Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Glioblastoma multiforme is the most common and aggressive malignant tumor that affects the central nervous system, with high mortality and low survival. Glioblastoma multiforme treatment includes resection tumor surgery, followed by radiotherapy and chemotherapy adjuvants. However, the drugs used in chemotherapy present some limitations, such as the difficulty of crossing the blood-brain barrier and resisting the cellular mechanisms of drug efflux. The use of polymeric nanoparticles has proven to be an effective alternative to circumvent such limitations, as it allows the exploration of a range of polymeric structures that can be modified in order to control the biodistribution and cytotoxic effect of the drug delivery systems. Nanoparticles are nanometric in size and allow the incorporation of targeting ligands on their surface, favoring the transposition of the blood-brain barrier and the delivery of the drug to specific sites, increasing the selectivity and safety of chemotherapy. The present review has described the characteristics of chitosan, poly(vinyl alcohol), poly(lactic-co-glycolic acid), poly(ethylene glycol), poly(β-amino ester), and poly(ε-caprolactone), which are some of the most commonly used polymers in the manufacture of nanoparticles for the treatment of glioblastoma multiforme. In addition, some of the main targeting ligands used in these nanosystems are presented, such as transferrin, chlorotoxin, albumin, epidermal growth factor, and epidermal growth factor receptor blockers, explored for the active targeting of antiglioblastoma agents.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018257713231107060630
2023-11-27
2025-05-04
Loading full text...

Full text loading...

References

  1. LinS. XuH. ZhangA. NiY. XuY. MengT. WangM. LouM. Prognosis analysis and validation of m6a signature and tumor immune microenvironment in glioma.Front. Oncol.20201054140110.3389/fonc.2020.541401 33123464
    [Google Scholar]
  2. OstromQ.T. CioffiG. WaiteK. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2014–2018.Neuro-oncol.20212312iii1iii10510.1093/neuonc/noab200 34608945
    [Google Scholar]
  3. ChenB. ChenC. ZhangY. XuJ. Recent incidence trend of elderly patients with glioblastoma in the United States, 2000–2017.BMC Cancer20212115410.1186/s12885‑020‑07778‑1 33430813
    [Google Scholar]
  4. Di FilippoL.D. DuarteJ.L. LuizM.T. de AraújoJ.T.C. ChorilliM. Drug delivery nanosystems in glioblastoma multiforme treatment: Current state of the art.Curr. Neuropharmacol.202119678781210.2174/1570159X18666200831160627 32867643
    [Google Scholar]
  5. LuizM.T. ViegasJ.S.R. AbriataJ.P. TofaniL.B. VaidergornM.M. EmeryF.S. ChorilliM. MarchettiJ.M. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment.Mater. Sci. Eng. C202112412411203310.1016/j.msec.2021.112033 33947535
    [Google Scholar]
  6. OstromQ.T. CioffiG. GittlemanH. PatilN. WaiteK. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2012–2016.Neuro-oncol.201921S5v1v10010.1093/neuonc/noz150 31675094
    [Google Scholar]
  7. WeiX. HartleyR. BearH. FullerC. PhoenixT.N. HGG-13. Determing regional differences in high-grade glioma vasculature phenotype.Neuro-oncol.201921S2ii89ii8910.1093/neuonc/noz036.107
    [Google Scholar]
  8. Delgado-MartínB. MedinaM.Á. Advances in the knowledge of the molecular biology of glioblastoma and its impact in patient diagnosis, stratification, and treatment.Adv. Sci.202079190297110.1002/advs.201902971 32382477
    [Google Scholar]
  9. Lozada-DelgadoE.L. Grafals-RuizN. Vivas-MejíaP.E. RNA interference for glioblastoma therapy: Innovation ladder from the bench to clinical trials.Life Sci.2017188263610.1016/j.lfs.2017.08.027 28864225
    [Google Scholar]
  10. PerrinS.L. SamuelM.S. KoszycaB. BrownM.P. EbertL.M. OksdathM. GomezG.A. Glioblastoma heterogeneity and the tumour microenvironment: Implications for preclinical research and development of new treatments.Biochem. Soc. Trans.201947262563810.1042/BST20180444 30902924
    [Google Scholar]
  11. YasaswiP.S. ShettyK. YadavK.S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy.J. Control. Release202133654957110.1016/j.jconrel.2021.07.003 34229001
    [Google Scholar]
  12. KumariS. AhsanS.M. KumarJ.M. KondapiA.K. RaoN.M. Overcoming blood brain barrier with a dual purpose Temozolomide loaded Lactoferrin nanoparticles for combating glioma (SERP-17-12433).Sci. Rep.201771660210.1038/s41598‑017‑06888‑4 28747713
    [Google Scholar]
  13. DanemanR. PratA. The blood – brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a020412
    [Google Scholar]
  14. DanielP. SabriS. ChaddadA. MeehanB. Jean-ClaudeB. RakJ. AbdulkarimB.S. Temozolomide induced hypermutation in glioma: Evolutionary mechanisms and therapeutic opportunities.Front. Oncol.201994110.3389/fonc.2019.00041 30778375
    [Google Scholar]
  15. SinghN. MinerA. HennisL. MittalS. Mechanisms of temozolomide resistance in glioblastoma - a comprehensive review.Cancer Drug Resist.202041174310.20517/cdr.2020.79 34337348
    [Google Scholar]
  16. FilippoL.D. AzambujaJ.H. DutraJ.A.P. LuizM.T. DuarteJ.L. NicoletiL.R. SaadS.T.O. ChorilliM. Functionalized nanocarriers as a strategy to improve temozolamide biopharmaceutical Properties in glioblastoma multiforme treatment: A 10-year overview.Eur. J. Pharm. Biopharm.2021202116889
    [Google Scholar]
  17. KreuterJ. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know?Adv. Drug Deliv. Rev.20147121410.1016/j.addr.2013.08.008 23981489
    [Google Scholar]
  18. LombardoS.M. SchneiderM. TüreliA.E. Günday TüreliN. Key for crossing the BBB with nanoparticles: the rational design.Beilstein J. Nanotechnol.20201186688310.3762/bjnano.11.72 32551212
    [Google Scholar]
  19. LuizM.T. Delello Di FilippoL. TofaniL.B. de AraújoJ.T.C. DutraJ.A.P. MarchettiJ.M. ChorilliM. Highlights in targeted nanoparticles as a delivery strategy for glioma treatment.Int. J. Pharm.202160412075810.1016/j.ijpharm.2021.120758 34090991
    [Google Scholar]
  20. ShahA. AftabS. NisarJ. AshiqM.N. IftikharF.J. Nanocarriers for targeted drug delivery.J. Drug Deliv. Sci. Technol.20216210242610.1016/j.jddst.2021.102426
    [Google Scholar]
  21. LiuZ. JiX. HeD. ZhangR. LiuQ. XinT. Nanoscale drug delivery systems in glioblastoma.Nanoscale Res. Lett.20221712710.1186/s11671‑022‑03668‑6 35171358
    [Google Scholar]
  22. BrownT.D. HabibiN. WuD. LahannJ. MitragotriS. Effect of nanoparticle composition, size, shape, and stiffness on penetration across the blood–brain barrier.ACS Biomater. Sci. Eng.2020694916492810.1021/acsbiomaterials.0c00743 33455287
    [Google Scholar]
  23. RabanelJ.M. AounV. ElkinI. MokhtarM. HildgenP. Drug-loaded nanocarriers: Passive targeting and crossing of biological barriers.Curr. Med. Chem.2012191930703102
    [Google Scholar]
  24. ZhangF. xuC. LiuC. Drug delivery strategies to enhance the permeability of the blood–brain barrier for treatment of glioma.Drug Des. Devel. Ther.201592089210010.2147/DDDT.S79592 25926719
    [Google Scholar]
  25. ShuklaT. UpmanyuN. PandeyS.P. SudheeshM.S. Site-specific drug delivery, targeting, and gene therapy. In: In Nanoarchitectonics in Biomedicine201947350510.1016/B978‑0‑12‑816200‑2.00013‑X
    [Google Scholar]
  26. MadaniF. EsnaashariS.S. BergonziM.C. WebsterT.J. YounesH.M. KhosravaniM. AdabiM. Paclitaxel/methotrexate co-loaded PLGA nanoparticles in glioblastoma treatment: Formulation development and in vitro antitumor activity evaluation.Life Sci.202025611794310.1016/j.lfs.2020.117943 32531377
    [Google Scholar]
  27. InoueT. YamashitaY. NishiharaM. SugiyamaS. SonodaY. KumabeT. YokoyamaM. TominagaT. Therapeutic efficacy of a polymeric micellar doxorubicin infused by convection-enhanced delivery against intracranial 9L brain tumor models.Neuro-oncol.200911215115710.1215/15228517‑2008‑068 18755917
    [Google Scholar]
  28. KuoY.C. ChangY.H. RajeshR. Targeted delivery of etoposide, carmustine and doxorubicin to human glioblastoma cells using methoxy poly(ethylene glycol) poly(ε caprolactone) nanoparticles conjugated with wheat germ agglutinin and folic acid.Mater. Sci. Eng. C20199611412810.1016/j.msec.2018.10.094 30606517
    [Google Scholar]
  29. YuT. LiY. GuX. LiQ. Development of a hyaluronic acid-based nanocarrier incorporating doxorubicin and cisplatin as a ph-sensitive and CD44-targeted anti-breast cancer drug delivery system.Front. Pharmacol.20201153245710.3389/fphar.2020.532457 32982750
    [Google Scholar]
  30. AfzalipourR. KhoeiS. KhoeeS. ShirvalilouS. Jamali RaoufiN. MotevalianM. KarimiM.R. Dual-targeting temozolomide loaded in folate-conjugated magnetic triblock copolymer nanoparticles to improve the therapeutic efficiency of rat brain gliomas.ACS Biomater. Sci. Eng.20195116000601110.1021/acsbiomaterials.9b00856 33405722
    [Google Scholar]
  31. DuwaR. BanstolaA. EmamiF. JeongJ.H. LeeS. YookS. Cetuximab conjugated temozolomide-loaded poly (lactic-co-glycolic acid) nanoparticles for targeted nanomedicine in EGFR overexpressing cancer cells.J. Drug Deliv. Sci. Technol.20206010192810.1016/j.jddst.2020.101928
    [Google Scholar]
  32. FerreiraN.N. GranjaS. BoniF.I. PrezottiF.G. FerreiraL.M.B. CuryB.S.F. ReisR.M. BaltazarF. GremiãoM.P.D. Modulating chitosan-PLGA nanoparticle properties to design a co-delivery platform for glioblastoma therapy intended for nose-to-brain route.Drug Deliv. Transl. Res.20201061729174710.1007/s13346‑020‑00824‑2 32683647
    [Google Scholar]
  33. LiuY. ZhengM. JiaoM. YanC. XuS. DuQ. MorschM. YinJ. ShiB. Polymeric nanoparticle mediated inhibition of miR-21 with enhanced miR-124 expression for combinatorial glioblastoma therapy.Biomaterials202127612103610.1016/j.biomaterials.2021.121036 34329919
    [Google Scholar]
  34. MaoJ. MengX. ZhaoC. YangY. LiuG. Development of transferrin-modified poly(lactic-co-glycolic acid) nanoparticles for glioma therapy.Anticancer Drugs201930660461010.1097/CAD.0000000000000754 30855310
    [Google Scholar]
  35. NagM. GajbhiyeV. KesharwaniP. JainN.K. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells.Colloids Surf. B Biointerfaces201614836337010.1016/j.colsurfb.2016.08.059 27632697
    [Google Scholar]
  36. ElsabahyM. WooleyK.L. Design of polymeric nanoparticles for biomedical delivery applications.Chem. Soc. Rev.20124172545256110.1039/c2cs15327k 22334259
    [Google Scholar]
  37. SelvamR. RamasamyS. MohiyuddinS. EnochI.V.M.V. GopinathP. FilimonovD. Molecular encapsulator–appended poly(vinyl alcohol) shroud on ferrite nanoparticles. Augmented cancer–drug loading and anticancer property.Mater. Sci. Eng. C20189312513310.1016/j.msec.2018.07.058 30274045
    [Google Scholar]
  38. RamasamyS. EnochI.V.M.V. Rex Jeya RajkumarS. Polymeric cyclodextrin-dextran spooled nickel ferrite nanoparticles: Expanded anticancer efficacy of loaded camptothecin.Mater. Lett.202026112711410.1016/j.matlet.2019.127114
    [Google Scholar]
  39. Sumohan PillaiA. AlexanderA. Sri VaralakshmiG. ManikantanV. Allben AkashB. EnochI.V.M.V. Cyclodextrin and folate functionalized polymer nanocarriers: Chain length dependent properties.Eur. Polym. J.202217911155010.1016/j.eurpolymj.2022.111550
    [Google Scholar]
  40. TangZ. HeC. TianH. DingJ. HsiaoB.S. ChuB. ChenX. Polymeric nanostructured materials for biomedical applications.Prog. Polym. Sci.2016608612810.1016/j.progpolymsci.2016.05.005
    [Google Scholar]
  41. ZhengX. XieJ. ZhangX. SunW. ZhaoH. LiY. WangC. An overview of polymeric nanomicelles in clinical trials and on the market.Chin. Chem. Lett.202132124325710.1016/j.cclet.2020.11.029
    [Google Scholar]
  42. ZielińskaA. CarreiróF. OliveiraA.M. NevesA. PiresB. VenkateshD.N. DurazzoA. LucariniM. EderP. SilvaA.M. SantiniA. SoutoE.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  43. CarawayC.A. GaitschH. WicksE.E. KalluriA. KunadiN. TylerB.M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches.Polymers20221414296310.3390/polym14142963 35890738
    [Google Scholar]
  44. MadaniF. EsnaashariS.S. WebsterT.J. KhosravaniM. AdabiM. Polymeric nanoparticles for drug delivery in glioblastoma: State of the art and future perspectives.J. Control. Release202234964966110.1016/j.jconrel.2022.07.023 35878729
    [Google Scholar]
  45. AhmadS. KhanI. PanditJ. EmadN.A. BanoS. DarK.I. RizviM.M.A. AnsariM.D. AqilM. SultanaY. Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment.Int. J. Biol. Macromol.202222143544510.1016/j.ijbiomac.2022.08.210 36067850
    [Google Scholar]
  46. SchmittR.R. MahajanS.D. PlissA. PrasadP.N. Small molecule based EGFR targeting of biodegradable nanoparticles containing temozolomide and Cy5 dye for greatly enhanced image-guided glioblastoma therapy.Nanomedicine20224110251310.1016/j.nano.2021.102513 34954380
    [Google Scholar]
  47. FerreiraN.N. GranjaS. BoniF.I. FerreiraL.M.B. ReisR.M. BaltazarF. GremiãoM.P.D. A novel strategy for glioblastoma treatment combining alpha-cyano-4-hydroxycinnamic acid with cetuximab using nanotechnology-based delivery systems.Drug Deliv. Transl. Res.202010359460910.1007/s13346‑020‑00713‑8 31981140
    [Google Scholar]
  48. GaboldB. AdamsF. BrameyerS. JungK. RiedC.L. MerdanT. MerkelO.M. Transferrin-modified chitosan nanoparticles for targeted nose-to-brain delivery of proteins.Drug Deliv. Transl. Res.202313382283810.1007/s13346‑022‑01245‑z 36207657
    [Google Scholar]
  49. MaksimenkoO. MalinovskayaJ. ShipuloE. OsipovaN. RazzhivinaV. ArantsevaD. YarovayaO. MostovayaU. KhalanskyA. FedoseevaV. AlekseevaA. VanchugovaL. GorshkovaM. KovalenkoE. BalabanyanV. MelnikovP. BaklaushevV. ChekhoninV. KreuterJ. GelperinaS. Doxorubicin-loaded PLGA nanoparticles for the chemotherapy of glioblastoma: Towards the pharmaceutical development.Int. J. Pharm.201957211873310.1016/j.ijpharm.2019.118733 31689481
    [Google Scholar]
  50. LiH. TongY. BaiL. YeL. ZhongL. DuanX. ZhuY. Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma.Int. J. Biol. Macromol.2018107Pt A20421110.1016/j.ijbiomac.2017.08.15528863897
    [Google Scholar]
  51. XinH. JiangX. GuJ. ShaX. ChenL. LawK. ChenY. WangX. JiangY. FangX. Angiopep-conjugated poly(ethylene glycol)-co-poly(ε-caprolactone) nanoparticles as dual-targeting drug delivery system for brain glioma.Biomaterials201132184293430510.1016/j.biomaterials.2011.02.044 21427009
    [Google Scholar]
  52. VaranC. BilensoyE. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment.Beilstein J. Nanotechnol.2017811446145610.3762/bjnano.8.144 28900598
    [Google Scholar]
  53. RamalhoM.J. SevinE. GosseletF. LimaJ. CoelhoM.A.N. LoureiroJ.A. PereiraM.C. Receptor-mediated PLGA nanoparticles for glioblastoma multiforme treatment.Int. J. Pharm.20185451-2849210.1016/j.ijpharm.2018.04.062 29715532
    [Google Scholar]
  54. SayinerO. ArisoyS. ComogluT. OzbayF.G. EsendagliG. Development and in vitro evaluation of temozolomide-loaded PLGA nanoparticles in a thermoreversible hydrogel system for local administration in glioblastoma multiforme.J. Drug Deliv. Sci. Technol.20205710162710.1016/j.jddst.2020.101627
    [Google Scholar]
  55. Gill JMC. apR. JkV. Development and characterization of methylene blue oleate salt-loaded polymeric nanoparticles and their potential application as a treatment for glioblastoma.J. Nanomed. Nanotechnol.20178444910.4172/2157‑7439.1000449 29034126
    [Google Scholar]
  56. KozielskiK.L. TzengS.Y. Hurtado De MendozaB.A. GreenJ.J. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells.ACS Nano2014843232324110.1021/nn500704t 24673565
    [Google Scholar]
  57. Guerrero-CázaresH. TzengS.Y. YoungN.P. AbutalebA.O. Quiñones-HinojosaA. GreenJ.J. Biodegradable polymeric nanoparticles show high efficacy and specificity at DNA delivery to human glioblastoma in vitro and in vivo.ACS Nano2014855141515310.1021/nn501197v 24766032
    [Google Scholar]
  58. TzengS.Y. Guerrero-CázaresH. MartinezE.E. SunshineJ.C. Quiñones-HinojosaA. GreenJ.J. Non-viral gene delivery nanoparticles based on Poly(β-amino esters) for treatment of glioblastoma.Biomaterials201132235402541010.1016/j.biomaterials.2011.04.016 21536325
    [Google Scholar]
  59. AlexA.T. JosephA. ShaviG. RaoJ.V. UdupaN. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery.Drug Deliv.20162372144215310.3109/10717544.2014.948643 25544603
    [Google Scholar]
  60. NizaE. Castro-OsmaJ.A. PosadasI. Alonso-MorenoC. BravoI. GarzónA. Canales-VázquezJ. CeñaV. Lara-SánchezA. AlbaladejoJ. OteroA. Assessment of doxorubicin delivery devices based on tailored bare polycaprolactone against glioblastoma.Int. J. Pharm.201955811011910.1016/j.ijpharm.2018.12.079 30639216
    [Google Scholar]
  61. de Oliveira JuniorE.R. NascimentoT.L. SalomãoM.A. da SilvaA.C.G. ValadaresM.C. LimaE.M. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma.Pharm. Res.201936913110.1007/s11095‑019‑2662‑z 31263962
    [Google Scholar]
  62. XinH. ChenL. GuJ. RenX. weiZ. LuoJ. ChenY. JiangX. ShaX. FangX. Enhanced anti-glioblastoma efficacy by PTX-loaded PEGylated poly(ɛ-caprolactone) nanoparticles: In vitro and in vivo evaluation.Int. J. Pharm.20104021-223824710.1016/j.ijpharm.2010.10.005 20934500
    [Google Scholar]
  63. MarslinG. SarmentoB. FranklinG. MartinsJ. SilvaC. GomesA. SárriaM. CoutinhoO. DiasA. Curcumin encapsulated into methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles increases cellular uptake and neuroprotective effect in glioma cells.Planta Med.201683543444410.1055/s‑0042‑112030 27626946
    [Google Scholar]
  64. TamboriniM. LocatelliE. RasileM. MonacoI. RodighieroS. CorradiniI. Comes FranchiniM. PassoniL. MatteoliM. A combined approach employing chlorotoxin-nanovectors and low dose radiation to reach infiltrating tumor niches in glioblastoma.ACS Nano20161022509252010.1021/acsnano.5b07375 26745323
    [Google Scholar]
  65. AgarwalS. MohamedM.S. MizukiT. MaekawaT. Sakthi KumarD. Chlorotoxin modified morusin–PLGA nanoparticles for targeted glioblastoma therapy.J. Mater. Chem. B Mater. Biol. Med.20197395896591910.1039/C9TB01131E 31423502
    [Google Scholar]
  66. MuniswamyV.J. RavalN. GondaliyaP. TambeV. KaliaK. TekadeR.K. ‘Dendrimer-Cationized-Albumin’ encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin.Int. J. Pharm.2019555779910.1016/j.ijpharm.2018.11.035 30448308
    [Google Scholar]
  67. MazareiM. Mohammadi ArvejehP. MozafariM.R. KhosravianP. GhasemiS. Anticancer potential of temozolomide-loaded eudragit-chitosan coated selenium nanoparticles: In vitro evaluation of cytotoxicity, apoptosis and gene regulation.Nanomaterials2021117170410.3390/nano11071704 34209471
    [Google Scholar]
  68. Van WoenselM. WauthozN. RosièreR. MathieuV. KissR. LefrancF. SteelantB. DilissenE. Van GoolS.W. MathivetT. GerhardtH. AmighiK. De VleeschouwerS. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration.J. Control. Release2016227718110.1016/j.jconrel.2016.02.032 26902800
    [Google Scholar]
  69. FerreiraL.M.B. dos SantosA.M. BoniF.I. dos SantosK.C. RobustiL.M.G. de SouzaM.P.C. FerreiraN.N. CarvalhoS.G. CardosoV.M.O. ChorilliM. CuryB.S.F. de GodoiD.R.M. GremiãoM.P.D. Design of chitosan-based particle systems: A review of the physicochemical foundations for tailored properties.Carbohydr. Polym.202025011696810.1016/j.carbpol.2020.116968 33049864
    [Google Scholar]
  70. CarvalhoS.G. dos SantosA.M. SilvestreA.L.P. MeneguinA.B. FerreiraL.M.B. ChorilliM. GremiãoM.P.D. New insights into physicochemical aspects involved in the formation of polyelectrolyte complexes based on chitosan and dextran sulfate.Carbohydr. Polym.202127111843610.1016/j.carbpol.2021.118436 34364576
    [Google Scholar]
  71. CalixtoG.M.F. de AnnunzioS.R. VictorelliF.D. FradeM.L. FerreiraP.S. ChorilliM. FontanaC.R. Chitosan-based drug delivery systems for optimization of photodynamic therapy: A review.AAPS PharmSciTech201920725310.1208/s12249‑019‑1407‑y 31309346
    [Google Scholar]
  72. Di FilippoL.D. Lobato DuarteJ. Hofstätter AzambujaJ. Isler MancusoR. Tavares LuizM. Hugo Sousa AraújoV. Delbone FigueiredoI. Barretto-de-SouzaL. Miguel SábioR. Sasso-CerriE. Martins BavieraA. CrestaniC.C. Teresinha Ollala SaadS. ChorilliM. Glioblastoma multiforme targeted delivery of docetaxel using bevacizumab-modified nanostructured lipid carriers impair in vitro cell growth and in vivo tumor progression.Int. J. Pharm.202261812168210.1016/j.ijpharm.2022.121682 35307470
    [Google Scholar]
  73. DutraJ.A.P. LuizM.T. Tavares JuniorA.G. Di FilippoL.D. CarvalhoS.G. ChorilliM. Temozolomide: An overview of biological properties, drug delivery nanosystems, and analytical methods.Curr. Pharm. Des.202228252073208810.2174/1381612828666220603152918 35658888
    [Google Scholar]
  74. BourganisV. KammonaO. AlexopoulosA. KiparissidesC. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics.Eur. J. Pharm. Biopharm.201812833736210.1016/j.ejpb.2018.05.009 29733950
    [Google Scholar]
  75. WangZ. XiongG. TsangW.C. SchätzleinA.G. UchegbuI.F. Nose-to-brain delivery.J. Pharmacol. Exp. Ther.2019370359360110.1124/jpet.119.258152 31126978
    [Google Scholar]
  76. GiunchediP. GaviniE. BonferoniM.C. Nose-to-brain delivery.Pharmaceutics202012213810.3390/pharmaceutics12020138 32041344
    [Google Scholar]
  77. DutraJ.A.P. CarvalhoS.G. ZampirolliA.C.D. DaltoéR.D. TeixeiraR.M. CaretaF.P. CotrimM.A.P. OréficeR.L. VillanovaJ.C.O. Papain wound dressings obtained from poly(vinyl alcohol)/calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation.Eur. J. Pharm. Biopharm.2017113112310.1016/j.ejpb.2016.12.001 27939307
    [Google Scholar]
  78. BohreyS. ChourasiyaV. PandeyA. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study.Nano Converg.2016313910.1186/s40580‑016‑0061‑2 28191413
    [Google Scholar]
  79. MadaniF. GoodarziA. HashemiM. MujokoroB. KhosravaniM. AdabiM. Preparation of methotrexate loaded plga nanoparticles coated with PVA and poloxamer188.J. Nanomed. Res.201831192410.22034/NMRJ.2018.01.003
    [Google Scholar]
  80. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  81. JainR.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices.Biomaterials200021232475249010.1016/S0142‑9612(00)00115‑0 11055295
    [Google Scholar]
  82. BalaI. HariharanS. KumarM.N.V.R. PLGA nanoparticles in drug delivery: the state of the art.Crit. Rev. Ther. Drug Carrier Syst.200421538742210.1615/CritRevTherDrugCarrierSyst.v21.i5.20 15719481
    [Google Scholar]
  83. FialhoS.L. RegoM.G.B. CardilloJ.A. SiqueiraR.C. JorgeR. Cunha JúniorA.S. Implantes biodegradáveis destinados à administração intra-ocular.Arq. Bras. Oftalmol.200366689189610.1590/S0004‑27492003000700029
    [Google Scholar]
  84. NairL.S. LaurencinC.T. Biodegradable polymers as biomaterials.Prog. Polym. Sci.2007328-976279810.1016/j.progpolymsci.2007.05.017
    [Google Scholar]
  85. LuntJ. Large-scale production, properties and commercial applications of polylactic acid polymers.Polym. Degrad. Stabil.1998591-314515210.1016/S0141‑3910(97)00148‑1
    [Google Scholar]
  86. BendixD. Chemical synthesis of polylactide and its copolymers for medical applications.Polym. Degrad. Stabil.1998591-312913510.1016/S0141‑3910(97)00149‑3
    [Google Scholar]
  87. AthanasiouK. NiederauerG.G. AgrawalC.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers.Biomaterials19961729310210.1016/0142‑9612(96)85754‑1 8624401
    [Google Scholar]
  88. LaoL.L. PeppasN.A. BoeyF.Y.C. VenkatramanS.S. Modeling of drug release from bulk-degrading polymers.Int. J. Pharm.20114181284110.1016/j.ijpharm.2010.12.020 21182912
    [Google Scholar]
  89. WuX.S. WangN. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation.J. Biomater. Sci. Polym. Ed.2001121213410.1163/156856201744425 11334187
    [Google Scholar]
  90. DanhierF. AnsorenaE. SilvaJ.M. CocoR. Le BretonA. PréatV. PLGA-based nanoparticles: An overview of biomedical applications.J. Control. Release2012161250552210.1016/j.jconrel.2012.01.043 22353619
    [Google Scholar]
  91. SchlieckerG. SchmidtC. FuchsS. WombacherR. KisselT. Hydrolytic degradation of poly(lactide-co-glycolide) films: Effect of oligomers on degradation rate and crystallinity.Int. J. Pharm.20032661-2394910.1016/S0378‑5173(03)00379‑X 14559392
    [Google Scholar]
  92. FrankA. RathS.K. VenkatramanS.S. Controlled release from bioerodible polymers: Effect of drug type and polymer composition.J. Control. Release2005102233334410.1016/j.jconrel.2004.10.019 15653155
    [Google Scholar]
  93. EniolaA.O. HammerD.A. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: Effect of degradation on targeting activity.Biomaterials200526666167010.1016/j.biomaterials.2004.03.003 15282144
    [Google Scholar]
  94. HolyC.E. DangS.M. DaviesJ.E. ShoichetM.S. In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam.Biomaterials199920131177118510.1016/S0142‑9612(98)00256‑7 10395386
    [Google Scholar]
  95. SahooS.K. MaW. LabhasetwarV. Efficacy of transferrin-conjugated paclitaxel-loaded nanoparticles in a murine model of prostate cancer.Int. J. Cancer2004112233534010.1002/ijc.20405 15352049
    [Google Scholar]
  96. MaoS. XuJ. CaiC. GermershausO. SchaperA. KisselT. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres.Int. J. Pharm.20073341-213714810.1016/j.ijpharm.2006.10.036 17196348
    [Google Scholar]
  97. AcharyaS. SahooS.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect.Adv. Drug Deliv. Rev.201163317018310.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  98. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.010 16303268
    [Google Scholar]
  99. StolnikS. DunnS.E. GarnettM.C. DaviesM.C. CoombesA.G.A. TaylorD.C. IrvingM.P. PurkissS.C. TadrosT.F. DavisS.S. IllumL. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers.Pharm. Res.199411121800180810.1023/A:1018931820564 7899246
    [Google Scholar]
  100. BetancourtT. ByrneJ.D. SunaryoN. CrowderS.W. KadapakkamM. PatelS. CasciatoS. Brannon-PeppasL. PEGylation strategies for active targeting of PLA/PLGA nanoparticles.J. Biomed. Mater. Res. A200991A126327610.1002/jbm.a.32247 18980197
    [Google Scholar]
  101. KalyaneD. RavalN. MaheshwariR. TambeV. KaliaK. TekadeR.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.Mater. Sci. Eng. C2019981252127610.1016/j.msec.2019.01.066 30813007
    [Google Scholar]
  102. D’souzaA.A. ShegokarR. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications.Expert Opin. Drug Deliv.20161391257127510.1080/17425247.2016.1182485 27116988
    [Google Scholar]
  103. AbuchowskiA. van EsT. PalczukN.C. DavisF.F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol.J. Biol. Chem.1977252113578358110.1016/S0021‑9258(17)40291‑2 405385
    [Google Scholar]
  104. KabanovA.V. ChekhoninV.P. AlakhovV.Y. BatrakovaE.V. LebedevA.S. Melik-NubarovN.S. ArzhakovS.A. LevashovA.V. MorozovG.V. SeverinE.S. KabanovV.A. The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles.FEBS Lett.1989258234334510.1016/0014‑5793(89)81689‑8 2599097
    [Google Scholar]
  105. KnopK. HoogenboomR. FischerD. SchubertU.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives.Angew. Chem. Int. Ed.201049366288630810.1002/anie.200902672 20648499
    [Google Scholar]
  106. ZhaoX. SiJ. HuangD. LiK. XinY. SuiM. Application of star poly(ethylene glycol) derivatives in drug delivery and controlled release.J. Control. Release202032356557710.1016/j.jconrel.2020.04.039 32343992
    [Google Scholar]
  107. ThomasA. MüllerS.S. FreyH. Beyond poly(ethylene glycol): Linear polyglycerol as a multifunctional polyether for biomedical and pharmaceutical applications.Biomacromolecules20141561935195410.1021/bm5002608 24813747
    [Google Scholar]
  108. HarrisJ.M. Poly(Ethylene Glycol) Chemistry. HarrisJ.M. Boston, MASpringer US199210.1007/978‑1‑4899‑0703‑5
    [Google Scholar]
  109. PasutG. VeroneseF.M. State of the art in PEGylation: The great versatility achieved after forty years of research.J. Control. Release2012161246147210.1016/j.jconrel.2011.10.037 22094104
    [Google Scholar]
  110. ChoiK. ChoiM.C. HanD.H. ParkT.S. HaC.S. Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending.Eur. Polym. J.20134982356236410.1016/j.eurpolymj.2013.05.027
    [Google Scholar]
  111. LiufuS. XiaoH. LiY. Investigation of PEG adsorption on the surface of zinc oxide nanoparticles.Powder Technol.20041451202410.1016/j.powtec.2004.05.007
    [Google Scholar]
  112. XiaoX.F. JiangX.Q. ZhouL.J. Surface modification of poly ethylene glycol to resist nonspecific adsorption of proteins.Chin. J. Anal. Chem.201341344545310.1016/S1872‑2040(13)60638‑6
    [Google Scholar]
  113. NayakA.K. PanigrahiP.P. Solubility enhancement of etoricoxib by cosolvency approach.ISRN Phys. Chem.201220121510.5402/2012/820653
    [Google Scholar]
  114. GrefR. MinamitakeY. PeracchiaM.T. TrubetskoyV. TorchilinV. LangerR. Biodegradable long-circulating polymeric nanospheres.Science199426351531600160310.1126/science.8128245 8128245
    [Google Scholar]
  115. NelA.E. MädlerL. VelegolD. XiaT. HoekE.M.V. SomasundaranP. KlaessigF. CastranovaV. ThompsonM. Understanding biophysicochemical interactions at the nano–bio interface.Nat. Mater.20098754355710.1038/nmat2442 19525947
    [Google Scholar]
  116. ButcherN.J. MortimerG.M. MinchinR.F. Unravelling the stealth effect.Nat. Nanotechnol.201611431031110.1038/nnano.2016.6 26878145
    [Google Scholar]
  117. PasutG. VeroneseF.M. Polymer–drug conjugation, recent achievements and general strategies.Prog. Polym. Sci.2007328-993396110.1016/j.progpolymsci.2007.05.008
    [Google Scholar]
  118. OtsukaH. NagasakiY. KataokaK. PEGylated nanoparticles for biological and pharmaceutical applications.Adv. Drug Deliv. Rev.200355340341910.1016/S0169‑409X(02)00226‑0 12628324
    [Google Scholar]
  119. OliveiraB.A. FrançaE.S. SouzaV.G. VallinotoA.C.R. SilvaA.N.M.R. Vetores virais para uso em terapia gênica.Rev. Panamazonica Saude20189210.5123/S2176‑62232018000200008
    [Google Scholar]
  120. GreenJ.J. LangerR. AndersonD.G. A combinatorial polymer library approach yields insight into nonviral gene delivery.Acc. Chem. Res.200841674975910.1021/ar7002336 18507402
    [Google Scholar]
  121. KarlssonJ. RhodesK.R. GreenJ.J. TzengS.Y. Poly(beta-amino ester)s as gene delivery vehicles: challenges and opportunities.Expert Opin. Drug Deliv.202017101395141010.1080/17425247.2020.1796628 32700581
    [Google Scholar]
  122. Arista-RomeroM. CascanteA. FornagueraC. BorrósS. Role of survivin in bladder cancer: Issues to be overcome when designing an efficient dual nano-therapy.Pharmaceutics20211311195910.3390/pharmaceutics13111959 34834374
    [Google Scholar]
  123. BhiseN.S. GrayR.S. SunshineJ.C. HtetS. EwaldA.J. GreenJ.J. The relationship between terminal functionalization and molecular weight of a gene delivery polymer and transfection efficacy in mammary epithelial 2-D cultures and 3-D organotypic cultures.Biomaterials201031318088809610.1016/j.biomaterials.2010.07.023 20674001
    [Google Scholar]
  124. FornagueraC. Castells-SalaC. LázaroM.A. CascanteA. BorrósS. Development of an optimized freeze-drying protocol for OM-PBAE nucleic acid polyplexes.Int. J. Pharm.201956911861210.1016/j.ijpharm.2019.118612 31415876
    [Google Scholar]
  125. BartnikowskiM. DargavilleT.R. IvanovskiS. HutmacherD.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment.Prog. Polym. Sci.20199612010.1016/j.progpolymsci.2019.05.004
    [Google Scholar]
  126. DwivediR. KumarS. PandeyR. MahajanA. NandanaD. KattiD.S. MehrotraD. Polycaprolactone as biomaterial for bone scaffolds: Review of literature.J. Oral Biol. Craniofac. Res.202010138138810.1016/j.jobcr.2019.10.003 31754598
    [Google Scholar]
  127. GuarinoV. GentileG. SorrentinoL. AmbrosioL. Polycaprolactone: Synthesis, properties, and applications. In: Encyclopedia of Polymer Science and Technology.John Wiley & Sons, Inc.201713610.1002/0471440264.pst658
    [Google Scholar]
  128. LabetM. ThielemansW. Synthesis of polycaprolactone: A review.Chem. Soc. Rev.200938123484350410.1039/b820162p 20449064
    [Google Scholar]
  129. SinhaV.R. BansalK. KaushikR. KumriaR. TrehanA. Poly-ϵ-caprolactone microspheres and nanospheres: An overview.Int. J. Pharm.2004278112310.1016/j.ijpharm.2004.01.044 15158945
    [Google Scholar]
  130. KangT. JiangM. JiangD. FengX. YaoJ. SongQ. ChenH. GaoX. ChenJ. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex.Mol. Pharm.20151282947296110.1021/acs.molpharmaceut.5b00222 26149889
    [Google Scholar]
  131. JhaveriA. LutherE. TorchilinV. The effect of transferrin-targeted, resveratrol-loaded liposomes on neurosphere cultures of glioblastoma: implications for targeting tumour-initiating cells.J. Drug Target.2019275-660161310.1080/1061186X.2018.1550647 30475084
    [Google Scholar]
  132. NiX.R. ZhaoY.Y. CaiH.P. YuZ.H. WangJ. ChenF.R. YuY.J. FengG.K. ChenZ.P. Transferrin receptor 1 targeted optical imaging for identifying glioma margin in mouse models.J. Neurooncol.2020148224525810.1007/s11060‑020‑03527‑3 32405996
    [Google Scholar]
  133. ChoudhuryH. PandeyM. ChinP.X. PhangY.L. CheahJ.Y. OoiS.C. MakK.K. PichikaM.R. KesharwaniP. HussainZ. GorainB. Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: A review of recent advancements and emerging trends.Drug Deliv. Transl. Res.2018851545156310.1007/s13346‑018‑0552‑2 29916012
    [Google Scholar]
  134. LuoM. LewikG. RatcliffeJ.C. ChoiC.H.J. MäkiläE. TongW.Y. VoelckerN.H. Systematic evaluation of transferrin-modified porous silicon nanoparticles for targeted delivery of doxorubicin to glioblastoma.ACS Appl. Mater. Interfaces20191137336373364910.1021/acsami.9b10787 31433156
    [Google Scholar]
  135. RamalhoM.J. BravoM. LoureiroJ.A. LimaJ. PereiraM.C. Transferrin-modified nanoparticles for targeted delivery of Asiatic acid to glioblastoma cells.Life Sci.202229612043510.1016/j.lfs.2022.120435 35247437
    [Google Scholar]
  136. Cohen-InbarO. ZaaroorM. Glioblastoma multiforme targeted therapy: The Chlorotoxin story.J. Clin. Neurosci.201633525810.1016/j.jocn.2016.04.012 27452128
    [Google Scholar]
  137. MuQ. LinG. PattonV.K. WangK. PressO.W. ZhangM. Gemcitabine and chlorotoxin conjugated iron oxide nanoparticles for glioblastoma therapy.J. Mater. Chem. B Mater. Biol. Med.201641323610.1039/C5TB02123E 26835125
    [Google Scholar]
  138. WangD. StarrR. ChangW.C. AguilarB. AlizadehD. WrightS.L. YangX. BritoA. SarkissianA. OstbergJ.R. LiL. ShiY. GutovaM. AboodyK. BadieB. FormanS.J. BarishM.E. BrownC.E. Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma.Sci. Transl. Med.202012533eaaw267210.1126/scitranslmed.aaw2672 32132216
    [Google Scholar]
  139. ZhaoP. WangY. WuA. RaoY. HuangY. Roles of albumin‐binding proteins in cancer progression and biomimetic targeted drug delivery.ChemBioChem201819171796180510.1002/cbic.201800201 29920893
    [Google Scholar]
  140. LinT. ZhaoP. JiangY. TangY. JinH. PanZ. HeH. YangV.C. HuangY. Blood–brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy.ACS Nano2016101199991001210.1021/acsnano.6b04268 27934069
    [Google Scholar]
  141. HassaninI. ElzoghbyA. Albumin-Based Nanoparticles: A Promising Strategy to Overcome Cancer Drug Resistance.Cancer Drug Resistance202010.20517/cdr.2020.68
    [Google Scholar]
  142. AnZ. AksoyO. ZhengT. FanQ.W. WeissW.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies.Oncogene201837121561157510.1038/s41388‑017‑0045‑7 29321659
    [Google Scholar]
  143. FerreiraN.N. de Oliveira JuniorE. GranjaS. BoniF.I. FerreiraL.M.B. CuryB.S.F. SantosL.C.R. ReisR.M. LimaE.M. BaltazarF. GremiãoM.P.D. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system.Int. J. Pharm.202160312071410.1016/j.ijpharm.2021.120714 34015380
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018257713231107060630
Loading
/content/journals/cdd/10.2174/0115672018257713231107060630
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test