Skip to content
2000
image of In silico based Diabetic Wound Healer from Nature: An Update

Abstract

Diabetes is a chronic metabolic disease of high levels of glucose in the blood and affecting 536.6 million people in the world between the age group of 20-79 with management spent of 11% of the total worldwide. Wound healing in diabetics is impaired due to many factors like high blood sugar, poor blood circulation, damaged blood vessels, diabetic neuropathy, decreased immune responses etc. The presently used synthetic drugs have high costs, a toxic nature, and are full of adverse effects drawing attention to the need to identify new and successful treatment approaches for diabetic wounds. drug screening methods of drug development made it easy to screen thousands of active constituents against a target specifically responsible for diabetes and wound healing. Thus the current review compiled the naturally available active compounds screened by docking from natural resources and has the potential to treat diabetic wound healing with their specificity and target-based mechanism. This information will be helpful for further screening of non-reported natural compounds having antidiabetic as well as wound healing potential

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638336128250122223221
2025-02-11
2025-07-04
Loading full text...

Full text loading...

References

  1. Khunti K Prato D.S Mathieu C Kahn SE Gabbay RA Buse JB COVID-19, Hyperglycemia, and New-Onset Diabetes Diabetes Care. 2021 44 12 2645 2655 10.2337/dc21‑1318 34625431
    [Google Scholar]
  2. Jeon H.Y. Lee A.J. Ha K.S. Polymer-based delivery of peptide drugs to treat diabetes: Normalizing hyperglycemia and preventing diabetic complications. Biochip J. 2022 16 2 111 127 10.1007/s13206‑022‑00057‑0
    [Google Scholar]
  3. L’Heveder R. Nolan T. International diabetes federation. Diabetes Res. Clin. Pract. 2013 101 3 349 351 10.1016/j.diabres.2013.08.003 24119591
    [Google Scholar]
  4. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  5. Guan G. Zhang Q. Jiang Z. Liu J. Wan J. Jin P. Lv Q. Multifunctional silk fibroin methacryloyl microneedle for diabetic wound healing. Small 2022 18 51 2203064 10.1002/smll.202203064 36333115
    [Google Scholar]
  6. Guan L. Ou X. Wang Z. Li X. Feng Y. Yang X. Qu W. Yang B. Lin Q. Electrical stimulation-based conductive hydrogel for immunoregulation, neuroregeneration and rapid angiogenesis in diabetic wound repair. Sci. China Mater. 2023 66 3 1237 1248 10.1007/s40843‑022‑2242‑y
    [Google Scholar]
  7. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy Kidney Int Suppl. 2000 77 S3 12 10.1046/j.1523‑1755.2000.07702.x 10997684
    [Google Scholar]
  8. Koshikawa M. Mukoyama M. Mori K. Suganami T. Sawai K. Yoshioka T. Nagae T. Yokoi H. Kawachi H. Shimizu F. Sugawara A. Nakao K. Role of p38 mitogen-activated protein kinase activation in podocyte injury and proteinuria in experimental nephrotic syndrome. J. Am. Soc. Nephrol. 2005 16 9 2690 2701 10.1681/ASN.2004121084 15987752
    [Google Scholar]
  9. Meier M. Menne J. Park J.K. Haller H. Nailing down PKC isoform specificity in diabetic nephropathy two’s company, three’s a crowd. Nephrol. Dial. Transplant. 2007 22 9 2421 2425 10.1093/ndt/gfm320 17724056
    [Google Scholar]
  10. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 414 6865 813 820 10.1038/414813a 11742414
    [Google Scholar]
  11. Wolf I. Sadetzki S. Catane R. Karasik A. Kaufman B. Diabetes mellitus and breast cancer. Lancet Oncol. 2005 6 2 103 111 10.1016/S1470‑2045(05)01736‑5 15683819
    [Google Scholar]
  12. Lee M.J. Feliers D. Mariappan M.M. Sataranatarajan K. Mahimainathan L. Musi N. Foretz M. Viollet B. Weinberg J.M. Choudhury G.G. Kasinath B.S. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am. J. Physiol. Renal Physiol. 2007 292 2 F617 F627 10.1152/ajprenal.00278.2006 17018841
    [Google Scholar]
  13. Kim J. The pathophysiology of diabetic foot: A narrative review. Journal of Yeungnam Medical Science 2023 40 4 328 334 10.12701/jyms.2023.00731 37797951
    [Google Scholar]
  14. Li M. Yu H. Pan H. Zhou X. Ruan Q. Kong D. Chu Z. Li H. Huang J. Huang X. Chau A. Xie W. Ding Y. Yao P. Nrf2 suppression delays diabetic wound healing through sustained oxidative stress and inflammation. Front. Pharmacol. 2019 10 1099 10.3389/fphar.2019.01099 31616304
    [Google Scholar]
  15. Hu M. Wu Y. Yang C. Wang X. Wang W. Zhou L. Zeng T. Zhou J. Wang C. Lao G. Yan L. Ren M. Novel long noncoding RNA lnc-URIDS delays diabetic wound healing by targeting Plod1. Diabetes 2020 69 10 2144 2156 10.2337/db20‑0147 32801140
    [Google Scholar]
  16. Ben-Yehuda Greenwald M. Tacconi C. Jukic M. Joshi N. Hiebert P. Brinckmann J. Tenor H. Naef R. Werner S. A dual-acting nitric oxide donor and phosphodiesterase 5 inhibitor promotes wound healing in normal mice and mice with diabetes. J. Invest. Dermatol. 2021 141 2 415 426 10.1016/j.jid.2020.05.111 32598925
    [Google Scholar]
  17. Ribeiro M.C. Correa V.L.R. Silva F.K.L. Casas A.A. Chagas A.L. Oliveira L.P. Miguel M.P. Diniz D.G.A. Amaral A.C. Menezes L.B. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. Eur. J. Pharm. Sci. 2020 150 105330 10.1016/j.ejps.2020.105330 32268198
    [Google Scholar]
  18. Nabavi S.F. Braidy N. Gortzi O. Sobarzo-Sanchez E. Daglia M. Skalicka-Woźniak K. Nabavi S.M. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 2015 119 Pt A 1 11 10.1016/j.brainresbull.2015.09.002 26361743
    [Google Scholar]
  19. Dubey R. Prabhakar P.K. Gupta J. Identification of structurally similar phytochemicals to quercetin with high SIRT1 binding affinity and improving diabetic wound healing by using in silico approaches. Biointerface Res. Appl. Chem. 2021 12 6 7621 7632 10.33263/BRIAC126.76217632
    [Google Scholar]
  20. Khursheed R. Singh S.K. Wadhwa S. Gulati M. Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov. Today 2020 25 1 209 222 10.1016/j.drudis.2019.11.001 31707120
    [Google Scholar]
  21. Sun C. Zhang F. Ge X. Yan T. Chen X. Shi X. Zhai Q. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab. 2007 6 4 307 319 10.1016/j.cmet.2007.08.014 17908559
    [Google Scholar]
  22. Bo S. Togliatto G. Gambino R. Ponzo V. Lombardo G. Rosato R. Cassader M. Brizzi M.F. Impact of sirtuin-1 expression on H3K56 acetylation and oxidative stress: A double-blind randomized controlled trial with resveratrol supplementation. Acta Diabetol. 2018 55 4 331 340 10.1007/s00592‑017‑1097‑4 29330620
    [Google Scholar]
  23. Peng J. Zhou Y. Deng Z. Zhang H. Wu Y. Song T. Yang Y. Wei H. Peng J. miR‐221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin‐1 (SIRT1). J. Cell. Biochem. 2018 119 8 6418 6428 10.1002/jcb.26589 29236311
    [Google Scholar]
  24. Ayuk S.M. Abrahamse H. Houreld N.N. The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J. Diabetes Res. 2016 2016 1 9 10.1155/2016/2897656 27314046
    [Google Scholar]
  25. Mukherjee P.K. Maity N. Nema N.K. Sarkar B.K. Natural matrix metalloproteinase inhibitors: Leads from herbal resources. Stud. Nat. Prod. Chem. 2013 39 91 113 10.1016/B978‑0‑444‑62615‑8.00003‑5
    [Google Scholar]
  26. Balachandran A. Choi S.B. Beata M.M. Małgorzata J. Froemming G.R.A. Lavilla C.A. Jr Billacura M.P. Siyumbwa S.N. Okechukwu P.N. Antioxidant, wound healing potential and in silico assessment of naringin, eicosane and octacosane. Molecules 2023 28 3 1043 10.3390/molecules28031043 36770709
    [Google Scholar]
  27. Mariadoss A.V.A. Park S. Saravanakumar K. Sathiyaseelan A. Wang M.H. Ethyl acetate fraction of Helianthus tuberosus L. induces anti-diabetic, and wound-healing activities in insulin-resistant human liver cancer and mouse fibroblast cells. Antioxidants 2021 10 1 99 10.3390/antiox10010099 33445702
    [Google Scholar]
  28. Hsing H.Y. Rathnasamy S. Dianita R. Wahab H.A. Docking-based virtual screening in search for natural PTP1B inhibitors in treating type-2 diabetes mellitus and obesity. Biomed. Res. Ther. 2020 7 1 3579 3592 10.15419/bmrat.v7i1.585
    [Google Scholar]
  29. Li B. Ji Y. Yi C. Wang X. Liu C. Wang C. Lu X. Xu X. Wang X. Rutin Inhibits Ox-LDL-mediated macrophage inflammation and foam cell formation by inducing autophagy and modulating PI3K/ATK signaling. Molecules 2022 27 13 4201 10.3390/molecules27134201 35807447
    [Google Scholar]
  30. Naseeb M. Albajri E. Almasaudi A. Alamri T. Niyazi H.A. Aljaouni S. Mohamed A.B.O. Niyazi H.A. Ali A.S. Ali S.S. Saber S.H. Abuaraki H.A. Haque S. Harakeh S. Rutin promotes wound healing by inhibiting oxidative stress and inflammation in metformin-controlled diabetes in rats. ACS Omega 2024 9 30 acsomega.3c05595 10.1021/acsomega.3c05595 39100330
    [Google Scholar]
  31. Yueniwati Y Syaban MF Erwan NE Putra GF Krisnayana AD Molecular docking analysis of ficus religiosa active compound with anti-inflammatory activity by targeting tumour necrosis factor alpha and vascular endothelial growth factor receptor in diabetic wound healing. Maced. J. Med. Sci. 2021 9 A 1031 6 10.3889/oamjms.2021.7068
    [Google Scholar]
  32. Nakhate VP Akojwar NS Sinha SK Lomte AD Dhobi M Itankar PR Prasad SK Wound healing potential of Acacia catechu in streptozotocin-induced diabetic mice using in vivo and in silico approach J Tradit Complement Med. 2023 13 5 489 499 10.1016/j.jtcme.2023.05.001 37693096
    [Google Scholar]
  33. Henley Z.A. Bax B.D. Inglesby L.M. Champigny A. Gaines S. Faulder P. Le J. Thomas D.A. Washio Y. Baldwin I.R. From PIM1 to PI3Kδ via GSK3β: Target hopping through the kinome. ACS Med. Chem. Lett. 2017 8 10 1093 1098 10.1021/acsmedchemlett.7b00296 29057057
    [Google Scholar]
  34. Graham T.A. Ferkey D.M. Mao F. Kimelman D. Xu W. Tcf4 can specifically recognize β-catenin using alternative conformations. Nat. Struct. Biol. 2001 8 12 1048 1052 10.1038/nsb718 11713475
    [Google Scholar]
  35. Nair S.K. Burley S.K. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell 2003 112 2 193 205 10.1016/S0092‑8674(02)01284‑9 12553908
    [Google Scholar]
  36. Saleem U. Khalid S. Zaib S. Anwar F. Akhtar M.F. Hussain L. Saleem A. Ahmad B. Wound healing potential and in silico appraisal of Convolvulus arvensis L. methanolic extract. BioMed Res. Int. 2022 2022 1 16 10.1155/2022/1373160 36467883
    [Google Scholar]
  37. Nayaka S.S. Krishna V. Narayana J. Ravi K.S. Santosh K.S.R. Diabetic wound healing activity of Elaeagnus conferta Roxb. leaf ethanol extract. Res. J. Biotechnol. 2023 18 11 154 164 10.25303/1811rjbt01540164
    [Google Scholar]
  38. Kumar R.S. Kaavya G. Binding efficiency of molecules from medicinal plants with fidgetin like protein 2-A novel target for diabetic foot ulcer. Res. J. Pharm. Technol. 2017 10 11 3757 3760 10.5958/0974‑360X.2017.00682.5
    [Google Scholar]
  39. Baidya R Sarkar B . An in silico approach to evaluate the diabetic wound healing potential of phenylethanoid glycoside in inhibiting the receptor for advanced glycation end products (RAGE). J. Med. Sci. 2023 21 1 24 10.3390/ECB2023‑14137
    [Google Scholar]
  40. Jini D. Sharmila S. Anitha A. Pandian M. Rajapaksha R.M.H. In vitro and in silico studies of silver nanoparticles (AgNPs) from Allium sativum against diabetes. Sci. Rep. 2022 12 1 22109 10.1038/s41598‑022‑24818‑x 36543812
    [Google Scholar]
  41. Khatib S Mahdi I Drissi B Fahsi N Bouissane L Sobeh M. Tetraclinis articulata (Vahl) Mast.: Volatile constituents, antioxidant, antidiabetic and wound healing activities of its essential oil Heliyon. 2024 10 3 e24563 10.1016/j.heliyon.2024.e24563 38317922
    [Google Scholar]
  42. Anitha V.T. Antonisamy J.M. Jeeva S. Anti-bacterial studies on Hemigraphis colorata (Blume) H.G. Hallier and Elephantopus scaber L. Asian Pac. J. Trop. Med. 2012 5 1 52 57 10.1016/S1995‑7645(11)60245‑9 22182644
    [Google Scholar]
  43. Priya M.D. Review on pharmacological activity of Hemigraphis colorata (Blume) HG Hallier. Int. J. of Herbal Med. 2013 1 3 120 121
    [Google Scholar]
  44. Silja V.P. Varma K.S. Mohanan K.V. Ethnomedicinal plant knowledge of the Mullu kuruma tribe of Wayanad district, Kerala. Indian J. Tradit. Knowl. 2008 7 4 604 612
    [Google Scholar]
  45. Devasahayam Arokia Balaya R. Palollathil A. Kumar S.T.A. Chandrasekaran J. Upadhyay S.S. Parate S.S. Sajida M. Karthikkeyan G. Prasad T.S.K. Role of Hemigraphis alternata in wound healing: Metabolomic profiling and molecular insights into mechanisms. Sci. Rep. 2024 14 1 3872 10.1038/s41598‑024‑54352‑x 38365839
    [Google Scholar]
  46. Bakri M.M. Alghonaim M.I. Alsalamah S.A. Yahya R.O. Ismail K.S. Abdelghany T.M. Impact of moist heat on phytochemical constituents, anti-helicobacter pylori, antioxidant, anti-diabetic, hemolytic and healing properties of rosemary plant extract in vitro. Waste Biomass Valoriz. 2024 15 8 4965 4979 10.1007/s12649‑024‑02490‑8
    [Google Scholar]
  47. Elhawary E.S.S. Elmotayam A.E. Alsayed D. Zahran E.M. Fouad M.A. Sleem A.A. Elimam H. Rashed M.H. Hayallah A.M. Mohammed A.F. Abdelmohsen U.R. Cytotoxic and anti-diabetic potential, metabolic profiling and insilico studies of Syzygium cumini (L.) Skeels belonging to family Myrtaceae. Nat. Prod. Res. 2022 36 4 1026 1030 10.1080/14786419.2020.1843032 33146032
    [Google Scholar]
  48. Kazmi S.A.J. Riaz A. Akhter N. Khan R.A. Evaluation of wound healing effects of Syzygium cumini and laser treatment in diabetic rats. Pak. J. Pharm. Sci. 2020 33 2(Suppl) 779 786 10.36721/PJPS.2020.33.2.SUP.779‑786 32863252
    [Google Scholar]
  49. Datta S. Seal T. Anti-diabetic, anti-inflammatory and antioxidant properties of four underutilized ethnomedicinal plants: An in vitro approach. S. Afr. J. Bot. 2022 149 10 10.21203/rs.3.rs‑93293/v1
    [Google Scholar]
  50. Dhamodiran M. Chinnaperumal K. J D. Venkatesan G. Alshiekheid A.M. Suseem S.R. Isolation, structural elucidation of bioactive compounds and their wound-healing ability, antibacterial and In silico molecular docking applications. Environ. Res. 2024 252 Pt 3 119023 10.1016/j.envres.2024.119023 38685295
    [Google Scholar]
  51. Oguntibeju O.O. Medicinal plants and their effects on diabetic wound healing. Vet. World 2019 12 5 653 663 10.14202/vetworld.2019.653‑663 31327900
    [Google Scholar]
  52. Accipe L. Abadie A. Neviere R. Bercion S. Antioxidant activities of natural compounds from Caribbean plants to enhance diabetic wound healing. Antioxidants 2023 12 5 1079 10.3390/antiox12051079 37237945
    [Google Scholar]
  53. Ambika A.P. Nair S.N. Wound healing activity of plants from the convolvulaceae family. Adv. Wound Care 2019 8 1 28 37 10.1089/wound.2017.0781 30705787
    [Google Scholar]
  54. Chang Y. Hawkins B.A. Du J.J. Groundwater P.W. Hibbs D.E. Lai F. A guide to in silico drug design. Pharmaceutics 2022 15 1 49 10.3390/pharmaceutics15010049 36678678
    [Google Scholar]
  55. Ekins S. Mestres J. Testa B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharmacol. 2007 152 1 9 20 10.1038/sj.bjp.0707305 17549047
    [Google Scholar]
  56. Sadybekov A.V. Katritch V. Computational approaches streamlining drug discovery. Nature 2023 616 7958 673 685 10.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  57. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  58. Kitchen D.B. Decornez H. Furr J.R. Bajorath J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004 3 11 935 949 10.1038/nrd1549 15520816
    [Google Scholar]
  59. DesJarlais R.L. Sheridan R.P. Dixon J.S. Kuntz I.D. Venkataraghavan R. Docking flexible ligands to macromolecular receptors by molecular shape. J. Med. Chem. 1986 29 11 2149 2153 10.1021/jm00161a004 3783576
    [Google Scholar]
  60. Levinthal C. Wodak S.J. Kahn P. Dadivanian A.K. Hemoglobin interaction in sickle cell fibers. I: Theoretical approaches to the molecular contacts. Proc. Natl. Acad. Sci. USA 1975 72 4 1330 1334 10.1073/pnas.72.4.1330 1055409
    [Google Scholar]
  61. Goodsell D.S. Olson A.J. Automated docking of substrates to proteins by simulated annealing. Proteins 1990 8 3 195 202 10.1002/prot.340080302 2281083
    [Google Scholar]
  62. Salemme F.R. An hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. J. Mol. Biol. 1976 102 3 563 568 10.1016/0022‑2836(76)90334‑X 178879
    [Google Scholar]
  63. Wodak S.J. Janin J. Computer analysis of protein-protein interaction. J. Mol. Biol. 1978 124 2 323 342 10.1016/0022‑2836(78)90302‑9 712840
    [Google Scholar]
  64. Kuntz I.D. Blaney J.M. Oatley S.J. Langridge R. Ferrin T.E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982 161 2 269 288 10.1016/0022‑2836(82)90153‑X 7154081
    [Google Scholar]
  65. Kuhl F.S. Crippen G.M. Friesen D.K. A combinatorial algorithm for calculating ligand binding. J. Comput. Chem. 1984 5 1 24 34 10.1002/jcc.540050105
    [Google Scholar]
  66. DesJarlais R.L. Sheridan R.P. Seibel G.L. Dixon J.S. Kuntz I.D. Venkataraghavan R. Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure. J. Med. Chem. 1988 31 4 722 729 10.1021/jm00399a006 3127588
    [Google Scholar]
  67. Warwicker J. Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model. J. Mol. Biol. 1989 206 2 381 395 10.1016/0022‑2836(89)90487‑7 2541255
    [Google Scholar]
  68. Jiang F. Kim S.H. “Soft docking”: Matching of molecular surface cubes. J. Mol. Biol. 1991 219 1 79 102 10.1016/0022‑2836(91)90859‑5 2023263
    [Google Scholar]
  69. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  70. Amaro R.E. Baudry J. Chodera J. Demir Ö. McCammon J.A. Miao Y. Smith J.C. Ensemble docking in drug discovery. Biophys. J. 2018 114 10 2271 2278 10.1016/j.bpj.2018.02.038 29606412
    [Google Scholar]
  71. Abagyan R. Totrov M. High-throughput docking for lead generation. Curr. Opin. Chem. Biol. 2001 5 4 375 382 10.1016/S1367‑5931(00)00217‑9 11470599
    [Google Scholar]
  72. Carlson H.A. Protein flexibility and drug design: How to hit a moving target. Curr. Opin. Chem. Biol. 2002 6 4 447 452 10.1016/S1367‑5931(02)00341‑1 12133719
    [Google Scholar]
  73. Asiamah I. Obiri S.A. Tamekloe W. Armah F.A. Borquaye L.S. Applications of molecular docking in natural products-based drug discovery. Sci. Am. 2023 20 e01593 10.1016/j.sciaf.2023.e01593
    [Google Scholar]
  74. Grahl M.V.C. Alcará A.M. Perin A.P.A. Moro C.F. Pinto É.S.M. Feltes B.C. Ghilardi I.M. Rodrigues F.V.F. Dorn M. Costa D.J.C. Norberto de Souza O. Ligabue-Braun R. Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. Infor. Med. Unlo. 2021 23 100539 10.1016/j.imu.2021.100539 33623816
    [Google Scholar]
  75. Wu C. Liu Y. Yang Y. Zhang P. Zhong W. Wang Y. Wang Q. Xu Y. Li M. Li X. Zheng M. Chen L. Li H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020 10 5 766 788 10.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638336128250122223221
Loading
/content/journals/cddt/10.2174/0115701638336128250122223221
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: docking studies ; plants ; wound healing ; binding energies ; chemical compounds ; Diabetes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test