Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Bioelectronic medicine is a multidisciplinary field that combines molecular medicine, neurology, engineering, and computer science to design devices for diagnosing and treating diseases. The advancements in bioelectronic medicine can improve the precision and personalization of illness treatment. Bioelectronic medicine can produce, suppress, and measure electrical activity in excitable tissue. Bioelectronic devices modify specific neural circuits using electrons rather than pharmaceuticals and uses of bioelectronic processes to regulate the biological processes underlining various diseases. This promotes the potential to address the underlying causes of illnesses, reduce adverse effects, and lower costs compared to conventional medication. The current review presents different important aspects of bioelectronic medicines with recent advancements. The area of bioelectronic medicine has a lot of potential for treating diseases, enabling non-invasive therapeutic intervention by regulating brain impulses. Bioelectronic medicine uses electricity to control biological processes, treat illnesses, or regain lost capability. These new classes of medicines are designed by the technological developments in the detection and regulation of electrical signaling methods in the nervous system. Peripheral nervous system regulates a wide range of processes in chronic diseases; it involves implanting small devices onto specific peripheral nerves, which read and regulate the brain signaling patterns to achieve therapeutic effects specific to the signal capacity of a particular organ. The potential for bioelectronic medicine field is vast, as it investigates for treatment of various diseases, including rheumatoid arthritis, diabetes, hypertension, paralysis, chronic illnesses, blindness, .

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018286832231218112557
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. ZhouJ. YuG. HuangF. Supramolecular chemotherapy based on host–guest molecular recognition: A novel strategy in the battle against cancer with a bright future.Chem. Soc. Rev.201746227021705310.1039/C6CS00898D 28980674
    [Google Scholar]
  2. ZhouJ. RaoL. YuG. CookT.R. ChenX. HuangF. Supramolecular cancer nanotheranostics.Chem. Soc. Rev.20215042839289110.1039/D0CS00011F 33524093
    [Google Scholar]
  3. LiuJ. ChenC. WeiT. GayetO. LoncleC. BorgeL. DusettiN. MaX. MarsonD. LauriniE. PriclS. GuZ. IovannaJ. PengL. LiangX.J. Dendrimeric nanosystem consistently circumvents heterogeneous drug response and resistance in pancreatic cancer.Exploration202111213410.1002/EXP.20210003 37366462
    [Google Scholar]
  4. YaoX. YangB. XuJ. HeQ. YangW. Novel gas‐based nanomedicines for cancer therapy.VIEW2022312020018510.1002/VIW.20200185
    [Google Scholar]
  5. WuN. TuY. FanG. DingJ. LuoJ. WangW. ZhangC. YuanC. ZhangH. ChenP. TanS. XiaoH. Enhanced photodynamic therapy/photothermo therapy for nasopharyngeal carcinoma via a tumour microenvironment-responsive self-oxygenated drug delivery system.Asian J. Pharm. Sci.202217225326710.1016/j.ajps.2022.01.002 35582639
    [Google Scholar]
  6. DingY. TongZ. JinL. YeB. ZhouJ. SunZ. YangH. HongL. HuangF. WangW. MaoZ. An NIR discrete metallacycle constructed from perylene bisimide and tetraphenylethylene fluorophores for imaging-guided cancer radio-chemotherapy.Adv. Mater.2022347210638810.1002/adma.202106388 34821416
    [Google Scholar]
  7. YanM. ZhouJ. Pillararene-based supramolecular polymers for cancer therapy.Molecules2023283147010.3390/molecules28031470 36771136
    [Google Scholar]
  8. YanM. ZhouJ. Suprasomes: An emerging platform for cancer theranostics.Sci. China Chem.20226661361410.1007/s11426‑022‑1477‑x
    [Google Scholar]
  9. YanM. WuS. WangY. LiangM. WangM. HuW. YuG. MaoZ. HuangF. ZhouJ. Recent progress of supramolecular chemotherapy based on host-guest interactions.Adv. Mater.20232023230424910.1002/adma.202304249 37478832
    [Google Scholar]
  10. SinghA.K. AwasthiR. MalviyaR. Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy.Biochim. Biophys. Acta Rev. Cancer20221877618880810.1016/j.bbcan.2022.188808 36208649
    [Google Scholar]
  11. PavlovV.A. ChavanS.S. TraceyK.J. Bioelectronic medicine: From preclinical studies on the inflammatory reflex to new approaches in disease diagnosis and treatment.Cold Spring Harb. Perspect. Med.2020103a03414010.1101/cshperspect.a034140 31138538
    [Google Scholar]
  12. YuM. SunP. SunC. JinW.L. Bioelectronic medicine potentiates endogenous NSCs for neurodegenerative diseases.Trends Mol. Med.2023291188689610.1016/j.molmed.2023.08.005 37735022
    [Google Scholar]
  13. GiagkaV. SerdijnW.A. Realizing flexible bioelectronic medicines for accessing the peripheral nerves – technology considerations.Bioelectron. Med.201841810.1186/s42234‑018‑0010‑y 32232084
    [Google Scholar]
  14. RadouskyH.B. LiangH. Energy harvesting: An integrated view of materials, devices and applications.Nanotechnology2012235050200110.1088/0957‑4484/23/50/502001 23186865
    [Google Scholar]
  15. GarayE.F. BashirullahR. Biofluid activated micro battery for disposable microsystems.J. Microelectromech. Syst.2015241707910.1109/JMEMS.2014.2317177
    [Google Scholar]
  16. OlofssonP.S. TraceyK.J. Bioelectronic medicine: Technology targeting molecular mechanisms for therapy.J. Intern. Med.201728213410.1111/joim.12624 28621493
    [Google Scholar]
  17. ValloneF. OttavianiM.M. DedolaF. CutroneA. RomeniS. PanareseA.M. BerniniF. CracchioloM. StraussI. GabisoniaK. GorgodzeN. Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals.J. Neural Eng.20211840460a2.10.1088/1741‑2552/ac0d42
    [Google Scholar]
  18. CaravacaA.S. TsaavaT. GoldmanL. SilvermanH. RiggottG. ChavanS.S. BoutonC. TraceyK.J. DesimoneR. BoydenE.S. SohalH.S. OlofssonP.S. A novel flexible cuff-like microelectrode for dual purpose, acute and chronic electrical interfacing with the mouse cervical vagus nerve.J. Neural Eng.201714606600510.1088/1741‑2552/aa7a42 28628030
    [Google Scholar]
  19. Pinho-RibeiroF.A. BaddalB. HaarsmaR. O’SeaghdhaM. YangN.J. BlakeK.J. PortleyM. VerriW.A. DaleJ.B. WesselsM.R. ChiuI.M. Blocking neuronal signaling to immune cells treats the streptococcal invasive infection.Cell2018173510831097.e2210.1016/j.cell.2018.04.006 29754819
    [Google Scholar]
  20. LaiN.Y. MillsK. ChiuI.M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence.J. Intern. Med.2017282152310.1111/joim.12591 28155242
    [Google Scholar]
  21. FattahiP. YangG. KimG. AbidianM.R. A review of organic and inorganic biomaterials for neural interfaces.Adv. Mater.201426121846188510.1002/adma.201304496 24677434
    [Google Scholar]
  22. ParkS. GuoY. JiaX. ChoeH.K. GrenaB. KangJ. ParkJ. LuC. CanalesA. ChenR. YimY.S. ChoiG.B. FinkY. AnikeevaP. One-step optogenetics with multifunctional flexible polymer fibers.Nat. Neurosci.201720461261910.1038/nn.4510 28218915
    [Google Scholar]
  23. HagemanK.N. KalayjianZ.K. TejadaF. ChiangB. RahmanM.A. FridmanG.Y. DaiC. PouliquenP.O. GeorgiouJ. Della SantinaC.C. AndreouA.G. A CMOS neural interface for a multichannel vestibular prosthesis.IEEE Trans. Biomed. Circuits Syst.201610226927910.1109/TBCAS.2015.2409797 25974945
    [Google Scholar]
  24. YueL. WeilandJ.D. RoskaB. HumayunM.S. Retinal stimulation strategies to restore vision: Fundamentals and systems.Prog. Retin. Eye Res.201653214710.1016/j.preteyeres.2016.05.002 27238218
    [Google Scholar]
  25. LöfflerS. MelicanK. NilssonK.P.R. Richter-DahlforsA. Organic bioelectronics in medicine.J. Intern. Med.20172821243610.1111/joim.12595 28181720
    [Google Scholar]
  26. KoopmanF.A. ChavanS.S. MiljkoS. GrazioS. SokolovicS. SchuurmanP.R. MehtaA.D. LevineY.A. FaltysM. ZitnikR. TraceyK.J. TakP.P. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.Proc. Natl. Acad. Sci.2016113298284828910.1073/pnas.1605635113 27382171
    [Google Scholar]
  27. BoutonC. Cracking the neural code, treating paralysis and the future of bioelectronic medicine.J. Intern. Med.20172821374510.1111/joim.12610 28419590
    [Google Scholar]
  28. SevcencuC. NielsenT.N. KjærgaardB. StruijkJ.J. A respiratory marker derived from the left vagus nerve signal was recorded with implantable cuff electrodes.Neuromodulation201821326927510.1111/ner.12630 28699322
    [Google Scholar]
  29. BonazB. SinnigerV. PellissierS. Vagus nerve stimulation: A new promising therapeutic tool in inflammatory bowel disease.J. Intern. Med.20172821466310.1111/joim.12611 28421634
    [Google Scholar]
  30. BreitS. KupferbergA. RoglerG. HaslerG. Vagus nerve modulates of the brain–gut axis in psychiatric and inflammatory disorders.Front. Psychol.2018944
    [Google Scholar]
  31. ChristensenM.B. WarkH.A.C. HutchinsonD.T. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays.Biomaterials20167723524210.1016/j.biomaterials.2015.11.012 26606449
    [Google Scholar]
  32. ThonteS.S. BhusnureO.G. MakanikarV.G. PravinO. SagarD. Smart bioelectronics: The future of medicine is electric.Imagine201634353
    [Google Scholar]
  33. KuoJ.T.W. KimB.J. HaraS.A. LeeC.D. GutierrezC.A. HoangT.Q. MengE. Novel flexible Parylene neural probe with 3D sheath structure for enhancing tissue integration.Lab Chip201313455456110.1039/C2LC40935F 23160191
    [Google Scholar]
  34. CaoJ. LuK.H. PowleyT.L. LiuZ. Vagal nerve stimulation triggers widespread responses and alters large-scale functional connectivity in the rat brain.PLoS One20171212e018951810.1371/journal.pone.0189518 29240833
    [Google Scholar]
  35. BorovikovaL.V. IvanovaS. ZhangM. YangH. BotchkinaG.I. WatkinsL.R. WangH. AbumradN. EatonJ.W. TraceyK.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin.Nature2000405678545846210.1038/35013070 10839541
    [Google Scholar]
  36. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in rheumatoid arthritis: Implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑9 36797236
    [Google Scholar]
  37. WangC. WangP. QiG. A new use of transcutaneous electrical nerve stimulation: Role of bioelectric technology in resistant hypertension (Review).Biomed. Rep.20231863810.3892/br.2023.1621 37168651
    [Google Scholar]
  38. JohnsonM.I. BjordalJ.M. Transcutaneous electrical nerve stimulation for the management of painful conditions: Focus on neuropathic pain.Expert Rev. Neurother.201111573575310.1586/ern.11.48 21539490
    [Google Scholar]
  39. AltunaA. Menendez de la PridaL. BellistriE. GabrielG. GuimeráA. BerganzoJ. VillaR. FernándezL.J. SU-8 based microprobes with integrated planar electrodes for enhanced neural depth recording.Biosens. Bioelectron.20123711510.1016/j.bios.2012.03.039 22633740
    [Google Scholar]
  40. NenashevaE.V. LarinaA.O. AchmadH. TimokhinaT. MarkovA. Bioelectronic implants and their role in modern medicine.J. Pharm. Res. Int.20203233233110.9734/jpri/2020/v32i3330945
    [Google Scholar]
  41. van MaanenM.A. PapkeR.L. KoopmanF.A. KoepkeJ. BevaartL. ClarkR. LamppuD. ElbaumD. LaRosaG.J. TakP.P. VervoordeldonkM.J. Two novel α7 nicotinic acetylcholine receptor ligands: In vitro properties and their efficacy in collagen-induced arthritis in mice.PLoS One2015101e011622710.1371/journal.pone.0116227 25617631
    [Google Scholar]
  42. EthierS. SawanM. Exponential current pulse generation for efficient very high-impedance multisite stimulation.IEEE Trans. Biomed. Circuits Syst.201151303810.1109/TBCAS.2010.2073707 23850976
    [Google Scholar]
  43. LimousinP. FoltynieT. Long-term outcomes of deep brain stimulation in Parkinson disease.Nat. Rev. Neurol.201915423424210.1038/s41582‑019‑0145‑9 30778210
    [Google Scholar]
  44. SchwalbJ.M. HamaniC. The history and future of deep brain stimulation.Neurotherapeutics20085131310.1016/j.nurt.2007.11.003 18164479
    [Google Scholar]
  45. MishraS. Electroceuticals in medicine – The brave new future.Indian Heart J.201769568568610.1016/j.ihj.2017.10.001 29054204
    [Google Scholar]
  46. YeH. FusseneggerM. Optogenetic medicine: Synthetic therapeutic solutions precision-guided by light.Cold Spring Harb. Perspect. Med.201999a03437110.1101/cshperspect.a034371 30291146
    [Google Scholar]
  47. MontgomeryK.L. IyerS.M. ChristensenA.J. DeisserothK. DelpS.L. Beyond the brain: Optogenetic control in the spinal cord and peripheral nervous system.Sci. Transl. Med.20168337337rv510.1126/scitranslmed.aad7577 27147590
    [Google Scholar]
  48. BoutonC.E. ShaikhouniA. AnnettaN.V. BockbraderM.A. FriedenbergD.A. NielsonD.M. SharmaG. SederbergP.B. GlennB.C. MysiwW.J. MorganA.G. DeogaonkarM. RezaiA.R. Restoring cortical control of functional movement in a human with quadriplegia.Nature2016533760224725010.1038/nature17435 27074513
    [Google Scholar]
  49. OldaniL. Dell’OssoB. AltamuraA.C. Long-term effects of vagus nerve stimulation in treatment-resistant depression: A 5-year follow up case series.Brain Stimul.2015861229123010.1016/j.brs.2015.08.007 26371990
    [Google Scholar]
  50. GierthmuehlenM. PlachtaD.T.T. Effect of selective vagal nerve stimulation on blood pressure, heart rate and respiratory rate in rats under metoprolol medication.Hypertens. Res.2016392798710.1038/hr.2015.122 26581776
    [Google Scholar]
  51. BadiaJ. BoretiusT. AndreuD. Azevedo-CosteC. StieglitzT. NavarroX. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles.J. Neural Eng.20118303602310.1088/1741‑2560/8/3/036023 21558601
    [Google Scholar]
  52. HuangS.H. LinS.P. ChenJ.J.J. In vitro and in vivo characterization of SU-8 flexible neuroprobe: From mechanical properties to electrophysiological recording.Sens. Actuators A Phys.201421625726510.1016/j.sna.2014.06.005
    [Google Scholar]
  53. RogerY. SchäckL.M. KorolevaA. NoackS. KurselisK. KrettekC. ChichkovB. LenarzT. WarneckeA. HoffmannA. Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells.Colloids Surf. B Biointerfaces201614810411510.1016/j.colsurfb.2016.06.024 27591942
    [Google Scholar]
  54. JunJ.J. SteinmetzN.A. SiegleJ.H. DenmanD.J. BauzaM. BarbaritsB. LeeA.K. AnastassiouC.A. AndreiA. AydınÇ. BarbicM. BlancheT.J. BoninV. CoutoJ. DuttaB. GratiyS.L. GutniskyD.A. HäusserM. KarshB. LedochowitschP. LopezC.M. MitelutC. MusaS. OkunM. PachitariuM. PutzeysJ. RichP.D. RossantC. SunW. SvobodaK. CarandiniM. HarrisK.D. KochC. O’KeefeJ. HarrisT.D. Fully integrated silicon probes for high-density recording of neural activity.Nature2017551767923223610.1038/nature24636 29120427
    [Google Scholar]
  55. JangH.S. ChoK.H. HiedaK. KimJ.H. MurakamiG. AbeS. MatsubaraA. Composite nerve fibers in the hypogastric and pelvic splanchnic nerves: An immunohistochemical study using elderly cadavers.Anat. Cell Biol.201548211412310.5115/acb.2015.48.2.114 26140222
    [Google Scholar]
  56. CutroneA. ValleJ.D. SantosD. BadiaJ. FilippeschiC. MiceraS. NavarroX. BossiS. A three-dimensional self-opening intraneural peripheral interface (SELINE).J. Neural Eng.201512101601610.1088/1741‑2560/12/1/016016 25605565
    [Google Scholar]
  57. MinevI.R. MusienkoP. HirschA. BarraudQ. WengerN. MoraudE.M. GandarJ. CapogrossoM. MilekovicT. AsbothL. TorresR.F. VachicourasN. LiuQ. PavlovaN. DuisS. LarmagnacA. VörösJ. MiceraS. SuoZ. CourtineG. LacourS.P. Electronic dura mater for long-term multimodal neural interfaces.Science2015347621815916310.1126/science.1260318 25574019
    [Google Scholar]
  58. CharkhkarH. KnaackG.L. McHailD.G. MandalH.S. PeixotoN. RubinsonJ.F. DumasT.C. PancrazioJ.J. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT–TFB.Acta Biomater.201632576710.1016/j.actbio.2015.12.022 26689462
    [Google Scholar]
  59. Liang Guo, ; Guvanasen, G.S.; Xi Liu; Tuthill, C.; Nichols, T.R.; DeWeerth, S.P. A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing.IEEE Trans. Biomed. Circuits Syst.20137111010.1109/TBCAS.2012.2192932 23853274
    [Google Scholar]
  60. ChenN. TianL. PatilA.C. PengS. YangI.H. ThakorN.V. RamakrishnaS. Neural interfaces engineered via micro- and nanostructured coatings.Nano Today201714598310.1016/j.nantod.2017.04.007
    [Google Scholar]
  61. SohalH.S. JacksonA. JacksonR. ClowryG.J. VassilevskiK. O’NeillA. BakerS.N. The sinusoidal probe: A new approach to improve electrode longevity.Front. Neuroeng.201471010.3389/fneng.2014.00010 24808859
    [Google Scholar]
  62. GwonT.M. KimC. ShinS. ParkJ.H. KimJ.H. KimS.J. Liquid crystal polymer (LCP)-based neural prosthetic devices.Biomed. Eng. Lett.20166314816310.1007/s13534‑016‑0229‑z
    [Google Scholar]
  63. KimJ. ImaniS. de AraujoW.R. WarchallJ. Valdés-RamírezG. PaixãoT.R.L.C. MercierP.P. WangJ. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics.Biosens. Bioelectron.2015741061106810.1016/j.bios.2015.07.039 26276541
    [Google Scholar]
  64. McInnesI.B. SchettG. The pathogenesis of rheumatoid arthritis.N. Engl. J. Med.2011365232205221910.1056/NEJMra1004965 22150039
    [Google Scholar]
  65. GerlagD.M. NorrisJ.M. TakP.P. Towards prevention of autoantibody-positive rheumatoid arthritis: From lifestyle modification to preventive treatment.Rheumatology201655460761410.1093/rheumatology/kev347 26374913
    [Google Scholar]
  66. SugiyamaD. NishimuraK. TamakiK. TsujiG. NakazawaT. MorinobuA. KumagaiS. Impact of smoking as a risk factor for developing rheumatoid arthritis: A meta-analysis of observational studies.Ann. Rheum. Dis.2010691708110.1136/ard.2008.096487 19174392
    [Google Scholar]
  67. WildeB. ThewissenM. DamoiseauxJ. KnippenbergS. HilhorstM. van PaassenP. WitzkeO. Cohen TervaertJ.W. Regulatory B cells in ANCA-associated vasculitis.Ann. Rheum. Dis.20137281416141910.1136/annrheumdis‑2012‑202986 23666929
    [Google Scholar]
  68. van SteenbergenH.W. AletahaD. Beaart-van de VoordeL.J.J. BrouwerE. CodreanuC. CombeB. FonsecaJ.E. HetlandM.L. HumbyF. KvienT.K. NiedermannK. NuñoL. OliverS. Rantapää-DahlqvistS. RazaK. van SchaardenburgD. SchettG. De SmetL. SzücsG. VencovskýJ. WilandP. de WitM. LandewéR.L. van der Helm-van MilA.H.M. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis.Ann. Rheum. Dis.201776349149610.1136/annrheumdis‑2016‑209846 27991858
    [Google Scholar]
  69. PayneS.C. RomasE. HyakumuraT. MuntzF. FallonJ.B. Abdominal vagus nerve stimulation alleviates collagen-induced arthritis in rats.Front. Neurosci.202216101213310.3389/fnins.2022.1012133 36478876
    [Google Scholar]
  70. TakP.P. KaldenJ.R. Advances in rheumatology: New targeted therapeutics.Arthritis Res. Ther.201113S1S510.1186/1478‑6354‑13‑S1‑S5 21624184
    [Google Scholar]
  71. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  72. SakaiR. TanakaM. NankiT. WatanabeK. YamazakiH. KoikeR. NagasawaH. AmanoK. SaitoK. TanakaY. ItoS. SumidaT. IhataA. IshigatsuboY. AtsumiT. KoikeT. NakajimaA. TamuraN. FujiiT. DobashiH. TohmaS. SugiharaT. UekiY. HashiramotoA. KawakamiA. HaginoN. MiyasakaN. HarigaiM. Drug retention rates and relevant risk factors for drug discontinuation due to adverse events in rheumatoid arthritis patients receiving anticytokine therapy with different target molecules.Ann. Rheum. Dis.201271111820182610.1136/annrheumdis‑2011‑200838 22504558
    [Google Scholar]
  73. AydemirM. YazisizV. BasariciI. AvciA.B. ErbasanF. BelgiA. TerziogluE. Cardiac autonomic profile in rheumatoid arthritis and systemic lupus erythematosus.Lupus201019325526110.1177/0961203309351540 20015916
    [Google Scholar]
  74. CapilupiM.J. KerathS.M. BeckerL.B. Vagus nerve stimulation and the cardiovascular system.Cold Spring Harb. Perspect. Med.2020102a03417310.1101/cshperspect.a034173 31109966
    [Google Scholar]
  75. LazzeriniP.E. AcampaM. CapecchiP.L. HammoudM. MaffeiS. BisognoS. BarrecaC. GaleazziM. Laghi-PasiniF. Association between high sensitivity Creactive protein, heart rate variability and corrected QT interval in patients with chronic inflammatory arthritis.Eur. J. Intern. Med.201324436837410.1016/j.ejim.2013.02.009 23517852
    [Google Scholar]
  76. McFarlandD.J. SarnackiW.A. WolpawJ.R. Electroencephalographic (EEG) control of three-dimensional movement.J. Neural Eng.20107303600710.1088/1741‑2560/7/3/036007 20460690
    [Google Scholar]
  77. EganB.M. ZhaoY. AxonR.N. BrzezinskiW.A. FerdinandK.C. Uncontrolled and apparent treatment resistant hypertension in the United States, 1988 to 2008.Circulation201112491046105810.1161/CIRCULATIONAHA.111.030189 21824920
    [Google Scholar]
  78. BisognanoJ.D. BakrisG. NadimM.K. SanchezL. KroonA.A. SchaferJ. de LeeuwP.W. SicaD.A. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: Results from the double-blind, randomized, placebo-controlled rheos pivotal trial.J. Am. Coll. Cardiol.201158776577310.1016/j.jacc.2011.06.008 21816315
    [Google Scholar]
  79. HaraS.A. KimB.J. KuoJ.T.W. LeeC.D. MengE. PikovV. Long-term stability of intracortical recordings using perforated and arrayed Parylene sheath electrodes.J. Neural Eng.201613606602010.1088/1741‑2560/13/6/066020 27819256
    [Google Scholar]
  80. ScheffersI.J.M. KroonA.A. SchmidliJ. JordanJ. TordoirJ.J.M. MohauptM.G. LuftF.C. HallerH. MenneJ. EngeliS. CeralJ. EckertS. ErglisA. NarkiewiczK. PhilippT. de LeeuwP.W. Novel baroreflex activation therapy in resistant hypertension: Results of a European multi-center feasibility study.J. Am. Coll. Cardiol.201056151254125810.1016/j.jacc.2010.03.089 20883933
    [Google Scholar]
  81. BakrisG.L. NadimM.K. HallerH. LovettE.G. SchaferJ.E. BisognanoJ.D. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: Results of long-term follow-up in the Rheos Pivotal Trial.J. Am. Soc. Hypertens.20126215215810.1016/j.jash.2012.01.003 22341199
    [Google Scholar]
  82. HoppeU.C. BrandtM.C. WachterR. BeigeJ. RumpL.C. KroonA.A. CatesA.W. LovettE.G. HallerH. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: Results from the Barostim neo trial.J. Am. Soc. Hypertens.20126427027610.1016/j.jash.2012.04.004 22694986
    [Google Scholar]
  83. SicaD. BisognanoJ. NadimM. SanchezL. BakrisG. Individualized programming demonstrates the feasibility of the unilateral approach to the delivery of baroreflex activation therapy.J. Clin. Hypertens.2011131
    [Google Scholar]
  84. ZannadF. De FerrariG.M. TuinenburgA.E. WrightD. BrugadaJ. ButterC. KleinH. StolenC. MeyerS. SteinK.M. RamuzatA. SchubertB. DaumD. NeuzilP. BotmanC. CastelM.A. D’OnofrioA. SolomonS.D. WoldN. RubleS.B. Chronic vagal stimulation for the treatment of low ejection fraction heart failure: Results of the NEural Cardiac TherApy foR Heart Failure (NECTAR-HF) randomized controlled trial.Eur. Heart J.201536742543310.1093/eurheartj/ehu345 25176942
    [Google Scholar]
  85. GoldM.R. Van VeldhuisenD.J. HauptmanP.J. BorggrefeM. KuboS.H. LiebermanR.A. MilasinovicG. BermanB.J. DjordjevicS. NeelagaruS. SchwartzP.J. StarlingR.C. MannD.L. Vagus nerve stimulation for the treatment of heart failure: The INOVATE-HF trial.J. Am. Coll. Cardiol.201668214915810.1016/j.jacc.2016.03.525 27058909
    [Google Scholar]
  86. van KleefM.E.A.M. BatesM.C. SpieringW. Endovascular baroreflex amplification for resistant hypertension.Curr. Hypertens. Rep.20182054610.1007/s11906‑018‑0840‑8 29744599
    [Google Scholar]
  87. JosephS. CostanzoM.R. A novel therapeutic approach for central sleep apnea: Phrenic nerve stimulation by the remedē® System.Int. J. Cardiol.2016206S28S3410.1016/j.ijcard.2016.02.121 26964705
    [Google Scholar]
  88. StackR.J. SahniM. MallenC.D. RazaK. Symptom complexes at the earliest phases of rheumatoid arthritis: A synthesis of the qualitative literature.Arthritis Care Res.201365121916192610.1002/acr.22097 23926091
    [Google Scholar]
  89. PlachtaD.T.T. GierthmuehlenM. CotaO. EspinosaN. BoeserF. HerreraT.C. StieglitzT. ZentnerJ. Blood pressure control with selective vagal nerve stimulation and minimal side effects.J. Neural Eng.201411303601110.1088/1741‑2560/11/3/036011 24809832
    [Google Scholar]
  90. CrozierI. O’DonnellD. BoersmaL. MurgatroydF. ManlucuJ. KnightB.P. Birgersdotter-GreenU.M. LeclercqC. ThompsonA. SawchukR. WilleyS. WiggenhornC. FriedmanP. The extravascular implantable cardioverter‐defibrillator: The pivotal study plan.J. Cardiovasc. Electrophysiol.20213292371237810.1111/jce.15190 34322918
    [Google Scholar]
  91. DragasJ. ViswamV. ShadmaniA. ChenY. BounikR. StettlerA. RadivojevicM. GeisslerS. ObienM.E.J. MüllerJ. HierlemannA. In vitro multi-functional microelectrode array featuring 59 760 electrodes, 2048 electrophysiology channels, stimulation, impedance measurement, and neurotransmitter detection channels.IEEE J. Solid-State Circuits20175261576159010.1109/JSSC.2017.2686580 28579632
    [Google Scholar]
  92. YuH. YangY.H. RajaiahR. MoudgilK.D. Nicotine‐induced differential modulation of autoimmune arthritis in the Lewis rat involves changes in interleukin‐17 and anti–cyclic citrullinated peptide antibodies.Arthritis Rheum.201163498199110.1002/art.30219 21305506
    [Google Scholar]
  93. KoopmanF.A. StoofS.P. StraubR.H. van MaanenM.A. VervoordeldonkM.J. TakP.P. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis.Mol. Med.2011179-1093794810.2119/molmed.2011.00065 21607292
    [Google Scholar]
  94. TangR. PeiW. ChenS. ZhaoH. ChenY. HanY. WangC. ChenH. Fabrication of strongly adherent platinum black coatings on microelectrodes array.Sci. China Inf. Sci.201457411010.1007/s11432‑013‑4825‑6
    [Google Scholar]
  95. LuY. LyuH. RichardsonA.G. LucasT.H. KuzumD. Flexible neural electrode array based on porous graphene for cortical microstimulation and sensing.Sci. Rep.2016613352610.1038/srep33526 27642117
    [Google Scholar]
  96. BaiA. GuoY. LuN. The effect of the cholinergic anti-inflammatory pathway on experimental colitis.Scand. J. Immunol.200766553854510.1111/j.1365‑3083.2007.02011.x 17953529
    [Google Scholar]
  97. MableyJ. GordonS. PacherP. Nicotine exerts an anti-inflammatory effect in a murine model of acute lung injury.Inflammation201134423123710.1007/s10753‑010‑9228‑x 20625922
    [Google Scholar]
  98. TheF.O. CailottoC. van der VlietJ. de JongeW.J. BenninkR.J. BuijsR.M. BoeckxstaensG.E. Central activation of the cholinergic anti‐inflammatory pathway reduces surgical inflammation in experimental post‐operative ileus.Br. J. Pharmacol.201116351007101610.1111/j.1476‑5381.2011.01296.x 21371006
    [Google Scholar]
  99. MarinovV. SwensonO. MillerR. SarwarF. AtanasovY. SemlerM. DattaS. Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates.IEEE Trans. Compon. Packaging Manuf. Technol.20122456957710.1109/TCPMT.2011.2176941
    [Google Scholar]
  100. LiT. ZuoX. ZhouY. WangY. ZhuangH. ZhangL. ZhangH. XiaoX. The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis.J. Clin. Immunol.201030221322010.1007/s10875‑009‑9346‑0 19890701
    [Google Scholar]
  101. HuY. LiuR. LiJ. YueY. ChengW. ZhangP. Attenuation of collagen-induced arthritis in rat by nicotinic alpha7 receptor partial agonist GTS-21.BioMed Res. Int.201420141910.1155/2014/325875 24719855
    [Google Scholar]
  102. van MaanenM.A. StoofS.P. LaRosaG.J. VervoordeldonkM.J. TakP.P. Role of the cholinergic nervous system in rheumatoid arthritis: Aggravation of arthritis in nicotinic acetylcholine receptor 7 subunit gene knockout mice.Ann. Rheum. Dis.20106991717172310.1136/ard.2009.118554 20511609
    [Google Scholar]
  103. JiangX. AlfredssonL. KlareskogL. BengtssonC. Smokeless tobacco (moist snuff) use and the risk of developing rheumatoid arthritis: Results from a case-control study.Arthritis Care Res.201466101582158610.1002/acr.22325 24719251
    [Google Scholar]
  104. van DongenM.N. SerdijnW.A. Does a coupling capacitor enhance the charge balance during neural stimulation? An empirical study.Med. Biol. Eng. Comput.20165419310110.1007/s11517‑015‑1312‑9 26018756
    [Google Scholar]
  105. VanhoestenbergheA. DonaldsonN. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices.J. Neural Eng.201310303100210.1088/1741‑2560/10/3/031002 23685410
    [Google Scholar]
  106. WilsonJ.R. ForgioneN. FehlingsM.G. Emerging therapies for acute traumatic spinal cord injury.CMAJ2013185648549210.1503/cmaj.121206 23228995
    [Google Scholar]
  107. WurthS. CapogrossoM. RaspopovicS. GandarJ. FedericiG. KinanyN. CutroneA. PiersigilliA. PavlovaN. GuietR. TaverniG. RigosaJ. ShkorbatovaP. NavarroX. BarraudQ. CourtineG. MiceraS. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes.Biomaterials201712211412910.1016/j.biomaterials.2017.01.014 28110171
    [Google Scholar]
  108. RochonP.A. GurwitzJ.H. The prescribing cascade revisited.Lancet2017389100811778178010.1016/S0140‑6736(17)31188‑1 28495154
    [Google Scholar]
  109. PothofF. BoniniL. LanzilottoM. LiviA. FogassiL. OrbanG.A. PaulO. RutherP. Chronic neural probe for simultaneous recording of single-unit, multi-unit, and local field potential activity from multiple brain sites.J. Neural Eng.201613404600610.1088/1741‑2560/13/4/046006 27247248
    [Google Scholar]
  110. SchouenborgJ. Biocompatible multichannel electrodes for longterm neurophysiological studies and clinical therapy—Novel concepts and design.Prog. Brain Res.2011194617010.1016/B978‑0‑444‑53815‑4.00017‑0 21867794
    [Google Scholar]
  111. ZarghamM. GulakP.G. Fully integrated on-chip coil in 0.13 μm CMOS for wireless power transfer through biological media.IEEE Trans. Biomed. Circuits Syst.20159225927110.1109/TBCAS.2014.2328318 25099630
    [Google Scholar]
  112. OnoseG. GrozeaC. AnghelescuA. DaiaC. SinescuC.J. CiureaA.V. SpircuT. MireaA. AndoneI. SpânuA. PopescuC. MihăescuA-S. FazliS. DanóczyM. PopescuF. On the feasibility of using motor imagery EEG-based brain–computer interface in chronic tetraplegics for assistive robotic arm control: A clinical test and long-term post-trial follow-up.Spinal Cord201250859960810.1038/sc.2012.14 22410845
    [Google Scholar]
  113. ScholvinJ. KinneyJ.P. BernsteinJ.G. Moore-KochlacsC. KopellN. FonstadC.G. BoydenE.S. Close-packed silicon microelectrodes for scalable spatially oversampled neural recording.IEEE Trans. Biomed. Eng.201663112013010.1109/TBME.2015.2406113 26699649
    [Google Scholar]
  114. ShobeJ.L. ClaarL.D. ParhamiS. BakhurinK.I. MasmanidisS.C. Brain activity mapping at multiple scales with silicon microprobes containing 1,024 electrodes.J. Neurophysiol.201511432043205210.1152/jn.00464.2015 26133801
    [Google Scholar]
  115. MoranD. Evolution of brain–computer interface: Action potentials, local field potentials and electrocorticograms.Curr. Opin. Neurobiol.201020674174510.1016/j.conb.2010.09.010 20952183
    [Google Scholar]
  116. ChaoZ.C. NagasakaY. FujiiN. Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkey.Front. Neuroeng.20103310.3389/fneng.2010.00003 20407639
    [Google Scholar]
  117. SuminskiA.J. TkachD.C. FaggA.H. HatsopoulosN.G. Incorporating feedback from multiple sensory modalities enhances brain-machine interface control.J. Neurosci.20103050167771678710.1523/JNEUROSCI.3967‑10.2010 21159949
    [Google Scholar]
  118. CajigasI. DavisK.C. Meschede-KrasaB. PrinsN.W. GalloS. NaeemJ.A. PalermoA. WilsonA. GuerraS. ParksB.A. ZimmermanL. GantK. LeviA.D. DietrichW.D. FisherL. VanniS. TauberJ.M. GarwoodI.C. AbelJ.H. BrownE.N. IvanM.E. PrasadA. JagidJ. Implantable brain–computer interface for neuroprosthetic-enabled volitional hand grasp restoration in spinal cord injury.Brain Commun.202134fcab24810.1093/braincomms/fcab248 34870202
    [Google Scholar]
  119. Sanjuan-AlberteP. AlexanderM.R. HagueR.J.M. RawsonF.J. Electrochemically stimulating developments in bioelectronic medicine.Bioelectron. Med.201841110.1186/s42234‑018‑0001‑z 32232077
    [Google Scholar]
  120. VenkatramanS. CarmenaJ.M. Active sensing of target location encoded by cortical microstimulation.IEEE Trans. Neural Syst. Rehabil. Eng.201119331732410.1109/TNSRE.2011.2117441 21382769
    [Google Scholar]
  121. O’DohertyJ.E. LebedevM.A. IfftP.J. ZhuangK.Z. ShokurS. BleulerH. NicolelisM.A.L. Active tactile exploration using a brain–machine–brain interface.Nature2011479737222823110.1038/nature10489 21976021
    [Google Scholar]
  122. GreenA.M. KalaskaJ.F. Learning to move machines with the mind.Trends Neurosci.2011342617510.1016/j.tins.2010.11.003 21176975
    [Google Scholar]
  123. HumayunM.S. LeeS.Y. Advanced retina implants.Ophthalmol. Retina202261089990510.1016/j.oret.2022.04.009 35436597
    [Google Scholar]
  124. FernandezE. Development of visual Neuroprostheses: Trends and challenges.Bioelectron. Med.2018411210.1186/s42234‑018‑0013‑8 32232088
    [Google Scholar]
  125. MadaneV.B. MaliS.N. Bioelectric medicine: Magical tools for treatment of many diseases.AJPTech202111430430810.52711/2231‑5713.2021.00052
    [Google Scholar]
  126. ZhangD. LiuQ. Biosensors and bioelectronics on smartphone for portable biochemical detection.Biosens. Bioelectron.20167527328410.1016/j.bios.2015.08.037 26319170
    [Google Scholar]
  127. HuesoM. VellidoA. MonteroN. BarbieriC. RamosR. AngosoM. CruzadoJ.M. JonssonA. Artificial intelligence for the artificial kidney: Pointers to the future of personalized hemodialysis therapy.Kidney Dis.2018411910.1159/000486394 29594137
    [Google Scholar]
  128. MetzC.N. PavlovV.A. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome.Am. J. Physiol. Gastrointest. Liver Physiol.20183155G651G65810.1152/ajpgi.00195.2018 30001146
    [Google Scholar]
  129. PupimL.B. KentP. IkizlerT.A. Bioelectrical impedance analysis in dialysis patients.Miner. Electrolyte Metab.1999254-640040610.1159/000057482 10681674
    [Google Scholar]
  130. ParkK.H. ShinJ. HwangJ.H. KimS.H. Utility of volume assessment using bioelectrical impedance analysis in critically ill patients receiving continuous renal replacement therapy: A prospective observational study.Korean J. Crit. Care Med.201732325626410.4266/kjccm.2017.00136 31723644
    [Google Scholar]
  131. MagisettyR. ParkS.M. New era of electroceuticals: Clinically driven smart implantable electronic devices moving towards precision therapy.Micromachines202213216110.3390/mi13020161 35208286
    [Google Scholar]
  132. AfanasenkauD. KalininaD. LyakhovetskiiV. TonderaC. GorskyO. MoosaviS. PavlovaN. MerkulyevaN. KalueffA.V. MinevI.R. MusienkoP. Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces.Nat. Biomed. Eng.20204101010102210.1038/s41551‑020‑00615‑7 32958898
    [Google Scholar]
  133. SteadmanC.J. Abd-El BarrM.M. LadS.P. GadP. GorgeyA.S. HoenigH. Bioelectric medicine: Electrotherapy and transcutaneous electromagnetic stimulation–clinical and research challenges.Arch. Phys. Med. Rehabil.2022103112268227110.1016/j.apmr.2022.08.001 35970243
    [Google Scholar]
  134. Datta-ChaudhuriT. ZanosT. ChangE.H. OlofssonP.S. BickelS. BoutonC. GrandeD. RiethL. AranowC. BloomO. MehtaA.D. CivillicoG. StevensM.M. GłowackiE. BettingerC. SchüettlerM. PuleoC. RennakerR. MohantaS. CarnevaleD. CondeS.V. BonazB. ChernoffD. KapaS. BerggrenM. LudwigK. ZanosS. MillerL. WeberD. YoshorD. SteinmanL. ChavanS.S. PavlovV.A. Al-AbedY. TraceyK.J. The fourth bioelectronic medicine summit “technology targeting molecular mechanisms”: Current progress, challenges, and charting the future.Bioelectron. Med.202171710.1186/s42234‑021‑00068‑6 34024277
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018286832231218112557
Loading
/content/journals/cdd/10.2174/0115672018286832231218112557
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test