuan Q. Yang Y. Sequence-based predictions of residues that bind proteins and peptides. Machine Learning in Bioinformatics of Protein Sequences: Algorithms, Databases and Resources for Modern Protein Bioinformatics. World Scientific 2023 237 263 10.1142/9789811258589_0009
    [Google Scholar]
  69. Cho A. No room for error. Science 2020 369 6500 130 133 10.1126/science.369.6500.130 32646981
    [Google Scholar]
  70. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. PubChem 2023 update. Nucleic. Acids. Res. 2011 51 D1373 D1380 10.1093/nar/gkac956
    [Google Scholar]
  71. Cho A. SDM: A server for predicting effects of mutations on protein stability and malfunction. Nucleic. Acids. Res. 2011 39 2 W215 W222
    [Google Scholar]
  72. Awale M. Reymond J.L. Polypharmacology browser PPB2: Target prediction combining nearest neighbors with machine learning. J. Chem. Inf. Model. 2019 59 1 10 17 10.1021/acs.jcim.8b00524 30558418
    [Google Scholar]
  73. Feinberg E.N. Sur D. Wu Z. Husic B.E. Mai H. Li Y. Sun S. Yang J. Ramsundar B. Pande V.S. PotentialNet for molecular property prediction. ACS Cent. Sci. 2018 4 11 1520 1530 10.1021/acscentsci.8b00507 30555904
    [Google Scholar]
  74. Rapicavoli R.V. Alaimo S. Ferro A. Pulvirenti A. Computational methods for drug repurposing. Adv. Exp. Med. Biol. 2022 1361 119 141 10.1007/978‑3‑030‑91836‑1_7 35230686
    [Google Scholar]
  75. de Glas N.A. Bastiaannet E. Engels C.C. de Craen A.J.M. Putter H. van de Velde C.J.H. Hurria A. Liefers G.J. Portielje J.E.A. Validity of the online PREDICT tool in older patients with breast cancer: A population-based study. Br. J. Cancer 2016 114 4 395 400 10.1038/bjc.2015.466 26783995
    [Google Scholar]
  76. Nag S Baidya ATK Mandal A Mathew AT Deep learning tools for advancing drug discovery and development. Biotech. 2022 12 5 110
    [Google Scholar]
  77. Sanchez-Lengeling B. Outeiral C. Guimaraes G.L. Aspuru-Guzik A. Optimizing distributions over molecular space. An objective-reinforced generative adversarial network for inverse-design chemistry (ORGANIC). ChemRxiv 2017
    [Google Scholar]
  78. Wójcikowski M. Zielenkiewicz P. Siedlecki P. Open Drug Discovery Toolkit (ODDT): A new open-source player in the drug discovery field. J. Cheminform. 2015 7 1 26 10.1186/s13321‑015‑0078‑2 26101548
    [Google Scholar]
  79. Durrant J.D. McCammon J.A. NNScore 2.0: A neural-network receptor-ligand scoring function. J. Chem. Inf. Model. 2011 51 11 2897 2903 10.1021/ci2003889 22017367
    [Google Scholar]
  80. Duvenaud D.K. Maclaurin D. Aguilera-Iparraguirre J. Gómez-Bombarelli R. Hirzel T.D. Aspuru-Guzik A. Adams R.P. Convolutional networks on graphs for learning molecular fingerprints. Advances in neural information processing systems Cortes C. Lawrence N. Lee D.D. Garnett R. Lawrence N.D. Sugiyama M. The MIT Press 2015
    [Google Scholar]
  81. Jin W. Barzilay R. Jaakkola T. Junction tree variational autoencoder for molecular graph generation. 35th International conference on machine learning. Stockholmsmässan, Stockholm, Sweden 2018 pp. 2323–32
    [Google Scholar]
  82. Urban G. Subrahmanya N. Baldi P. Inner and outer recursive neural networks for chemoinformatics applications. J. Chem. Inf. Model. 2018 58 2 207 211 10.1021/acs.jcim.7b00384 29320180
    [Google Scholar]
  83. Stork C. Chen Y. Šícho M. Kirchmair J. Hit dexter 2.0: Machine-learning models for the prediction of frequent hitters. J. Chem. Inf. Model. 2019 59 3 1030 1043 10.1021/acs.jcim.8b00677 30624935
    [Google Scholar]
  84. Wang C. Zhang Y. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest. J. Comput. Chem. 2017 38 3 169 177 10.1002/jcc.24667 27859414
    [Google Scholar]
  85. Xie Z. Wang H. Han S. Schoenfeld E. Ye F. DeepVS: A deep learning approach for RF-based vital signs sensing. Proceedings of the 13th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics Northbrook, Illinois USA, 2022, pp. 1-5 10.1145/3535508.3545554
    [Google Scholar]
  86. Mayr A. Klambauer G. Unterthiner T. Hochreiter S. DeepTox: Toxicity prediction using deep learning. Front. Environ. Sci. 2016 3 80 10.3389/fenvs.2015.00080
    [Google Scholar]
  87. Ghasemi F. Mehridehnavi A. Fassihi A. Pérez-Sánchez H. Deep neural network in QSAR studies using deep belief network. Appl. Soft Comput. 2018 62 251 258 10.1016/j.asoc.2017.09.040
    [Google Scholar]
  88. Ma W. Zhang S. Li Z. Jiang M. Wang S. Guo N. Li Y. Bi X. Jiang H. Wei Z. Predicting drug-target affinity by learning protein knowledge from biological networks. IEEE J. Biomed. Health Inform. 2023 27 4 2128 2137 10.1109/JBHI.2023.3240305 37018115
    [Google Scholar]
  89. D’Souza S. Prema K.V. Balaji S. Shah R. Deep learning-based modeling of drug–target interaction prediction incorporating binding site information of proteins. Interdiscip. Sci. 2023 15 2 306 315 10.1007/s12539‑023‑00557‑z 36967455
    [Google Scholar]
  90. Krishnan A. Vinod D. Graph Convolutional Capsule Regression (GCCR): A model for accelerated filtering of novel potential candidates for SARS-CoV-2 based on binding affinity. Curr. Computeraided. Drug. Des. 2024 20 1 33 41 10.2174/1573409919666230331083953 37005531
    [Google Scholar]
  91. Amanatidis D. Vaitsi K. Dossis M.F. Deep neural network applications for bioinformatics. Computer Networks and Social Media Conference (SEEDA-CECNSM) Ioannina, Greece, 2022, pp.1-9
    [Google Scholar]
  92. Coley C.W. Barzilay R. Green W.H. Jaakkola T.S. Jensen K.F. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 2017 57 8 1757 1772 10.1021/acs.jcim.6b00601 28696688
    [Google Scholar]
  93. Steiner S. Wolf J. Glatzel S. Andreou A. Granda J.M. Keenan G. Hinkley T. Aragon-Camarasa G. Kitson P.J. Angelone D. Cronin L. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 2019 363 6423 eaav2211 10.1126/science.aav2211 30498165
    [Google Scholar]
  94. Bhattamisra S.K. Banerjee P. Gupta P. Mayuren J. Patra S. Candasamy M. Artificial intelligence in pharmaceutical and healthcare research. Big. data. cogn. 2023 7 1 10 10.3390/bdcc7010010
    [Google Scholar]
  95. Ahmadian M. Ahmadian S. Ahmadi M. RDERL: Reliable deep ensemble reinforcement learning-based recommender system. Knowl. Base. Syst. 2023 263 110289 10.1016/j.knosys.2023.110289
    [Google Scholar]
  96. Gómez-Bombarelli R. Wei J.N. Duvenaud D. Hernández-Lobato J.M. Sánchez-Lengeling B. Sheberla D. Aguilera-Iparraguirre J. Hirzel T.D. Adams R.P. Aspuru-Guzik A. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 2018 4 2 268 276 10.1021/acscentsci.7b00572 29532027
    [Google Scholar]
  97. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  98. Senior A.W. Evans R. Jumper J. Kirkpatrick J. Sifre L. Green T. Qin C. Žídek A. Nelson A.W.R. Bridgland A. Penedones H. Petersen S. Simonyan K. Crossan S. Kohli P. Jones D.T. Silver D. Kavukcuoglu K. Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature 2020 577 7792 706 710 10.1038/s41586‑019‑1923‑7 31942072
    [Google Scholar]
  99. Kumar K. Kumar P. Deb D. Unguresan M.L. Muresan V. Artificial intelligence and machine learning based intervention in medical infrastructure: A review and future trends. Healthcare 2023 11 2 207 10.3390/healthcare11020207 36673575
    [Google Scholar]
  100. Schneider P. Walters W.P. Plowright A.T. Sieroka N. Listgarten J. Goodnow R.A. Jr Fisher J. Jansen J.M. Duca J.S. Rush T.S. Zentgraf M. Hill J.E. Krutoholow E. Kohler M. Blaney J. Funatsu K. Luebkemann C. Schneider G. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020 19 5 353 364 10.1038/s41573‑019‑0050‑3 31801986
    [Google Scholar]
  101. Bender A. Cortés-Ciriano I. Artificial intelligence in drug discovery: What is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug. Discov. Today 2021 26 2 511 524 10.1016/j.drudis.2020.12.009 33346134
    [Google Scholar]
  102. Pabrinkis A. Bucher A. Kamuntavicius G. Prat A. Bastas O. Jocys Z. Tal R. Knuff C.D. System and method for de novo drug discovery. US Patent US11615324B2 2023
  103. Lee F. Steckbeck J.D. Holste H. Artificial intelligence engine architecture for generating candidate drugs. US patent US20210295955A1 2022
  104. Stojevic V Wright D Frost JM Computer implemented method and system for small molecule drug discovery. WO patent WO2022043690A1 2022
  105. Lee F. Steckbeck J.D. Holste H. Generating enhanced graphical user interfaces for presentation of anti-infective design spaces for selecting drug candidates. US Patent US11403316B2 2022
  106. Stojevic V. Shaker N. Bal M. Tensor network machine learning system. US Patent 20210081804A1 2021
  107. Triendl H Bal M Frost JM Phillips L Chantzis A Simpson G Stojevic V Shaker N Graig M Bashir U Assmann M Machine learning based methods of analysing drug-like molecules. WO patent WO2020016579A2 2020
  108. Wei G Systems and methods for drug design and discovery comprising applications of machine learning with differential geometric modelling. WO patent WO2019191777A1 2019
  109. Vatansever S. Schlessinger A. Wacker D. Kaniskan H.Ü. Jin J. Zhou M.M. Zhang B. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions. Med. Res. Rev. 2021 41 3 1427 1473 10.1002/med.21764 33295676
    [Google Scholar]
  110. Stokes J.M. Yang K. Swanson K. Jin W. Cubillos-Ruiz A. Donghia N.M. MacNair C.R. French S. Carfrae L.A. Bloom-Ackermann Z. Tran V.M. Chiappino-Pepe A. Badran A.H. Andrews I.W. Chory E.J. Church G.M. Brown E.D. Jaakkola T.S. Barzilay R. Collins J.J. A deep learning approach to antibiotic discovery. Cell 2020 181 2 475 483 10.1016/j.cell.2020.04.001 32302574
    [Google Scholar]
  111. Mamoshina P. Vieira A. Putin E. Zhavoronkov A. Applications of deep learning in biomedicine. Mol. Pharm. 2016 13 5 1445 1454 10.1021/acs.molpharmaceut.5b00982 27007977
    [Google Scholar]
  112. Preuer K. Klambauer G. Rippmann F. Hochreiter S. Unterthiner T. Interpretable deep learning in drug discovery. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Samek W. Montavon G. Vedaldi A. Hansen L. Müller K.R. Springer Cham 2019 10.1007/978‑3‑030‑28954‑6_18
    [Google Scholar]
  113. Ramsundar B. Liu B. Wu Z. Verras A. Tudor M. Sheridan R.P. Pande V. Is multitask deep learning practical for pharma? J. Chem. Inf. Model. 2017 57 8 2068 2076 10.1021/acs.jcim.7b00146 28692267
    [Google Scholar]
  114. Grace K. Salvatier J. Dafoe A. Zhang B. Evans O. Viewpoint: When will AI exceed human performance? Evidence from AI experts. J. Artif. Intell. Res. 2018 62 729 754 10.1613/jair.1.11222
    [Google Scholar]
  115. Yang X. Wang Y. Byrne R. Schneider G. Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019 119 18 10520 10594 10.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  116. Altae-Tran H. Ramsundar B. Pappu A.S. Pande V. Low data drug discovery with one-shot learning. ACS Cent. Sci. 2017 3 4 283 293 10.1021/acscentsci.6b00367 28470045
    [Google Scholar]
  117. Hessler G. Baringhaus K.H. Artificial intelligence in drug design. Molecules 2018 23 10 2520 10.3390/molecules23102520 30279331
    [Google Scholar]
  118. Rehman A.U. Li M. Wu B. Ali Y. Rasheed S. Shaheen S. Liu X. Luo R. Zhang J. Role of artificial intelligence in revolutionizing drug discovery. Fundam. Res. 2024 10.1016/j.fmre.2024.04.021
    [Google Scholar]
  119. Suriyaamporn P. Pamornpathomkul B. Patrojanasophon P. Ngawhirunpat T. Rojanarata T. Opanasopit P. The artificial intelligence-powered new era in pharmaceutical research and development: A review. AAPS Pharm. Sci. Tech. 2024 25 6 188 10.1208/s12249‑024‑02901‑y 39147952
    [Google Scholar]
  120. Tripathi A. Misra K. Dhanuka R. Singh J.P. Artificial intelligence in accelerating drug discovery and development. Recent Pat. Biotechnol. 2023 17 1 9 23 10.2174/1872208316666220802151129 35927896
    [Google Scholar]
  121. Liebman M. The role of artificial intelligence in drug discovery and development. Chem. Int. 2022 44 1 16 19 10.1515/ci‑2022‑0105
    [Google Scholar]
  122. Rohall S.L. Auch L. Gable J. Gora J. Jansen J. Lu Y. Martin E. Pancost-Heidebrecht M. Shirley B. Stiefl N. Lindvall M. An artificial intelligence approach to proactively inspire drug discovery with recommendations. J. Med. Chem. 2020 63 16 8824 8834 10.1021/acs.jmedchem.9b02130 32101427
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638364199250123062248
Loading
/content/journals/cddt/10.2174/0115701638364199250123062248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test