Skip to content
2000
image of Discovering Active Chemotherapeutic Agents for Sexually Transmitted Diseases to Inhibit Pathogenic HPV-16-E6 Protein

Abstract

Background

One of the most prevalent sexually transmitted diseases (STDs) is infection with the human papillomavirus (HPV). The current treatment methods comprise employing chemotherapeutic medications or doing surgery to remove the developed tumors. A more affordable option for treating HPV-related diseases has emerged with the advent of medication-based therapy. The interaction between E6 protein and E6AP generates a p53 degradation complex in HPV-infected cells, which facilitates carcinogenesis.

Objective

The purpose of this work is to use a virtual screening technique to find possible small molecule inhibitors against the HPV16 E6 protein.

Methods

Compounds 5, 7, and 10 are three new HPV 16 E6 inhibitors that were created utilizing a fragment-based methodology. The trials subset in the ZINC database was screened virtually using the structural information of these three novel chemicals, yielding 9800 hits. Using the GLIDE module of the Schrodinger software, three virtual screening phases were applied to the molecules that were collected from the database. MD simulations and DFT (Density Function Theory) were also carried out.

Results

The findings indicated that when compared to the reference molecule, luteolin, the five-hit compounds (ZINC000034853956, ZINC000001534965, ZINC000095617673, ZINC000005764481, and ZINC000071606215) demonstrated superior glide scores. Important interactions between these compounds and the HPV 16 E6 protein were seen. Using the QikProp tool, the pharmacokinetic characteristics of these hit compounds were examined. The findings demonstrated that the pharmacokinetic characteristics and oral absorption by humans of all five compounds were found to be satisfactory. Except for ZINC000005764481, all five hit compounds were predicted to be toxic; the remaining four displayed drug-like characteristics.

Conclusion

To create HPV 16 E6 inhibitors for the treatment of HPV-related disorders, the four hit compounds (ZINC000034853956, ZINC000001534965, ZINC000095617673, and ZINC00007160-6215) can be employed as lead molecules.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638336294250109052352
2025-02-11
2025-06-21
Loading full text...

Full text loading...

References

  1. Allison D.B. Maleki Z. HPV-related head and neck squamous cell carcinoma: An update and review. J. Am. Soc. Cytopathol. 2016 5 4 203 215 10.1016/j.jasc.2015.12.001 31042510
    [Google Scholar]
  2. Forman D. de Martel C. Lacey C.J. Soerjomataram I. Lortet-Tieulent J. Bruni L. Vignat J. Ferlay J. Bray F. Plummer M. Franceschi S. Global burden of human papillomavirus and related diseases. Vaccine 2012 30 5 Suppl. 5 F12 F23 10.1016/j.vaccine.2012.07.055 23199955
    [Google Scholar]
  3. Monie A. Hung C.F. Roden R. Wu T.C. Cervarix: A vaccine for the prevention of HPV 16, 18-associated cervical cancer. Biologics 2008 2 1 97 105 19707432
    [Google Scholar]
  4. Shi L. Sings H.L. Bryan J.T. Wang B. Wang Y. Mach H. Kosinski M. Washabaugh M.W. Sitrin R. Barr E. GARDASIL: Prophylactic human papillomavirus vaccine development--from bench top to bed-side. Clin. Pharmacol. Ther. 2007 81 2 259 264 10.1038/sj.clpt.6100055 17259949
    [Google Scholar]
  5. Hampson L. Martin-Hirsch P. Hampson I.N. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia. Expert Opin. Investig. Drugs 2015 24 12 1529 1537 10.1517/13543784.2015.1099628 26457651
    [Google Scholar]
  6. Mittal S. Banks L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res. 2017 772 23 35 10.1016/j.mrrev.2016.08.001 28528687
    [Google Scholar]
  7. Satapathy P. Khatib M.N. Neyazi A. Qanawezi L. Said S. Gaidhane S. Zahiruddin Q.S. Rustagi S. Al-Hajeili M. Abdulkhaliq A.A. Alsayyah A. Alrasheed H.A. Al-Subaie M.F. Al Kaabi N.A. Rabaan A.A. Prevalence of human papilloma virus among cervical cancer patients in India: A systematic review and meta-analysis. Medicine (Baltimore) 2024 103 31 e38827 10.1097/MD.0000000000038827 39093777
    [Google Scholar]
  8. Mukerjee N. Maitra S. Ghosh A. Exosome‐based therapy and targeted PROTAC delivery: A new nanomedicine frontier for HPV‐mediated cervical cancer treatment. Clin. Transl. Discov. 2024 4 4 e328 10.1002/ctd2.328
    [Google Scholar]
  9. Mukerjee N. Maitra S. Gorai S. Ghosh A. Alexiou A. Thorat N.D. Revolutionizing Human papillomavirus (HPV)‐related cancer therapies: Unveiling the promise of Proteolysis Targeting Chimeras (PROTACs) and Proteolysis Targeting Antibodies (PROTABs) in cancer nano‐vaccines. J. Med. Virol. 2023 95 10 e29135 10.1002/jmv.29135 37792364
    [Google Scholar]
  10. McLaughlin-Drubin M.E. Münger K. The human papillomavirus E7 oncoprotein. Virology 2009 384 2 335 344 10.1016/j.virol.2008.10.006 19007963
    [Google Scholar]
  11. Howie H.L. Katzenellenbogen R.A. Galloway D.A. Papillomavirus E6 proteins. Virology 2009 384 2 324 334 10.1016/j.virol.2008.11.017 19081593
    [Google Scholar]
  12. Martinez-Zapien D. Ruiz F.X. Poirson J. Mitschler A. Ramirez J. Forster A. Cousido-Siah A. Masson M. Pol S.V. Podjarny A. Travé G. Zanier K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 2016 529 7587 541 545 10.1038/nature16481 26789255
    [Google Scholar]
  13. Scheffner M. Münger K. Byrne J.C. Howley P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA 1991 88 13 5523 5527 10.1073/pnas.88.13.5523 1648218
    [Google Scholar]
  14. Ricci-López J. Vidal-Limon A. Zunñiga M. Jimènez V.A. Alderete J.B. Brizuela C.A. Aguila S. Molecular modeling simulation studies reveal new potential inhibitors against HPV E6 protein. PLoS One 2019 14 3 e0213028 10.1371/journal.pone.0213028 30875378
    [Google Scholar]
  15. Liu Y. Liu Z. Androphy E. Chen J. Baleja J.D. Design and characterization of helical peptides that inhibit the E6 protein of papillomavirus. Biochemistry 2004 43 23 7421 7431 10.1021/bi049552a 15182185
    [Google Scholar]
  16. Zanier K. Stutz C. Kintscher S. Reinz E. Sehr P. Bulkescher J. Hoppe-Seyler K. Travé G. Hoppe-Seyler F. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6. PLoS One 2014 9 11 e112514 10.1371/journal.pone.0112514 25383876
    [Google Scholar]
  17. Griffin H. Elston R. Jackson D. Ansell K. Coleman M. Winter G. Doorbar J. Inhibition of papillomavirus protein function in cervical cancer cells by intrabody targeting. J. Mol. Biol. 2006 355 3 360 378 10.1016/j.jmb.2005.10.077 16324714
    [Google Scholar]
  18. Baleja J.D. Cherry J.J. Liu Z. Gao H. Nicklaus M.C. Voigt J.H. Chen J.J. Androphy E.J. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res. 2006 72 1 49 59 10.1016/j.antiviral.2006.03.014 16690141
    [Google Scholar]
  19. Cherry J.J. Rietz A. Malinkevich A. Liu Y. Xie M. Bartolowits M. Davisson V.J. Baleja J.D. Androphy E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One 2013 8 12 e84506 10.1371/journal.pone.0084506 24376816
    [Google Scholar]
  20. Malecka K.A. Fera D. Schultz D.C. Hodawadekar S. Reichman M. Donover P.S. Murphy M.E. Marmorstein R. Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem. Biol. 2014 9 7 1603 1612 10.1021/cb500229d 24854633
    [Google Scholar]
  21. DiMasi J.A. Grabowski H.G. Hansen R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016 47 20 33 10.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  22. Murgueitio M.S. Bermudez M. Mortier J. Wolber G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. Technol. 2012 9 3 e219 e225 10.1016/j.ddtec.2012.07.009 24990575
    [Google Scholar]
  23. Arooj M. Kim S. Sakkiah S. Cao G.P. Lee Y. Lee K.W. Molecular modeling study for inhibition mechanism of human chymase and its application in inhibitor design. PLoS One 2013 8 4 e62740 10.1371/journal.pone.0062740 23638140
    [Google Scholar]
  24. Nassab C.N. Arooj M. Shehadi I.A. Parambath J.B.M. Kanan S.M. Mohamed A.A. Lysozyme and human serum albumin proteins as potential nitric oxide cardiovascular drug carriers: Theoretical and experimental investigation. J. Phys. Chem. B 2021 125 28 7750 7762 10.1021/acs.jpcb.1c04614 34232651
    [Google Scholar]
  25. Tangella L.P. Arooj M. Deplazes E. Gray E.S. Mancera R.L. Identification and characterisation of putative drug binding sites in human ATP-binding cassette B5 (ABCB5) transporter. Comput. Struct. Biotechnol. J. 2021 19 691 704 10.1016/j.csbj.2020.12.042 33510870
    [Google Scholar]
  26. Lionta E. Spyrou G. Vassilatis D. Cournia Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr. Top. Med. Chem. 2014 14 16 1923 1938 10.2174/1568026614666140929124445 25262799
    [Google Scholar]
  27. Zanier K. Charbonnier S. Sidi A.O.M.O. McEwen A.G. Ferrario M.G. Poussin-Courmontagne P. Cura V. Brimer N. Babah K.O. Ansari T. Muller I. Stote R.H. Cavarelli J. Vande Pol S. Travé G. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science 2013 339 6120 694 698 10.1126/science.1229934 23393263
    [Google Scholar]
  28. Vemula V. Marudamuthu A.S. Prasad S. B M S. S e M. A S. Seal P. Alagumuthu M. Fragment-based design and MD simulations of human papilloma virus-16 E6 protein inhibitors. J. Biomol. Struct. Dyn. 2024 42 1 288 297 10.1080/07391102.2023.2203775 37098806
    [Google Scholar]
  29. Irwin J.J. Shoichet B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model. 2005 45 1 177 182 10.1021/ci049714+ 15667143
    [Google Scholar]
  30. Zhu K. Day T. Warshaviak D. Murrett C. Friesner R. Pearlman D. Antibody structure determination using a combination of homology modeling, energy‐based refinement, and loop prediction. Proteins 2014 82 8 1646 1655 10.1002/prot.24551 24619874
    [Google Scholar]
  31. Kalliokoski T. Salo H.S. Lahtela-Kakkonen M. Poso A. The effect of ligand-based tautomer and protomer prediction on structure-based virtual screening. J. Chem. Inf. Model. 2009 49 12 2742 2748 10.1021/ci900364w 19928753
    [Google Scholar]
  32. Sadowski J. Rudolph C. Gasteiger J. The generation of 3D models of host-guest complexes. Anal. Chim. Acta 1992 265 2 233 241 10.1016/0003‑2670(92)85029‑6
    [Google Scholar]
  33. Milletti F. Vulpetti A. Tautomer preference in PDB complexes and its impact on structure-based drug discovery. J. Chem. Inf. Model. 2010 50 6 1062 1074 10.1021/ci900501c 20515065
    [Google Scholar]
  34. Muralidharan A.R. Selvaraj C. Singh S.K. Nelson Jesudasan C.A. Geraldine P. Thomas P.A. Virtual screening based on pharmacophoric features of known calpain inhibitors to identify potent inhibitors of calpain. Med. Chem. Res. 2014 23 5 2445 2455 10.1007/s00044‑013‑0842‑7
    [Google Scholar]
  35. Halgren T.A. Murphy R.B. Friesner R.A. Beard H.S. Frye L.L. Pollard W.T. Banks J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004 47 7 1750 1759 10.1021/jm030644s 15027866
    [Google Scholar]
  36. Cappel D. Hall M.L. Lenselink E.B. Beuming T. Qi J. Bradner J. Sherman W. Relative binding free energy calculations applied to protein homology models. J. Chem. Inf. Model. 2016 56 12 2388 2400 10.1021/acs.jcim.6b00362 28024402
    [Google Scholar]
  37. Di Capua A. Sticozzi C. Brogi S. Brindisi M. Cappelli A. Sautebin L. Rossi A. Pace S. Ghelardini C. Di Cesare Mannelli L. Valacchi G. Giorgi G. Giordani A. Poce G. Biava M. Anzini M. Synthesis and biological evaluation of fluorinated 1,5-diarylpyrrole-3-alkoxyethyl ether derivatives as selective COX-2 inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem. 2016 109 99 106 10.1016/j.ejmech.2015.12.044 26774035
    [Google Scholar]
  38. Rajput V.S. Mehra R. Kumar S. Nargotra A. Singh P.P. Khan I.A. Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis. Appl. Microbiol. Biotechnol. 2016 100 12 5415 5426 10.1007/s00253‑015‑7268‑8 26887318
    [Google Scholar]
  39. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  40. Oostenbrink C. Villa A. Mark A.E. Van Gunsteren W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004 25 13 1656 1676 10.1002/jcc.20090 15264259
    [Google Scholar]
  41. Rajpoot S. Alagumuthu M. Baig M.S. Dual targeting of 3CLpro and PLpro of SARS-CoV-2: A novel structure-based design approach to treat COVID-19. Curr. Res. Struct. Biol. 2021 3 9 18 10.1016/j.crstbi.2020.12.001 33319212
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638336294250109052352
Loading
/content/journals/cddt/10.2174/0115701638336294250109052352
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: anti-cervical cancer ; ZINC ; molecular docking ; ADME ; HPV16 E6 ; virtual screening
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test