Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Melanoma is a malignant skin cancer type with a high lethality rate due to active metastasis. Among the risk factors for its development is exposure to ultraviolet radiation (UV) and phenotypical characteristics such as clear skin and eyes. Given the difficulties of the conventional therapy, the high cost of the treatment and the low bioavailability of drugs, it is important to develop new therapeutic methods to circumvent this situation. Nanosystems such as micelles, liposomes and nanoparticles present advantages when compared to conventional treatments. The objective of this paper is to carry out a literature review based on articles that dealt with the use of siRNA-loaded nanosystems for the treatment of melanoma, with trials carried out to assess tumor size. The search was conducted in the Web of Science and PubMed databases considering the last 5 years, that is, the period between January 2017 to December 2021. The “” keywords were used in both databases, and the articles were analyzed using the inclusion and exclusion criteria established for this paper. The results obtained indicated that using siRNA transported nanosystems was capable of silencing the BRAF tumor genes and of reducing tumor size and weight, not presenting and/or toxicity. Such being the case, the development of these systems becomes a non-invasive and promising option for the treatment of melanoma.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201820666230425234700
2023-06-15
2025-05-06
Loading full text...

Full text loading...

References

  1. DavisL.E. ShalinS.C. TackettA.J. Current state of melanoma diagnosis and treatment.Cancer Biol. Ther.201920111366137910.1080/15384047.2019.1640032 31366280
    [Google Scholar]
  2. DildarM. AkramS. IrfanM. KhanH.U. RamzanM. MahmoodA.R. AlsaiariS.A. SaeedA.H.M. AlraddadiM.O. MahnashiM.H. Skin cancer detection: A review using deep learning techniques.Int. J. Environ. Res. Public Health20211810547910.3390/ijerph18105479 34065430
    [Google Scholar]
  3. GordonR. Skin cancer: An overview of epidemiology and risk factors.Semin. Oncol. Nurs.201329316016910.1016/j.soncn.2013.06.002 23958214
    [Google Scholar]
  4. GuoW. WangH. LiC. Signal pathways of melanoma and targeted therapy.Signal Transduct. Target. Ther.20216142410.1038/s41392‑021‑00827‑6 34924562
    [Google Scholar]
  5. LinaresM.A. ZakariaA. NizranP. Skin Cancer.Prim. Care201542464565910.1016/j.pop.2015.07.006 26612377
    [Google Scholar]
  6. WatsonM. HolmanD.M. Maguire-EisenM. Ultraviolet radiation exposure and its impact on skin cancer risk.Semin. Oncol. Nurs.201632324125410.1016/j.soncn.2016.05.005 27539279
    [Google Scholar]
  7. OstrowskiS.M. FisherD.E. Biology of melanoma.Hematol. Oncol. Clin. North Am.2021351295610.1016/j.hoc.2020.08.010 33759772
    [Google Scholar]
  8. RansohoffK.J. JajuP.D. TangJ.Y. CarboneM. LeachmanS. SarinK.Y. Familial skin cancer syndromes.J. Am. Acad. Dermatol.201674342343410.1016/j.jaad.2015.09.070 26892652
    [Google Scholar]
  9. CatalanoO. RoldánF.A. VarelliC. BardR. CorvinoA. WortsmanX. Skin cancer: findings and role of high-resolution ultrasound.J. Ultrasound201922442343110.1007/s40477‑019‑00379‑0 31069756
    [Google Scholar]
  10. AliceaG.M. RebeccaV.W. Emerging strategies to treat rare and intractable subtypes of melanoma.Pigment Cell Melanoma Res.2021341445810.1111/pcmr.12880 32274887
    [Google Scholar]
  11. CabreraR. ReculeF. Unusual clinical presentations of malignant melanoma: A review of clinical and histologic features with special emphasis on dermatoscopic findings.Am. J. Clin. Dermatol.201819S1Suppl. 1152310.1007/s40257‑018‑0373‑6 30374898
    [Google Scholar]
  12. HanA. SchugZ.T. AplinA.E. Metabolic alterations and therapeutic opportunities in rare forms of melanoma.Trends Cancer20217867168110.1016/j.trecan.2021.05.005 34127435
    [Google Scholar]
  13. CollinsL. QuinnA. StaskoT. Skin cancer and immunosuppression.Dermatol. Clin.2019371839410.1016/j.det.2018.07.009 30466691
    [Google Scholar]
  14. LeonardiG.C. FalzoneL. SalemiR. ZanghìA. SpandidosD.A. MccubreyJ.A. CandidoS. LibraM. Cutaneous melanoma: From pathogenesis to therapy.Int. J. Oncol.20185241071108010.3892/ijo.2018.4287 29532857
    [Google Scholar]
  15. HartmanR.I. LinJ.Y. Cutaneous melanoma-A review in detection, staging, and management.Hematol. Oncol. Clin. North Am.2019331253810.1016/j.hoc.2018.09.005 30497675
    [Google Scholar]
  16. KnackstedtT. KnackstedtR.W. CoutoR. GastmanB. Malignant melanoma.Plast. Reconstr. Surg.20181422202e216e10.1097/PRS.0000000000004571 30045186
    [Google Scholar]
  17. EhexigeE. BaoM. BazarjavP. YuX. XiaoH. HanS. BaigudeH. Silencing of STAT3 viapeptidomimetic LNP-mediated systemic delivery of RNAi downregulates PD-L1 and inhibits melanoma growth.Biomolecules202010228510.3390/biom10020285 32059541
    [Google Scholar]
  18. LukeJ.J. FlahertyK.T. RibasA. LongG.V. Targeted agents and immunotherapies: Optimizing outcomes in melanoma.Nat. Rev. Clin. Oncol.201714846348210.1038/nrclinonc.2017.43 28374786
    [Google Scholar]
  19. OlszanskiA.J. Current and future roles of targeted therapy and immunotherapy in advanced melanoma.J. Manag. Care Spec. Pharm.2014204346356 24684639
    [Google Scholar]
  20. JohnsonD.B. SosmanJ.A. Therapeutic advances and treatment options in metastatic melanoma.JAMA Oncol.20151338038610.1001/jamaoncol.2015.0565 26181188
    [Google Scholar]
  21. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/6847971 30651728
    [Google Scholar]
  22. MazayenZ.M. GhoneimA.M. ElbatanonyR.S. BasaliousE.B. BendasE.R. Pharmaceutical nanotechnology: From the bench to the market.Future J. Pharm. Sci.2022811210.1186/s43094‑022‑00400‑0 35071609
    [Google Scholar]
  23. MeiL. ZhangZ. ZhaoL. HuangL. YangX.L. TangJ. FengS.S. Pharmaceutical nanotechnology for oral delivery of anticancer drugs.Adv. Drug Deliv. Rev.201365688089010.1016/j.addr.2012.11.005 23220325
    [Google Scholar]
  24. Najahi-MissaouiW. ArnoldR.D. CummingsB.S. Safe nanoparticles: Are we there yet?Int. J. Mol. Sci.202022138510.3390/ijms22010385 33396561
    [Google Scholar]
  25. ZhangY. LiM. GaoX. ChenY. LiuT. Nanotechnology in cancer diagnosis: progress, challenges and opportunities.J. Hematol. Oncol.201912113710.1186/s13045‑019‑0833‑3 31847897
    [Google Scholar]
  26. ElzoghbyA.O. Pharmaceutical nanotechnology in Egypt: diverse applications and promising outcomes.Nanomedicine (Lond.)201914664965310.2217/nnm‑2018‑0426 30693819
    [Google Scholar]
  27. ResnierP. GalopinN. SibirilY. ClavreulA. CayonJ. BrigantiA. LegrasP. VessièresA. MontierT. JaouenG. BenoitJ.P. PassiraniC. Efficient ferrocifen anticancer drug and Bcl-2 gene therapy using lipid nanocapsules on human melanoma xenograft in mouse.Pharmacol. Res.2017126546510.1016/j.phrs.2017.01.031 28159700
    [Google Scholar]
  28. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine202116161313133010.2147/IJN.S289443 33628022
    [Google Scholar]
  29. ObeidM.A. DufèsC. SomaniS. MullenA.B. TateR.J. FerroV.A. Proof of concept studies for siRNA delivery by nonionic surfactant vesicles: in vitro and in vivo evaluation of protein knockdown.J. Liposome Res.201929322923810.1080/08982104.2018.1531424 30296860
    [Google Scholar]
  30. ErbP. JiJ. KumpE. MielgoA. WernliM. Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer.Adv. Exp. Med. Biol.200862428329510.1007/978‑0‑387‑77574‑6_22 18348464
    [Google Scholar]
  31. ZhangH. Survivin specified small interfering RNA-CLIO-Cy5.5.Molecular Imaging and Contrast Agent Database (MICAD).Bethesda (MD), USNational Center for Biotechnology Information2004
    [Google Scholar]
  32. WojnilowiczM. BesfordQ.A. WuY.L. LohX.J. BraungerJ.A. GlabA. Cortez-JugoC. CarusoF. CavalieriF. Glycogen-nucleic acid constructs for gene silencing in multicellular tumor spheroids.Biomaterials2018176344910.1016/j.biomaterials.2018.05.024 29857273
    [Google Scholar]
  33. ZhouX. PanY. LiZ. LiH. WuJ. MaY. GuanZ. YangZ. siRNA packaged with neutral cytidinyl/cationic/peg lipids for enhanced antitumor efficiency and safety in vitro and in vivo.ACS Appl. Bio Mater.2020396297630910.1021/acsabm.0c00775 35021760
    [Google Scholar]
  34. WuS. Helal-NetoE. MatosA.P.S. JafariA. KozempelJ. SilvaY.J.A. Serrano-LarreaC. Alves JuniorS. Ricci-JuniorE. AlexisF. Santos-OliveiraR. Radioactive polymeric nanoparticles for biomedical application.Drug Deliv.20202711544156110.1080/10717544.2020.1837296 33118416
    [Google Scholar]
  35. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  36. YetisginA.A. CetinelS. ZuvinM. KosarA. KutluO. Therapeutic nanoparticles and their targeted delivery applications.Molecules2020259219310.3390/molecules25092193 32397080
    [Google Scholar]
  37. AhmedA. SarwarS. HuY. MunirM.U. NisarM.F. IkramF. AsifA. RahmanS.U. ChaudhryA.A. RehmanI.U. Surface-modified polymeric nanoparticles for drug delivery to cancer cells.Expert Opin. Drug Deliv.202118112410.1080/17425247.2020.1822321 32905714
    [Google Scholar]
  38. PatilY.P. JadhavS. Novel methods for liposome preparation.Chem. Phys. Lipids201417781810.1016/j.chemphyslip.2013.10.011 24220497
    [Google Scholar]
  39. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  40. ZahednezhadF. SaadatM. ValizadehH. Zakeri-MilaniP. BaradaranB. Liposome and immune system interplay: Challenges and potentials.J. Control. Release201930519420910.1016/j.jconrel.2019.05.030 31121278
    [Google Scholar]
  41. LimongiT. SusaF. MariniM. AllioneM. TorreB. PisanoR. di FabrizioE. Lipid-Based nanovesicular drug delivery systems.Nanomaterials (Basel)20211112339110.3390/nano11123391 34947740
    [Google Scholar]
  42. WollinaU. TirantM. VojvodicA. LottiT. Treatment of psoriasis: Novel approaches to topical delivery.Open Access Maced. J. Med. Sci.20197183018302510.3889/oamjms.2019.414 31850114
    [Google Scholar]
  43. GhoshB. BiswasS. Polymeric micelles in cancer therapy: State of the art.J. Control. Release202133212714710.1016/j.jconrel.2021.02.016 33609621
    [Google Scholar]
  44. WanZ. ZhengR. MoharilP. LiuY. ChenJ. SunR. SongX. AoQ. Polymeric micelles in cancer immunotherapy.Molecules2021265122010.3390/molecules26051220 33668746
    [Google Scholar]
  45. LuF. HouL. WangS. YuY. ZhangY. SunL. WangC. MaZ. YangF. Lysosome activable polymeric vorinostat encapsulating PD-L1KD for a combination of HDACi and immunotherapy.Drug Deliv.202128196397210.1080/10717544.2021.1927246 34036867
    [Google Scholar]
  46. PageM.J. MoherD. Evaluations of the uptake and impact of the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and extensions: A scoping review.Syst. Rev.20176126310.1186/s13643‑017‑0663‑8 29258593
    [Google Scholar]
  47. ClinicalTrials gov [Internet] National Library of Medicine (US). 2023 Feb 27.Available from: https://clinicaltrials.gov/ct2/results?cond=Melanoma&term=SiRNA&cntry=&state=&city=&dist=
  48. WangT. MuW. LiF. ZhangJ. HouT. PangX. YinX. ZhangN. “Layer peeling” co-delivery system for enhanced RNA interference-based tumor associated macrophages-specific chemoimmunotherapy.Nanoscale20201232168511686310.1039/D0NR04025H 32761008
    [Google Scholar]
  49. LiH. ZhouZ. ZhangF. GuoY. YangX. JiangH. TanF. OupickyD. SunM. A networked swellable dextrin nanogels loading Bcl2 siRNA for melanoma tumor therapy.Nano Res.20181194627464210.1007/s12274‑018‑2044‑6
    [Google Scholar]
  50. IbarakiH. KanazawaT. OwadaM. IwayaK. TakashimaY. SetaY. Anti-metastatic effects on melanoma via intravenous administration of anti-NF-κB siRNA complexed with functional peptide-modified nano-micelles.Pharmaceutics20201216410.3390/pharmaceutics12010064 31952106
    [Google Scholar]
  51. GullaS.K. KotcherlakotaR. NimushakaviS. NimmuN.V. KhalidS. PatraC.R. ChaudhuriA. Au-CGKRK nanoconjugates for combating cancer through t-cell-driven therapeutic RNA interference.ACS Omega2018388663867610.1021/acsomega.8b01051 31458997
    [Google Scholar]
  52. ZhouZ. LiH. WangK. GuoQ. LiC. JiangH. HuY. OupickyD. SunM. Bioreducible cross-linked hyaluronic acid/calcium phosphate hybrid nanoparticles for specific delivery of siRNA in melanoma tumor therapy.ACS Appl. Mater. Interfaces2017917145761458910.1021/acsami.6b15347 28393529
    [Google Scholar]
  53. DuanX. MuM. YanJ. BaiL. ZhongL. ZhuY. PanH. ZhangM. ShiJ. Co-delivery of Aurora-A inhibitor XY-4 and Bcl-xl siRNA enhances antitumor efficacy for melanoma therapy.Int. J. Nanomedicine2018131443145610.2147/IJN.S147759 29563798
    [Google Scholar]
  54. RuanW. ZhaiY. YuK. WuC. XuY. Coated microneedles mediated intradermal delivery of octaarginine/BRAF siRNA nanocomplexes for anti-melanoma treatment.Int. J. Pharm.20185531-229830910.1016/j.ijpharm.2018.10.043 30347273
    [Google Scholar]
  55. BastakiS. AravindhanS. Ahmadpour SahebN. Afsari KashaniM. Evgenievich DorofeevA. Karoon KianiF. JahandidehH. Beigi DarganiF. AksounM. NikkhooA. MasjediA. MahmoodpoorA. AhmadiM. DolatiS. Namvar AghdashS. Jadidi-NiaraghF. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice.Life Sci.202126611884710.1016/j.lfs.2020.118847 33309720
    [Google Scholar]
  56. NikkhooA. RostamiN. FarhadiS. EsmailyM. Moghadaszadeh ArdebiliS. AtyabiF. BaghaeiM. HaghnavazN. YousefiM. AliparastiM.R. GhalamfarsaG. MohammadiH. SojoodiM. Jadidi-NiaraghF. Codelivery of STAT3 siRNA and BV6 by carboxymethyl dextran trimethyl chitosan nanoparticles suppresses cancer cell progression.Int. J. Pharm.202058111923610.1016/j.ijpharm.2020.119236 32240809
    [Google Scholar]
  57. YangJ. ZhaoR. FengQ. ZhuoX. WangR. Development of a carrier system containing hyaluronic acid and protamine for siRNA delivery in the treatment of melanoma.Invest. New Drugs2021391667610.1007/s10637‑020‑00986‑3 32794135
    [Google Scholar]
  58. LabalaS. JoseA. ChawlaS.R. KhanM.S. BhatnagarS. KulkarniO.P. VenugantiV.V.K. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles.Int. J. Pharm.2017525240741710.1016/j.ijpharm.2017.03.087 28373100
    [Google Scholar]
  59. JoseA. LabalaS. NinaveK.M. GadeS.K. VenugantiV.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes.AAPS PharmSciTech201819116617510.1208/s12249‑017‑0833‑y 28639178
    [Google Scholar]
  60. RostamiN. NikkhooA. Khazaei-poulY. FarhadiS. Sadat HaeriM. Moghadaszadeh ArdebiliS. Aghaei VandaN. AtyabiF. NamdarA. BaghaeiM. HaghnavazN. KazemiT. YousefiM. GhalamfarsaG. SabzG. Jadidi-NiaraghF. Coinhibition of S1PR1 and GP130 by siRNA‐loaded alginate‐conjugated trimethyl chitosan nanoparticles robustly blocks development of cancer cells.J. Cell. Physiol.2020235129702971710.1002/jcp.29781 32424937
    [Google Scholar]
  61. LiuX. ChenL. ZhangY. XinX. QiL. JinM. GuanY. GaoZ. HuangW. Enhancing anti-melanoma outcomes in mice using novel chitooligosaccharide nanoparticles loaded with therapeutic survivin-targeted siRNA.Eur. J. Pharm. Sci.202115810564110.1016/j.ejps.2020.105641 33220463
    [Google Scholar]
  62. KanehiraY. TogamiK. IshizawaK. SatoS. TadaH. ChonoS. Intratumoral delivery and therapeutic efficacy of nanoparticle-encapsulated anti-tumor siRNA following intrapulmonary administration for potential treatment of lung cancer.Pharm. Dev. Technol.20192491095110310.1080/10837450.2019.1633345 31204552
    [Google Scholar]
  63. QianY. QiaoS. DaiY. XuG. DaiB. LuL. YuX. LuoQ. ZhangZ. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages.ACS Nano20171199536954910.1021/acsnano.7b05465 28858473
    [Google Scholar]
  64. TangX. RaoJ. YinS. WeiJ. XiaC. LiM. MeiL. ZhangZ. HeQ. PD-L1 knockdown via hybrid micelle promotes paclitaxel induced cancer-immunity cycle for melanoma treatment.Eur. J. Pharm. Sci.201912716117410.1016/j.ejps.2018.10.021 30366077
    [Google Scholar]
  65. LiM. LiM. YangY. LiuY. XieH. YuQ. TianL. TangX. RenK. LiJ. ZhangZ. HeQ. Remodeling tumor immune microenvironment via targeted blockade of PI3K-γ and CSF-1/CSF-1R pathways in tumor associated macrophages for pancreatic cancer therapy.J. Control. Release2020321233510.1016/j.jconrel.2020.02.011 32035193
    [Google Scholar]
  66. ZhangY. ZhanX. PengS. CaiY. ZhangY.S. LiuY. WangZ. YuY. WangY. ShiQ. ZengX. YuanK. ZhouN. JoshiR. ZhangM. ZhangZ. MinW. Targeted-gene silencing of BRAF to interrupt BRAF/MEK/ERK pathway synergized photothermal therapeutics for melanoma using a novel FA-GNR-siBRAF nanosystem.Nanomedicine20181451679169310.1016/j.nano.2018.04.010 29684526
    [Google Scholar]
  67. ShanX.Y. XuT.T. LiuZ.L. HuX.F. ZhangY.D. GuoS.Z. WangB. Targeting of angiopoietin 2-small interfering RNA plasmid/chitosan magnetic nanoparticles in a mouse model of malignant melanoma in vivo.Oncol. Lett.20171422320232410.3892/ol.2017.6443 28781670
    [Google Scholar]
  68. MuxikaA. EtxabideA. UrangaJ. GuerreroP. de la CabaK. Chitosan as a bioactive polymer: Processing, properties and applications.Int. J. Biol. Macromol.2017105Pt 21358136810.1016/j.ijbiomac.2017.07.087 28735006
    [Google Scholar]
  69. RashkiS. AsgarpourK. TarrahimofradH. HashemipourM. EbrahimiM.S. FathizadehH. KhorshidiA. KhanH. MarzhoseyniZ. Salavati-NiasariM. MirzaeiH. Chitosan-based nanoparticles against bacterial infections.Carbohydr. Polym.202125111710810.1016/j.carbpol.2020.117108 33142645
    [Google Scholar]
  70. JohnsonD.E. O’KeefeR.A. GrandisJ.R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer.Nat. Rev. Clin. Oncol.201815423424810.1038/nrclinonc.2018.8 29405201
    [Google Scholar]
  71. ZouS. TongQ. LiuB. HuangW. TianY. FuX. Targeting STAT3 in cancer immunotherapy.Mol. Cancer202019114510.1186/s12943‑020‑01258‑7 32972405
    [Google Scholar]
  72. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of curcumin: lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  73. KothaR.R. LuthriaD.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects.Molecules20192416293010.3390/molecules24162930 31412624
    [Google Scholar]
  74. KlangV. MatskoN.B. ValentaC. HoferF. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment.Micron2012432-38510310.1016/j.micron.2011.07.014 21839644
    [Google Scholar]
  75. Berbel ManaiaE. Paiva AbuçafyM. Chiari-AndréoB.G. Lallo SilvaB. Oshiro-JúniorJ.A. ChiavacciL. Physicochemical characterization of drug nanocarriers.Int. J. Nanomedicine2017124991501110.2147/IJN.S133832 28761340
    [Google Scholar]
  76. http://www.slate.com/articles/health_and_science/the_mouse_trap/2011/11/black_6_lab_mice_and_the_history_of_biomedical_research.html
  77. SteensmaD.P. KyleR.A. ShampoM.A. Abbie Lathrop, the “mouse woman of Granby”: Rodent fancier and accidental genetics pioneer.Mayo Clin. Proc.20108511e8310.4065/mcp.2010.0647 21061734
    [Google Scholar]
  78. FestingM.F.W. BALB/c, http://www.informatics.jax.org/inbred_strains/mouse/docs/BALB.shtml
  79. GivanA.L. Flow cytometry: An introduction. Flow Cytometry Protocols. Methods in Molecular Biology HawleyT.S. HawleyR.G. Humana Press2010Vol. 699
    [Google Scholar]
  80. MckinnonK.M. Flow cytometry: An overview.Curr. Protoc. Immunol.2018(120), 5.1.1-5.1.11.
    [Google Scholar]
/content/journals/cdd/10.2174/1567201820666230425234700
Loading
/content/journals/cdd/10.2174/1567201820666230425234700
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keyword(s): liposomes; Melanoma; micelles; nanoparticles; siRNA; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test