Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

Inhibiting receptor-tyrosine-kinase (RTK) signalling pathways has emerged as a key focus of novel cancer therapy development. Vascular endothelial growth factor receptor (VEGFR) is a member of the RTK family and is required for vasculogenesis and angiogenesis. Because VEGFR 2 is the subtype responsible for cellular angiogenesis and vasculogenesis, blocking it will impair tumour cell blood supply, reducing their development, proliferation, and metastasis.

Aim & Objective

The aim of this study is to obtain an optimised pharmacophore as a VEGFR2 inhibitor using QSAR investigations. This aids in determining the link between structure and activity in new chemical entities (NCEs).

Materials and Methods

The multi-linear regression approach (MLR) method was utilised to generate the QSAR Model using the programme QSARINS v.2.2.4.

Results and Discussion

For 2D QSAR, the best models produced has correlation coefficients of R2= 0.9396. The 3D-QSAR model obtained with R2= 0.9121 and Q2 = 0.8377. Taking docking observations, pharmacological behaviour, and toxicity analyses into account, most of the derivatives demonstrated VEGFR2 inhibitory competence.

Conclusion

According to QSAR studies, more electron-donating groups on the benzene ring linked to the isoxazole were shown to be necessary for activity. In molecular docking studies, most compounds have shown stronger affinity for the crucial amino acids Cys:919, Asp:1046, and Glu:885, which are found in typical drugs. All NCEs passed the Lipinski screening.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638296906240522072628
2024-05-24
2025-03-15
Loading full text...

Full text loading...

References

  1. American Cancer Society2020Available from: https://www.cancer.org/about-us/our-global-health-work/global-cancer-burden.htmltext=Cancer%20is%20the%20second%20leading,2020%20were%20attributed%20to%20
  2. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.3193730350310
    [Google Scholar]
  3. EskensF A L.M. Angiogenesis inhibitors in clinical development; where are we now and where are we going?Br. J. Cancer20049011710.1038/sj.bjc.660140114710197
    [Google Scholar]
  4. KwitkowskiV.E. ProwellT.M. IbrahimA. FarrellA.T. JusticeR. MitchellS.S. SridharaR. PazdurR. FDA approval summary: temsirolimus as treatment for advanced renal cell carcinoma.Oncologist201015442843510.1634/theoncologist.2009‑017820332142
    [Google Scholar]
  5. AbhinandC.S. RajuR. SoumyaS.J. AryaP.S. SudhakaranP.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis.J. Cell Commun. Signal.201610434735410.1007/s12079‑016‑0352‑827619687
    [Google Scholar]
  6. LaD.S. BelzileJ. BreadyJ.V. CoxonA. DeMelfiT. DoerrN. EstradaJ. FlynnJ.C. FlynnS.R. GraceffaR.F. HarrimanS.P. LarrowJ.F. LongA.M. MartinM.W. MorrisonM.J. PatelV.F. RovetoP.M. WangL. WeissM.M. WhittingtonD.A. TefferaY. ZhaoZ. PolverinoA.J. HarmangeJ.C. Novel 2,3-dihydro-1,4-benzoxazines as potent and orally bioavailable inhibitors of tumor-driven angiogenesis.J. Med. Chem.20085161695170510.1021/jm701129j18311900
    [Google Scholar]
  7. PereiraD.S.M. CardosoB.D. RodriguesA.R.O. AmorimC.O. AmaralV.S. AlmeidaB.G. QueirozM.R.P. MartinhoO. BaltazarF. CalhelhaR.C. FerreiraI.C.F.R. CoutinhoP.J.G. CastanheiraE.M.S. Magnetoliposomes containing calcium ferrite nanoparticles for applications in breast cancer therapy.Pharmaceutics201911947710.3390/pharmaceutics1109047731540088
    [Google Scholar]
  8. RajagopalanM. BalasubramanianS. RamaswamyA. Prakash MathurP. Pharmacophore based 3D-QSAR modeling and free energy analysis of VEGFR-2 inhibitors.J. Enzyme Inhib. Med. Chem.20132861236124610.3109/14756366.2012.72982623061928
    [Google Scholar]
  9. ElsayedN.M.Y. SeryaR.A.T. TolbaM.F. AhmedM. BarakatK. Abou El EllaD.A. AbouzidK.A.M. Design, synthesis, biological evaluation and dynamics simulation of indazole derivatives with antiangiogenic and antiproliferative anticancer activity.Bioorg. Chem.20198234035910.1016/j.bioorg.2018.10.07130428414
    [Google Scholar]
  10. MusumeciF. RadiM. BrulloC. SchenoneS. Vascular endothelial growth factor (VEGF) receptors: drugs and new inhibitors.J. Med. Chem.20125524107971082210.1021/jm301085w23098265
    [Google Scholar]
  11. ShahinM.I. Abou El EllaD.A. IsmailN.S.M. AbouzidK.A.M. Design, synthesis and biological evaluation of type-II VEGFR-2 inhibitors based on quinoxaline scaffoldBioorg. Chem.201456162610.1016/j.bioorg.2014.05.010
    [Google Scholar]
  12. AzizM.A. SeryaR.A.T. LasheenD.S. Abdel-AzizA.K. EsmatA. MansourA.M. SingabA.N.B. AbouzidK.A.M. Discovery of potent vegfr-2 inhibitors based on furopyrimidine and thienopyrimidne scaffolds as cancer targeting agents.Sci. Rep.2016612446010.1038/srep2446027080011
    [Google Scholar]
  13. ReganJ. PargellisC.A. CirilloP.F. GilmoreT. HickeyE.R. PeetG.W. ProtoA. SwinamerA. MossN. The kinetics of binding to p38MAP kinase by analogues of BIRB 796.Bioorg. Med. Chem. Lett.200313183101310410.1016/S0960‑894X(03)00656‑512941343
    [Google Scholar]
  14. WilhelmS.M. CarterC. TangL. WilkieD. McNabolaA. RongH. ChenC. ZhangX. VincentP. McHughM. CaoY. ShujathJ. GawlakS. EveleighD. RowleyB. LiuL. AdnaneL. LynchM. AuclairD. TaylorI. GedrichR. VoznesenskyA. RiedlB. PostL.E. BollagG. TrailP.A. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis.Cancer Res.200464197099710910.1158/0008‑5472.CAN‑04‑144315466206
    [Google Scholar]
  15. Mckenna, application data (60) provisional application No2004Available from: https://patents.google.com/patent/US20070020704A1/en (Accessed December 23, 2020).
  16. HarrisP.A. BoloorA. CheungM. KumarR. CrosbyR.M. Davis-WardR.G. EpperlyA.H. HinkleK.W. HunterR.N.III JohnsonJ.H. KnickV.B. LaudemanC.P. LuttrellD.K. MookR.A. NolteR.T. RudolphS.K. SzewczykJ.R. TruesdaleA.T. VealJ.M. WangL. StaffordJ.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor.J. Med. Chem.200851154632464010.1021/jm800566m18620382
    [Google Scholar]
  17. InoueK. TorimuraT. NakamuraT. IwamotoH. MasudaH. AbeM. HashimotoO. KogaH. UenoT. YanoH. SataM. Vandetanib, an inhibitor of VEGF receptor-2 and EGF receptor, suppresses tumor development and improves prognosis of liver cancer in mice.Clin. Cancer Res.201218143924393310.1158/1078‑0432.CCR‑11‑204122611027
    [Google Scholar]
  18. SonpavdeG. HutsonT.E. RiniB.I. Axitinib for renal cell carcinoma.Expert Opin. Investig. Drugs200817574174810.1517/13543784.17.5.74118447599
    [Google Scholar]
  19. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.- C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growthMol. Cancer Ther201110122298230810.1158/1535‑7163
    [Google Scholar]
  20. Al-AbdA.M. AlamoudiA.J. Abdel-NaimA.B. NeamatallahT.A. AshourO.M. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies – A review.J. Adv. Res.20178659160510.1016/j.jare.2017.06.00628808589
    [Google Scholar]
  21. KhalidE.B. AymanE.L.M.E.L.K. RahmanH. AbdelkarimG. NajdaA. Natural products against cancer angiogenesis.Tumour Biol.20163711145131453610.1007/s13277‑016‑5364‑827651162
    [Google Scholar]
  22. MendelD.B. LairdA.D. XinX. LouieS.G. ChristensenJ.G. LiG. SchreckR.E. AbramsT.J. NgaiT.J. LeeL.B. MurrayL.J. CarverJ. ChanE. MossK.G. HaznedarJ.O.¨. SukbuntherngJ. BlakeR.A. SunL. TangC. MillerT. ShirazianS. McMahonG. CherringtonJ.M. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship.Clin. Cancer Res.20039132733712538485
    [Google Scholar]
  23. PengF-W. LiuD-K. ZhangQ-W. XuY-G. ShiL. VEGFR-2 inhibitors and the therapeutic applications thereof: a patent review (2012–2016)Expert Opin. Ther. Pat.2017279987100410.1080/13543776.2017.1344215
    [Google Scholar]
  24. LiuJ.J. WangY. MaZ. SchmittM. ZhuL. BrownS.P. DransfieldP.J. SunY. SharmaR. GuoQ. ZhuangR. ZhangJ. LuoJ. TonnG.R. WongS. SwaminathG. MedinaJ.C. LinD.C.H. HouzeJ.B. Optimization of GPR40 agonists for type 2 diabetes.ACS Med. Chem. Lett.20145551752110.1021/ml400501x24900872
    [Google Scholar]
  25. PatilS. BhandariS. A Review: Discovering 1,3,4-oxadiazole and Chalcone nucleus for cytotoxicity / EGFR inhibitory anticancer activity.Mini Rev. Med. Chem.202222580582010.2174/138955752166621090216064434477516
    [Google Scholar]
  26. BhandariS.V. KutheP.V. PatilS.M. NagrasO.G. SarkateA.P. ChaudhariS.Y. SurveS.V. Molecular docking, pharmacokinetic and molecular simulation analysis of novel mono‐carbonyl curcumin analogs as L858R/T790M/C797S mutant EGFR inhibitors.Chem. Biodivers.20232011e20230108110.1002/cbdv.20230108137793119
    [Google Scholar]
  27. PatilS.M. RandiveV. MahadikI. AsgaonkarK. Design, In Silico molecular docking, and ADMET prediction of amide derivatives of chalcone nucleus as EGFR inhibitors for the treatment of cancer.Curr. Drug Discov. Technol.20232110.2174/011570163826389023102707151837921215
    [Google Scholar]
  28. PatilS.M. ShashikantB. Designing and In silico studies of novel hybrid of 1,3,4-oxadiazolechalcone derivatives as EGFR inhibitors.Curr. Drug Discov. Technol.2023206e08062321780410.2174/157016382066623060812094437291789
    [Google Scholar]
  29. VoskienėA. MickevičiusV. Cyclization of chalcones to isoxazole and pyrazole derivatives.Chem. Heterocycl. Compd.200945121485148810.1007/s10593‑010‑0455‑8
    [Google Scholar]
  30. KarabasanagoudaT. AdhikariA.V. GirishaM. ChemInform Abstract: Synthesis of some new pyrazolines (IV) and Isoxazoles (V) carrying 4‐methylthiophenyl moiety as potential analgesic and antiinflammatory agents.ChemInform20094027chin.20092712010.1002/chin.200927120
    [Google Scholar]
  31. MączyńskiM. ArtymJ. KociębaM. KochanowskaI. RyngS. ZimeckiM. Anti-inflammatory properties of an isoxazole derivative – MZO-2.Pharmacol. Rep.201668589490210.1016/j.pharep.2016.04.01727351945
    [Google Scholar]
  32. LohB. VozzoloL. MokB.J. LeeC.C. FitzmauriceR.J. CaddickS. FassatiA. Inhibition of HIV-1 replication by isoxazolidine and isoxazole sulfonamides.Chem. Biol. Drug Des.201075546147410.1111/j.1747‑0285.2010.00956.x20486932
    [Google Scholar]
  33. AryaG.C. KaurK. JaitakV. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies.Eur. J. Med. Chem.202122111351110.1016/j.ejmech.2021.11351134000484
    [Google Scholar]
  34. LamprontiI. SimoniD. RondaninR. BaruchelloR. ScapoliC. FinottiA. BorgattiM. TupiniC. GambariR. Pro‑apoptotic activity of novel synthetic isoxazole derivatives exhibiting inhibitory activity against tumor cell growth <em>in vitro</em>.Oncol. Lett.2020205110.3892/ol.2020.1200232934719
    [Google Scholar]
  35. YongJ.P. LuC.Z. WuX. Potential anticancer agents. I. Synthesis of isoxazole moiety containing quinazoline derivatives and preliminarily in vitro anticancer activity.Anticancer. Agents Med. Chem.201415113113610.2174/187152061466614081210544525142319
    [Google Scholar]
  36. Abd-EllaA.A. MetwallyS.A. ul-MalikM.A.A. El-OssailyY.A. ElrazekF.M.A. ArefS.A. NaffeaY.A. Abdel-RaheemS.A.A. A review on recent advances for the synthesis of bioactive pyrazolinone and pyrazolidinedione derivatives.Current Chemistry Letters202211215717210.5267/j.ccl.2022.2.004
    [Google Scholar]
  37. TolbaM.S. ul-MalikM.A.A. El-DeanA.M.K. GeiesA.A. RadwanS.M. ZakiR.M. SayedM. MohamedS.K. Abdel-RaheemS.A.A. An overview on synthesis and reactions of coumarin based compounds.Curr. Chem. Lett.2022111294210.5267/j.ccl.2021.9.007
    [Google Scholar]
  38. ZakiR.M. Kamal El-DeanA.M. RadwanS.M. Abd ul-MalikM.A. Efficient synthesis, reactions, and biological activities of new thieno and furopyrazolo[3,4‐ b ]pyrazines and their related heterocycles.J. Chin. Chem. Soc.202067465867310.1002/jccs.201900056
    [Google Scholar]
  39. aEfficient synthesis of some novel furo[3,2-e]pyrazolo[3,4-b]pyrazines and related heterocycles.Synthe. Commun.2018484395412
    [Google Scholar]
  40. b5. Some oxoimidazolidine and cyanoguanidine compounds: Toxicological efficacy and structure-activity relationships studies.Curr. Chem. Lett.2023124695670
    [Google Scholar]
  41. BhadoriyaK.S. SharmaM.C. SharmaS. JainS.V. AvcharM.H. An approach to design potent anti-Alzheimer’s agents by 3D-QSAR studies on fused 5,6-bicyclic heterocycles as γ-secretase modulators using kNN–MFA methodology.Arab. J. Chem.20147692493510.1016/j.arabjc.2013.02.002
    [Google Scholar]
  42. Abou-SeriS.M. EissaA.A.M. BeheryM.G.M. OmarF.A. Synthesis, in vitro anticancer activity and in silico studies of certain isoxazole-based carboxamides, ureates, and hydrazones as potential inhibitors of VEGFR2.Bioorg. Chem.2021c11610533410.1016/j.bioorg.2021.10533434534755
    [Google Scholar]
  43. RadhaS. MuthuK.K. Identification of key structural features of phosphate and thiophosphate tricyclic coumarin analogs as STS inhibitors.Medicine in Drug Discovery20211210010810.1016/j.medidd.2021.100108
    [Google Scholar]
  44. GramaticaP. Principles of QSAR Modeling.International J. Quant. Struc. Prop. Relat.202053619710.4018/IJQSPR.20200701.oa1
    [Google Scholar]
  45. GramaticaP. CassaniS. ChiricoN. QSARINS‐chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS.J. Comput. Chem.201435131036104410.1002/jcc.2357624599647
    [Google Scholar]
  46. GramaticaP. ChiricoN. PapaE. CassaniS. KovarichS. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models.J. Comput. Chem.201334242121213210.1002/jcc.23361
    [Google Scholar]
  47. PatilS. M. AsgonkarK. RandiveV. MahadikI. QSAR, molecular docking & ADMET studies of pyrrolo[2,3-d] pyrimidinederivatives as CDK4 inhibitors for the treatment of cancer.Curr. Ind. Sci.202301e2210299X25856910.2174/012210299X258569231006094309
    [Google Scholar]
  48. CousinsK.R. ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140.J. Amer. Chemi. Soci.2005127114115411610.1021/ja0410237
    [Google Scholar]
  49. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑3321982300
    [Google Scholar]
  50. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑1722889332
    [Google Scholar]
  51. MoriwakiH. TianY.S. KawashitaN. TakagiT. Mordred: a molecular descriptor calculator.J. Cheminform.2018101410.1186/s13321‑018‑0258‑y29411163
    [Google Scholar]
  52. SaxenaA.K. PrathipatiP. Comparison of MLR, PLS and GA-MLR in QSAR analysis.SAR QSAR Environ. Res.2003145-643344510.1080/1062936031000162401514758986
    [Google Scholar]
  53. GramaticaP. Principles of QSAR models validation: internal and external.QSAR Comb. Sci.200726569470110.1002/qsar.200610151
    [Google Scholar]
  54. ChiricoN. GramaticaP. Real external predictivity of QSAR models: how to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient.J. Chem. Inf. Model.20115192320233510.1021/ci200211n21800825
    [Google Scholar]
  55. HassanS.S. AbbasS.Q. AliF. IshaqM. BanoI. HassanM. JinH.Z. BungauS.G. A comprehensive in silico exploration of pharmacological properties, bioactivities, molecular docking, and anticancer potential of vieloplain F from xylopia vielana targeting b-raf kinase.Molecules202227391710.3390/molecules2703091735164181
    [Google Scholar]
  56. RCSB Protein Data Bank (RCSB PDB)2023Available from: https://www.rcsb.org Accessed on 06/03/2023
  57. HasanM.M. KhanZ. ChowdhuryM.S. KhanM.A. MoniM.A. RahmanM.H. In silico molecular docking and ADME/T analysis of Quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases.Inform. Medi. Unloc.20222910089410.1016/j.imu.2022.100894
    [Google Scholar]
  58. ArumuganainarD. YadalamP.K. AlzahraniK.J. AlsharifK.F. AlzahraniF.M. AlshammeriS. AhmedS.S.S.J. VinothkumarT.S. BaeshenH.A. PatilS. Inhibitory effect of lupeol, quercetin, and solasodine on Rhizopus oryzae: A molecular docking and dynamic simulation study.J. Infect. Public Health202316111712410.1016/j.jiph.2022.12.00636512968
    [Google Scholar]
  59. OmoboyowaD.A. Exploring molecular docking with E-pharmacophore and QSAR models to predict potent inhibitors of 14-α-demethylase protease from Moringa spp.Pharmacolo. Res. - Mod. Chin. Medi.2022410014710.1016/j.prmcm.2022.100147
    [Google Scholar]
  60. HussainA. HussainA. SabnamN. Kumar VermaC. ShrivastavaN. In silico exploration of the potential inhibitory activity of DrugBank compounds against CDK7 kinase using structure-based virtual screening, molecular docking, and dynamics simulation approach.Arab. J. Chem.202316210446010.1016/j.arabjc.2022.104460
    [Google Scholar]
  61. ThangavelN. AlbrattyM. Benchmarked molecular docking integrated molecular dynamics stability analysis for prediction of SARS-CoV-2 papain-like protease inhibition by olive secoiridoids.J. King Saud Univ. Sci.2023b35110240210.1016/j.jksus.2022.10240236338939
    [Google Scholar]
  62. Computer-Assisted Drug Design2007Available from: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/applicability-domain
  63. LipinskiC.A. Lead- and drug-like compounds: the rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  64. ChengF LiW ZhouY ShenJ WuZ LiuG LeePW TangY AdmetSAR: A comprehensive source and free tool for assessment of chemical admet properties.J. Chem. Inf. Model.201252113099310510.1021/ci300367a
    [Google Scholar]
  65. OmoboyowaD.A. Exploring molecular docking with E-pharmacophore and QSAR models to predict potent inhibitors of 14-α-demethylase protease from Moringa spp.Pharmacological Research - Modern Chinese Medicine2022410014710.1016/j.prmcm.2022.100147
    [Google Scholar]
  66. OmoboyowaD.A. Virtual screening of phyto-compounds from blighia sapida as protein tyrosine phosphatase 1b inhibitor: A computational approach against diabetes.Chemistry Africa2022a5487188110.1007/s42250‑022‑00373‑w
    [Google Scholar]
  67. HuB. JosephJ. GengX. WuY. SuleimanM.R. LiuX. ShiJ. WangX. HeZ. WangJ. ChengM. Refined pharmacophore features for virtual screening of human thromboxane A2 receptor antagonists.Comput. Biol. Chem.20208610724910.1016/j.compbiolchem.2020.10724932199335
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638296906240522072628
Loading
/content/journals/cddt/10.2174/0115701638296906240522072628
Loading

Data & Media loading...

Supplements

Supplementray material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): isoxazole derivatives; MLR; QSAR; QSARINS; schrodinger; VEGFR2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test