Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

Diabetic wound healing poses a significant challenge due to the intricate disruptions in cellular and molecular processes induced by hyperglycaemia, leading to delayed or impaired tissue repair. Computational techniques offer a promising avenue for unravelling the complexities of diabetic wound healing by elucidating the molecular mechanisms involved.

Methodology

This study utilized molecular docking and dynamics simulations to explore the potential therapeutic effectiveness of olivetol, a phenolic compound, in the context of diabetic wound healing. Furthermore, computational methodologies, encompassing pkCSM, Swiss ADME, OSIRIS® property explorer, PASS online web resource, and MOLINSPIRATION® software, were employed to forecast the pharmacokinetic properties, biological actions, and analyses, such as MTT and scratch assays, to evaluate the therapeutic effectiveness of olivetol in wound healing.

Results and Discussion

Our findings have revealed olivetol to be a promising candidate for targeting multiple pathways implicated in diabetic wound healing. Its ability to modulate inflammation, oxidative stress, extracellular matrix remodeling, angiogenesis, and cell signaling suggests a multifaceted approach to promoting effective wound repair. Moreover, olivetol has been found to demonstrate strong binding affinity with key MRSA target proteins, indicating its potential as an antimicrobial agent against MRSA infections in diabetic wounds. The MTT assay demonstrated cell viability with an IC value of 40.80 µM, highlighting its cytotoxicity potential. Additionally, the scratch assay confirmed promising wound healing activity, showcasing its effectiveness in promoting cell migration and closure.

Conclusion

Olivetol emerges as a promising candidate for targeted interventions in non-healing diabetic wounds, particularly due to its ability to address prolonged inflammation, a common obstacle in diabetic wound healing.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638332872240922184903
2024-10-01
2025-03-17
Loading full text...

Full text loading...

References

  1. SaeediP. PetersohnI. SalpeaP. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res Clin Pract.2019157107843
    [Google Scholar]
  2. DasariN. JiangA. SkochdopoleA. ChungJ. ReeceE.M. VorstenboschJ. WinocourS. Updates in Diabetic Wound Healing, Inflammation, and Scarring.Semin. Plast. Surg.202135315315810.1055/s‑0041‑173146034526862
    [Google Scholar]
  3. MieczkowskiM. Mrozikiewicz-RakowskaB. KowaraM. KleibertM. CzupryniakL. The Problem of Wound Healing in Diabetes—From Molecular Pathways to the Design of an Animal Model.Int. J. Mol. Sci.20222314793010.3390/ijms2314793035887276
    [Google Scholar]
  4. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic Wound-Healing Science.Medicina (Kaunas)20215710107210.3390/medicina5710107234684109
    [Google Scholar]
  5. DaiJ. ShenJ. ChaiY. ChenH. IL-1β Impaired Diabetic Wound Healing by Regulating MMP-2 and MMP-9 through the p38 Pathway.Mediators Inflamm.2021202111010.1155/2021/664576634054346
    [Google Scholar]
  6. WorsleyA.L. LuiD.H. Ntow-BoaheneW. SongW. GoodL. TsuiJ. The importance of inflammation control for the treatment of chronic diabetic wounds.Int. Wound J.20232062346235910.1111/iwj.1404836564054
    [Google Scholar]
  7. ZhengS.Y. WanX.X. KambeyP.A. LuoY. HuX.M. LiuY.F. ShanJ.Q. ChenY.W. XiongK. Therapeutic role of growth factors in treating diabetic wound.World J. Diabetes202314436439510.4239/wjd.v14.i4.36437122434
    [Google Scholar]
  8. NirenjenS. NarayananJ. TamilanbanT. SubramaniyanV. ChitraV. FuloriaN.K. WongL.S. RamachawolranG. SekarM. GuptaG. FuloriaS. ChinniS.V. SelvarajS. Exploring the contribution of pro-inflammatory cytokines to impaired wound healing in diabetes.Front. Immunol.202314121632110.3389/fimmu.2023.121632137575261
    [Google Scholar]
  9. ChenV.Y. SiegfriedL.G. Tomic-CanicM. StoneR.C. PastarI. Cutaneous changes in diabetic patients: Primed for aberrant healing?Wound Repair Regen.202331570071210.1111/wrr.1310837365017
    [Google Scholar]
  10. YangQ. FangD. ChenJ. HuS. chenN. JiangJ. ZengM. LuoM. LncRNAs associated with oxidative stress in diabetic wound healing: Regulatory mechanisms and application prospects.Theranostics202313113655367410.7150/thno.8582337441585
    [Google Scholar]
  11. ChenJ. QinS. LiuS. Targeting matrix metalloproteases in diabetic wound healing.Front. Immunol.202314
    [Google Scholar]
  12. KrizanovaO. PenesovaA. SokolJ. HokynkovaA. SamadianA. BabulaP. Signaling pathways in cutaneous wound healing.Front. Physiol.202213103085110.3389/fphys.2022.103085136505088
    [Google Scholar]
  13. ChenJ. MaH. MengY. LiuQ. WangY. LinY. YangD. YaoW. WangY. HeX. LiP. Analysis of the mechanism underlying diabetic wound healing acceleration by Calycosin-7-glycoside using network pharmacology and molecular docking.Phytomedicine202311415477310.1016/j.phymed.2023.15477336990011
    [Google Scholar]
  14. BaidyaR. SarkarB. An in silico approach to evaluate the diabetic wound healing potential of phenylethanoid glycoside in inhibiting the Receptor for Advanced Glycation End Products (RAGE).The 2nd International Electronic Conference on Biomedicines, MDPI, Basel Switzerland2023
    [Google Scholar]
  15. FormukongE.A. EvansA.T. EvansF.J. Analgesic and antiinflammatory activity of constituents ofCannabis sativa L.Inflammation198812436137110.1007/BF009157713169967
    [Google Scholar]
  16. ReshmaA. TamilanbanT. ChitraV. SubramaniyanV. GuptaG. FuloriaN.K. SekarM. FuloriaS. SahuR. NarayananJ. ChakravarthyS. SelvarajS. Anti-obesity effects of olivetol in adult zebrafish model induced by short-term high-fat diet.Sci. Rep.20231311844910.1038/s41598‑023‑44462‑337891223
    [Google Scholar]
  17. TaslimiP. Gulçinİ. Antioxidant and anticholinergic properties of olivetol.J. Food Biochem.2018423e1251610.1111/jfbc.12516
    [Google Scholar]
  18. ChaudharyP. JanmedaP. DoceaA.O. YeskaliyevaB. Abdull RazisA.F. ModuB. CalinaD. Sharifi-RadJ. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases.Front Chem.202311115819810.3389/fchem.2023.115819837234200
    [Google Scholar]
  19. TsigeY TadesseS Prevalence of Methicillin-Resistant Staphylococcus aureus and Associated Risk Factors among Patients with Wound Infection at Referral Hospital, Northeast Ethiopia.J. Pathogens202020201710.1155/2020/316832532566311
    [Google Scholar]
  20. AbalkhailA. ElbehiryA. Methicillin-Resistant Staphylococcus aureus in Diabetic Foot Infections: Protein Profiling, Virulence Determinants, and Antimicrobial Resistance.Appl. Sci. (Basel)202212211080310.3390/app122110803
    [Google Scholar]
  21. Reina-BuenoM. Palomo-ToucedoI. Castro-MéndezA. Domínguez-MaldonadoG. Vázquez-BautistaM. Methicillin-Resistant Staphylococcus aureus Diabetic Foot Crossed Infection: A Case Report.Pathogens20209754910.3390/pathogens907054932650481
    [Google Scholar]
  22. PawarS KulkarniC GadadeP Molecular Docking using different Tools.Asian J. Pharm. Sci.2023292296
    [Google Scholar]
  23. BenderB.J. GahbauerS. LuttensA. LyuJ. WebbC.M. SteinR.M. FinkE.A. BaliusT.E. CarlssonJ. IrwinJ.J. ShoichetB.K. A practical guide to large-scale docking.Nat. Protoc.202116104799483210.1038/s41596‑021‑00597‑z34561691
    [Google Scholar]
  24. CS. SD.K. RagunathanV. TiwariP. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.181558432897178
    [Google Scholar]
  25. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  26. BitewM. DesalegnT. DemissieT.B. BelaynehA. EndaleM. EswaramoorthyR. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study.PLoS One20211612e026085310.1371/journal.pone.026085334890431
    [Google Scholar]
  27. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b0010425860834
    [Google Scholar]
  28. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  29. RushendranR. VellapandianC. Unlocking the potential of luteolin: A natural migraine management approach through network pharmacology.J. Tradit. Complement. Med.202410.1016/j.jtcme.2024.04.011
    [Google Scholar]
  30. SP. Toxicological screening.J. Pharmacol. Pharmacother.201122747910.4103/0976‑500X.8189521772764
    [Google Scholar]
  31. GuengerichF.P. Mechanisms of drug toxicity and relevance to pharmaceutical development.Drug Metab. Pharmacokinet.201126131410.2133/dmpk.DMPK‑10‑RV‑06220978361
    [Google Scholar]
  32. StepanchikovaA. LaguninA. FilimonovD. PoroikovV. Prediction of biological activity spectra for substances: evaluation on the diverse sets of drug-like structures.Curr. Med. Chem.200310322523310.2174/092986703336851012570709
    [Google Scholar]
  33. DruzhilovskiyD.S. RudikA.V. FilimonovD.A. LaguninA.A. GloriozovaT.A. PoroikovV.V. Online resources for the prediction of biological activity of organic compounds.Russ. Chem. Bull.201665238439310.1007/s11172‑016‑1310‑6
    [Google Scholar]
  34. AlghamdiS.S. AlshafiR.A. HuwaiziS. SulimanR.S. MohammedA.E. AlehaidebZ.I. AlturkiA.Y. AlghashemS.A. RahmanI. Exploring in vitro and in silico Biological Activities of Calligonum Comosum and Rumex Vesicarius: Implications on Anticancer and Antibacterial Therapeutics.Saudi Pharm. J.2023311110179410.1016/j.jsps.2023.10179437822695
    [Google Scholar]
  35. AlturkiN.A. MashraqiM.M. AlzamamiA. AlghamdiY.S. AlharthiA.A. AsiriS.A. AhmadS. AlshamraniS. In Silico Screening and Molecular Dynamics Simulation of Drug Bank Experimental Compounds against SARS-CoV-2.Molecules20222714439110.3390/molecules2714439135889265
    [Google Scholar]
  36. IvanovaL. Tammiku-TaulJ. García-SosaA.T. SidorovaY. SaarmaM. KarelsonM. Molecular Dynamics Simulations of the Interactions between Glial Cell Line-Derived Neurotrophic Factor Family Receptor GFRα1 and Small-Molecule Ligands.ACS Omega201839114071141410.1021/acsomega.8b0152430320260
    [Google Scholar]
  37. MahapatraM.K. KaruppasamyM. Fundamental considerations in drug design.Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based Approaches.Elsevier2022175510.1016/B978‑0‑323‑90608‑1.00005‑8
    [Google Scholar]
  38. AnkulS.S. VellopandianC. In silico and pharmacokinetic assessment of echinocystic acid effectiveness in Alzheimer’s disease like pathology.Future Sci. OA2024101
    [Google Scholar]
  39. DulsatJ. López-NietoB. Estrada-TejedorR. BorrellJ.I. Evaluation of Free Online ADMET Tools for Academic or Small Biotech Environments.Molecules202328277610.3390/molecules2802077636677832
    [Google Scholar]
  40. KhanT. DixitS. AhmadR. RazaS. AzadI. JoshiS. KhanA.R. Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its complexes.J. Chem. Biol.20171039110410.1007/s12154‑017‑0167‑y28684996
    [Google Scholar]
  41. OyebodeO.A. JereS.W. HoureldN.N. Current Therapeutic Modalities for the Management of Chronic Diabetic Wounds of the Foot.J. Diabetes Res.2023202311010.1155/2023/135953736818748
    [Google Scholar]
  42. FalconeM. De AngelisB. PeaF. ScaliseA. StefaniS. TasinatoR. ZanettiO. Dalla PaolaL. Challenges in the management of chronic wound infections.J. Glob. Antimicrob. Resist.20212614014710.1016/j.jgar.2021.05.01034144200
    [Google Scholar]
  43. ZiraldoC. MiQ. AnG. VodovotzY. Computational Modeling of Inflammation and Wound Healing.Adv. Wound Care (New Rochelle)20132952753710.1089/wound.2012.041624527362
    [Google Scholar]
  44. ChoudharyV. ChoudharyM. BollagW.B. Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process.Int. J. Mol. Sci.2024257379010.3390/ijms2507379038612601
    [Google Scholar]
  45. WilkinsonH.N. HardmanM.J. Wound healing: cellular mechanisms and pathological outcomes.Open Biol.202010920022310.1098/rsob.20022332993416
    [Google Scholar]
  46. BonniciL. SuleimanS. Schembri-WismayerP. CassarA. Targeting Signalling Pathways in Chronic Wound Healing.Int. J. Mol. Sci.20232515010.3390/ijms2501005038203220
    [Google Scholar]
  47. BlaskovichM.A.T. KavanaghA.M. ElliottA.G. ZhangB. RamuS. AmadoM. LoweG.J. HintonA.O. PhamD.M.T. ZueggJ. BeareN. QuachD. SharpM.D. PoglianoJ. RogersA.P. LyrasD. TanL. WestN.P. CrawfordD.W. PetersonM.L. CallahanM. ThurnM. The antimicrobial potential of cannabidiol.Commun. Biol.202141710.1038/s42003‑020‑01530‑y33469147
    [Google Scholar]
  48. LeeY.E. KodamaT. MoritaH. Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediate, olivetolic acid, and its alkyl-chain derivatives.J. Nat. Med.202377229830510.1007/s11418‑022‑01672‑936572832
    [Google Scholar]
  49. LiY. MengQ. YangM. LiuD. HouX. TangL. WangX. LyuY. ChenX. LiuK. YuA.M. ZuoZ. BiH. Current trends in drug metabolism and pharmacokinetics.Acta Pharm. Sin. B2019961113114410.1016/j.apsb.2019.10.00131867160
    [Google Scholar]
  50. ObuotorT.M. KolawoleA.O. ApalowoO.E. AkamoA.J. Metabolic profiling, ADME pharmacokinetics, molecular docking studies and antibacterial potential of Phyllantus muellerianus leaves.ADV TRADIT MED20212342744210.1007/s13596‑021‑00611‑5
    [Google Scholar]
  51. PrasannaS. DoerksenR. Topological polar surface area: a useful descriptor in 2D-QSAR.Curr. Med. Chem.2009161214110.2174/09298670978700281719149561
    [Google Scholar]
  52. YukawaT. NavenR. Utility of Physicochemical Properties for the Prediction of Toxicological Outcomes: Takeda Perspective.ACS Med. Chem. Lett.202011220320910.1021/acsmedchemlett.9b0053632071689
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638332872240922184903
Loading
/content/journals/cddt/10.2174/0115701638332872240922184903
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test