Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Mannose, an isomer of glucose, exhibits a distinct molecular structure with the same formula but a different atom arrangement, contributing to its specific biological functions. Widely distributed in body fluids and tissues, particularly in the nervous system, skin, testes, and retinas, mannose plays a crucial role as a direct precursor for glycoprotein synthesis. Glycoproteins, essential for immune regulation and glycosylation processes, underscore the significance of mannose in these physiological activities. The clinical and biomedical applications of mannose are diverse, encompassing its anti-inflammatory properties, potential to inhibit bacterial infections, role in metabolism regulation, and suggested involvement in alleviating diabetes and obesity. Additionally, mannose shows promise in antitumor effects, immune modulation, and the construction of drug carriers, indicating a broad spectrum of therapeutic potential. The article aims to present a comprehensive review of mannose, focusing on its molecular structure, metabolic pathways, and clinical and biomedical applications, and also to emphasize its status as a promising therapeutic agent.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018275954231220101637
2024-12-01
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/cdd/21/11/CDD-21-11-1435.html?itemId=/content/journals/cdd/10.2174/0115672018275954231220101637&mimeType=html&fmt=ahah

References

  1. TakahashiM. KurokiY. OhtsuboK. TaniguchiN. Core fucose and bisecting GlcNAc, the direct modifiers of the N-glycan core: their functions and target proteins.Carbohydr. Res.2009344121387139010.1016/j.carres.2009.04.031 19508951
    [Google Scholar]
  2. DhanalakshmiM. SruthiD. JinurajK.R. DasK. DaveS. AndalN.M. DasJ. Mannose: A potential saccharide candidate in disease management.Med. Chem. Res.202332339140810.1007/s00044‑023‑03015‑z 36694836
    [Google Scholar]
  3. ZhangD. ChiaC. JiaoX. JinW. KasagiS. WuR. KonkelJ.E. NakatsukasaH. ZanvitP. GoldbergN. ChenQ. SunL. ChenZ.J. ChenW. D-mannose induces regulatory T cells and suppresses immunopathology.Nat. Med.20172391036104510.1038/nm.4375 28759052
    [Google Scholar]
  4. KranjčecB. PapešD. AltaracS. d-mannose powder for prophylaxis of recurrent urinary tract infections in women: A randomized clinical trial.World J. Urol.2014321798410.1007/s00345‑013‑1091‑6 23633128
    [Google Scholar]
  5. WangY. XieS. HeB. Mannose shows antitumour properties against lung cancer via inhibiting proliferation, promoting cisplatin mediated apoptosis and reducing metastasis.Mol. Med. Rep.20202242957296510.3892/mmr.2020.11354 32700756
    [Google Scholar]
  6. GonzalezP.S. O’PreyJ. CardaciS. BarthetV.J.A. SakamakiJ. BeaumatinF. RoseweirA. GayD.M. MackayG. MalviyaG. KaniaE. RitchieS. BaudotA.D. ZuninoB. MrowinskaA. NixonC. EnnisD. HoyleA. MillanD. McNeishI.A. SansomO.J. EdwardsJ. RyanK.M. Mannose impairs tumour growth and enhances chemotherapy.Nature2018563773371972310.1038/s41586‑018‑0729‑3 30464341
    [Google Scholar]
  7. SharmaV. SmolinJ. NayakJ. AyalaJ.E. ScottD.A. PetersonS.N. FreezeH.H. Mannose alters gut microbiome, prevents diet-induced obesity, and improves host metabolism.Cell Rep.201824123087309810.1016/j.celrep.2018.08.064 30231992
    [Google Scholar]
  8. HarmsH.K. ZimmerK-P. KurnikK. Bertele-HarmsR.M. WeidingerS. ReiterK. Oral mannose therapy persistently corrects the severe clinical symptoms and biochemical abnormalities of phosphomannose isomerase deficiency.Acta Paediatr.200291101065107210.1111/j.1651‑2227.2002.tb00101.x 12434892
    [Google Scholar]
  9. SharmaV. IchikawaM. FreezeH.H. Mannose metabolism: More than meets the eye.Biochem. Biophys. Res. Commun.2014453222022810.1016/j.bbrc.2014.06.021 24931670
    [Google Scholar]
  10. WeiZ. HuangL. CuiL. ZhuX. Mannose: Good player and assister in pharmacotherapy.Biomed. Pharmacother.202012911042010.1016/j.biopha.2020.110420 32563989
    [Google Scholar]
  11. SharmaV. FreezeH.H. Mannose efflux from the cells: A potential source of mannose in blood.J. Biol. Chem.201128612101931020010.1074/jbc.M110.194241 21273394
    [Google Scholar]
  12. AltonG. HasilikM. NiehuesR. PanneerselvamK. EtchisonJ.R. FanaF. FreezeH.H. Direct utilization of mannose for mammalian glycoprotein biosynthesis.Glycobiology19988328529510.1093/glycob/8.3.285 9451038
    [Google Scholar]
  13. de la FuenteM. HernanzA. Enzymes of mannose metabolism in murine and human lymphocytic leukaemia.Br. J. Cancer198858556756910.1038/bjc.1988.260 3219265
    [Google Scholar]
  14. ThorensB. MuecklerM. Glucose transporters in the 21st Century.Am. J. Physiol. Endocrinol. Metab.20102982E141E14510.1152/ajpendo.00712.2009 20009031
    [Google Scholar]
  15. AltonG. KjaergaardS. EtchisonJ.R. SkovbyF. FreezeH.H. Oral ingestion of mannose elevates blood mannose levels: A first step toward a potential therapy for carbohydrate-deficient glycoprotein syndrome type I.Biochem. Mol. Med.199760212713310.1006/bmme.1997.2574 9169093
    [Google Scholar]
  16. LiuX. OlszewskiK. ZhangY. LimE.W. ShiJ. ZhangX. ZhangJ. LeeH. KoppulaP. LeiG. ZhuangL. YouM.J. FangB. LiW. MetalloC.M. PoyurovskyM.V. GanB. Cystine transporter regulation of pentose phosphate pathway dependency and disulfide stress exposes a targetable metabolic vulnerability in cancer.Nat. Cell Biol.202022447648610.1038/s41556‑020‑0496‑x 32231310
    [Google Scholar]
  17. BuchananT. FreinkelN. LewisN.J. MetzgerB.E. AkazawaS. Fuel-mediated teratogenesis. Use of D-mannose to modify organogenesis in the rat embryo in vivo.J. Clin. Invest.19857561927193410.1172/JCI111908 2409111
    [Google Scholar]
  18. ChoeH.S. LeeS.J. YangS.S. HamasunaR. YamamotoS. ChoY.H. MatsumotoT. Summary of the UAA‐AAUS guidelines for urinary tract infections.Int. J. Urol.201825317518510.1111/iju.13493 29193372
    [Google Scholar]
  19. AngerJ.T. BixlerB.R. HolmesR.S. LeeU.J. Santiago-LastraY. SelphS.S. Updates to recurrent uncomplicated urinary tract infections in women: AUA/CUA/SUFU guideline.J. Urol.2022208353654110.1097/JU.0000000000002860 35942788
    [Google Scholar]
  20. AbujnahA.A. ZorganiA. SabriM.A.M. El-MohammadyH. KhalekR.A. GhengheshK.S. Multidrug resistance and extended-spectrum β-lactamases genes among Escherichia coli from patients with urinary tract infections in Northwestern Libya.Libyan J. Med.20151012641210.3402/ljm.v10.26412 25651907
    [Google Scholar]
  21. NaziriZ. KilegolanJ.A. MoezziM.S. DerakhshandehA. Biofilm formation by uropathogenic Escherichia coli: A complicating factor for treatment and recurrence of urinary tract infections.J. Hosp. Infect.202111791610.1016/j.jhin.2021.08.017 34428502
    [Google Scholar]
  22. ZagagliaC. AmmendoliaM.G. MauriziL. NicolettiM. LonghiC. Urinary tract infections caused by uropathogenic escherichia coli strains—new strategies for an old pathogen.Microorganisms2022107142510.3390/microorganisms10071425 35889146
    [Google Scholar]
  23. ScribanoD. SarsharM. FettucciariL. AmbrosiC. Urinary tract infections: Can we prevent uropathogenic Escherichia coli infection with dietary intervention?Int. J. Vitam. Nutr. Res.2021915-639139510.1024/0300‑9831/a000704 33880966
    [Google Scholar]
  24. SpauldingC.N. KleinR.D. RuerS. KauA.L. SchreiberH.L. CusumanoZ.T. DodsonK.W. PinknerJ.S. FremontD.H. JanetkaJ.W. RemautH. GordonJ.I. HultgrenS.J. Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist.Nature2017546765952853210.1038/nature22972 28614296
    [Google Scholar]
  25. PorruD. Oral D mannose in the prevention and treatment of recurrent urinary tract infections: A review.Int Urogynecol J.2021331
    [Google Scholar]
  26. LiuH. GuR. ZhuY. LianX. WangS. LiuX. PingZ. LiuY. ZhouY. D-mannose attenuates bone loss in mice via Treg cell proliferation and gut microbiota-dependent anti-inflammatory effects.Ther. Adv. Chronic Dis.20201110.1177/2040622320912661 32341776
    [Google Scholar]
  27. GuoL. HouY. SongL. ZhuS. LinF. BaiY. D-Mannose enhanced immunomodulation of periodontal ligament stem cells via inhibiting IL-6 secretion.Stem Cells Int.2018201811110.1155/2018/7168231 30271438
    [Google Scholar]
  28. TorrettaS. ScagliolaA. RicciL. MaininiF. Di MarcoS. CuccovilloI. Kajaste-RudnitskiA. SumptonD. RyanK.M. CardaciS. D-mannose suppresses macrophage IL-1β production.Nat. Commun.2020111634310.1038/s41467‑020‑20164‑6 33311467
    [Google Scholar]
  29. HaradaY. MizoteY. SuzukiT. HirayamaA. IkedaS. NishidaM. HiratsukaT. UedaA. ImagawaY. MaedaK. OhkawaY. MuraiJ. FreezeH.H. MiyoshiE. HigashiyamaS. UdonoH. DohmaeN. TaharaH. TaniguchiN. Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells.eLife202312e8387010.7554/eLife.83870 37461317
    [Google Scholar]
  30. ShanM. DaiD. VudemA. VarnerJ.D. StroockA.D. Multi-scale computational study of the Warburg effect, reverse Warburg effect and glutamine addiction in solid tumors.PLOS Comput. Biol.20181412e100658410.1371/journal.pcbi.1006584 30532226
    [Google Scholar]
  31. GuJ. LiangD. PierzynskiJ.A. ZhengL. YeY. ZhangJ. AjaniJ.A. WuX. D-mannose: A novel prognostic biomarker for patients with esophageal adenocarcinoma.Carcinogenesis2017382bgw20710.1093/carcin/bgw207 28062409
    [Google Scholar]
  32. FeiY.Q. ShiR.T. ZhouY.F. WuJ.Z. SongZ. Mannose inhibits proliferation and promotes apoptosis to enhance sensitivity of glioma cells to temozolomide through Wnt/β-catenin signaling pathway.Neurochem. Int.202215710534810.1016/j.neuint.2022.105348 35490896
    [Google Scholar]
  33. DeRossiC. BodeL. EklundE.A. ZhangF. DavisJ.A. WestphalV. WangL. BorowskyA.D. FreezeH.H. Ablation of mouse phosphomannose isomerase (Mpi) causes mannose 6-phosphate accumulation, toxicity, and embryonic lethality.J. Biol. Chem.200628195916592710.1074/jbc.M511982200 16339137
    [Google Scholar]
  34. IsraelsenW.J. Vander HeidenM.G. Pyruvate kinase: Function, regulation and role in cancer.Semin. Cell Dev. Biol.201543435110.1016/j.semcdb.2015.08.004 26277545
    [Google Scholar]
  35. ZhuJ-G. ZhongW-D. DengY-L. LiuR. CaiZ-D. HanZ-D. FengY-F. CaiS-H. ChenQ-B. Mannose inhibits the growth of prostate cancer through a mitochondrial mechanism.Asian J. Androl.202224554054810.4103/aja2021104 35142655
    [Google Scholar]
  36. ShtraizentN. DeRossiC. NayarS. SachidanandamR. KatzL.S. PrinceA. KohA.P. VincekA. HadasY. HoshidaY. ScottD.K. EliyahuE. FreezeH.H. SadlerK.C. ChuJ. MPI depletion enhances O-GlcNAcylation of p53 and suppresses the Warburg effect.eLife20176e2247710.7554/eLife.22477 28644127
    [Google Scholar]
  37. CaiC. ZhuX. The Wnt/β-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer.Mol. Med. Rep.20125511911196 22367735
    [Google Scholar]
  38. LanF. PanQ. YuH. YueX. Sulforaphane enhances temozolomide‐induced apoptosis because of down‐regulation of miR‐21 via Wnt/β‐catenin signaling in glioblastoma.J. Neurochem.2015134581181810.1111/jnc.13174 25991372
    [Google Scholar]
  39. HeL. ZhouH. ZengZ. YaoH. JiangW. QuH. Wnt/β‐catenin signaling cascade: A promising target for glioma therapy.J. Cell. Physiol.201923432217222810.1002/jcp.27186 30277583
    [Google Scholar]
  40. TanA.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC).Thorac. Cancer202011351151810.1111/1759‑7714.13328 31989769
    [Google Scholar]
  41. CampbellI.G. RussellS.E. ChoongD.Y.H. MontgomeryK.G. CiavarellaM.L. HooiC.S.F. CristianoB.E. PearsonR.B. PhillipsW.A. Mutation of the PIK3CA gene in ovarian and breast cancer.Cancer Res.200464217678768110.1158/0008‑5472.CAN‑04‑2933 15520168
    [Google Scholar]
  42. KhalilovR. AbdullayevaS. Mechanisms of insulin action and insulin resistance.Adv. Biol. Res. Earth Sci.202382165169
    [Google Scholar]
  43. SamuelsY. WangZ. BardelliA. SillimanN. PtakJ. SzaboS. YanH. GazdarA. PowellS.M. RigginsG.J. WillsonJ.K.V. MarkowitzS. KinzlerK.W. VogelsteinB. VelculescuV.E. High frequency of mutations of the PIK3CA gene in human cancers.Science2004304567055410.1126/science.1096502 15016963
    [Google Scholar]
  44. SarbassovD.D. GuertinD.A. AliS.M. SabatiniD.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex.Science200530757121098110110.1126/science.1106148 15718470
    [Google Scholar]
  45. YiM. NiuM. XuL. LuoS. WuK. Regulation of PD-L1 expression in the tumor microenvironment.J. Hematol. Oncol.20211411010.1186/s13045‑020‑01027‑5 33413496
    [Google Scholar]
  46. ZhangR. YangY. DongW. LinM. HeJ. ZhangX. TianT. YangY. ChenK. LeiQ.Y. ZhangS. XuY. LvL. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1.Proc. Natl. Acad. Sci.20221198e211485111910.1073/pnas.2114851119 35181605
    [Google Scholar]
  47. ShaJ. CaoD. CuiR. XiaL. HuaX. LuY. HanS. Mannose impairs lung adenocarcinoma growth and enhances the sensitivity of A549 cells to carboplatin.Cancer Manag. Res.202012110771108310.2147/CMAR.S278673 33173340
    [Google Scholar]
  48. KhalilovR. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery.Adv. Biol. Earth Sci.202381518
    [Google Scholar]
  49. MeiH. CaiS. HuangD. GaoH. CaoJ. HeB. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification.Bioact. Mater.2022822024010.1016/j.bioactmat.2021.06.035 34541398
    [Google Scholar]
  50. ChenF. HuangG. HuangH. Sugar ligand-mediated drug delivery.Future Med. Chem.202012216117110.4155/fmc‑2019‑0114 31718289
    [Google Scholar]
  51. HuJ. WeiP. SeebergerP.H. YinJ. Mannose‐functionalized nanoscaffolds for targeted delivery in biomedical applications.Chem. Asian J.201813223448345910.1002/asia.201801088 30251341
    [Google Scholar]
  52. FangZ. WangR. ZhaoH. YaoH. OuyangJ. ZhangX. Mannose promotes metabolic discrimination of osteosarcoma cells at single-cell level by mass spectrometry.Anal. Chem.20209232690269610.1021/acs.analchem.9b04773 31913607
    [Google Scholar]
  53. FanZ. WangY. XiangS. ZuoW. HuangD. JiangB. SunH. YinW. XieL. HouZ. Dual-self-recognizing, stimulus-responsive and carrier-free methotrexate–mannose conjugate nanoparticles with highly synergistic chemotherapeutic effects.J. Mater. Chem. B Mater. Biol. Med.2020891922193410.1039/D0TB00049C 32052817
    [Google Scholar]
  54. ShenY. ShuhendlerA.J. YeD. XuJ.J. ChenH.Y. Two-photon excitation nanoparticles for photodynamic therapy.Chem. Soc. Rev.201645246725674110.1039/C6CS00442C 27711672
    [Google Scholar]
  55. ZhaoS. NiuG. WuF. YanL. ZhangH. ZhaoJ. ZengL. LanM. Lysosome-targetable polythiophene nanoparticles for two-photon excitation photodynamic therapy and deep tissue imaging.J. Mater. Chem. B Mater. Biol. Med.20175203651365710.1039/C7TB00371D 32264053
    [Google Scholar]
  56. LiS. ShenX. XuQ.H. CaoY. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy.Nanoscale20191141195511956010.1039/C9NR05488J 31578535
    [Google Scholar]
  57. AroraA. ScholarE.M. Role of tyrosine kinase inhibitors in cancer therapy.J. Pharmacol. Exp. Ther.2005315397197910.1124/jpet.105.084145 16002463
    [Google Scholar]
  58. ChakrabartyA.M. BernardesN. FialhoA.M. Bacterial proteins and peptides in cancer therapy.Bioengineered20145423424210.4161/bioe.29266 24875003
    [Google Scholar]
  59. RogersL.M. VeeramaniS. WeinerG.J. Complement in monoclonal antibody therapy of cancer.Immunol. Res.2014591-320321010.1007/s12026‑014‑8542‑z 24906530
    [Google Scholar]
  60. ZhangQ. CaiY. LiQ.Y. HaoL.N. MaZ. WangX.J. YinJ. Targeted delivery of a mannose‐conjugated bodipy photosensitizer by nanomicelles for photodynamic breast cancer therapy.Chemistry20172357143071431510.1002/chem.201702935 28753238
    [Google Scholar]
  61. PacisE. YuM. AutsenJ. BayerR. LiF. Effects of cell culture conditions on antibody N ‐linked glycosylation—what affects high mannose 5 glycoform.Biotechnol. Bioeng.2011108102348235810.1002/bit.23200 21557201
    [Google Scholar]
  62. ShiH.H. GoudarC.T. Recent advances in the understanding of biological implications and modulation methodologies of monoclonal antibody N‐linked high mannose glycans.Biotechnol. Bioeng.2014111101907191910.1002/bit.25318 24975601
    [Google Scholar]
  63. SladeP.G. CasparyR.G. NargundS. HuangC.J. Mannose metabolism in recombinant CHO cells and its effect on IgG glycosylation.Biotechnol. Bioeng.201611371468148010.1002/bit.25924 26724786
    [Google Scholar]
  64. HuS.C.S. LanC.C.E. High-glucose environment disturbs the physiologic functions of keratinocytes: Focusing on diabetic wound healing.J. Dermatol. Sci.201684212112710.1016/j.jdermsci.2016.07.008 27461757
    [Google Scholar]
  65. WangX.T. McKeeverC.C. VonuP. PattersonC. LiuP.Y. Dynamic histological events and molecular changes in excisional wound healing of diabetic DB/DB mice.J. Surg. Res.201923818619710.1016/j.jss.2019.01.048 30771688
    [Google Scholar]
  66. O’BrienT.D. Impaired dermal microvascular reactivity and implications for diabetic wound formation and healing: An evidence review.J. Wound Care202029S9S21S2810.12968/jowc.2020.29.Sup9.S21
    [Google Scholar]
  67. JingjuanX. ShaojuanH. DanliF. Effect of hypertonic glucose on wound healing of pressure sore.Pub. Med. For. Mag.20222608118120
    [Google Scholar]
  68. KössiJ. PeltonenJ. EkforsT. NiinikoskiJ. LaatoM. Effects of hexose sugars: Glucose, fructose, galactose and mannose on wound healing in the rat.Eur. Surg. Res.1999311748210.1159/000008623 10072613
    [Google Scholar]
  69. de la MotteC.A. HascallV.C. CalabroA. Yen-LiebermanB. StrongS.A. Mononuclear leukocytes preferentially bind via CD44 to hyaluronan on human intestinal mucosal smooth muscle cells after virus infection or treatment with poly(I.C).J. Biol. Chem.199927443307473075510.1074/jbc.274.43.30747 10521464
    [Google Scholar]
  70. PienimäkiJ.P. RillaK. FülöpC. SironenR.K. KarvinenS. PasonenS. LammiM.J. TammiR. HascallV.C. TammiM.I. Epidermal growth factor activates hyaluronan synthase 2 in epidermal keratinocytes and increases pericellular and intracellular hyaluronan.J. Biol. Chem.200127623204282043510.1074/jbc.M007601200 11262389
    [Google Scholar]
  71. KarvinenS. Pasonen-SeppänenS. HyttinenJ.M.T. PienimäkiJ.P. TörrönenK. JokelaT.A. TammiM.I. TammiR. Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthases 2 and 3.J. Biol. Chem.200327849494954950410.1074/jbc.M310445200 14506240
    [Google Scholar]
  72. Pasonen-SeppänenS. KarvinenS. TörrönenK. HyttinenJ.M.T. JokelaT. LammiM.J. TammiM.I. TammiR. EGF upregulates, whereas TGF-beta downregulates, the hyaluronan synthases Has2 and Has3 in organotypic keratinocyte cultures: Correlations with epidermal proliferation and differentiation.J. Invest. Dermatol.200312061038104410.1046/j.1523‑1747.2003.12249.x 12787132
    [Google Scholar]
  73. JokelaT.A. KuokkanenJ. KärnäR. Pasonen-SeppänenS. RillaK. KössiJ. LaatoM. TammiR.H. TammiM.I. Mannose reduces hyaluronan and leukocytes in wound granulation tissue and inhibits migration and hyaluronan‐dependent monocyte binding.Wound Repair Regen.201321224725510.1111/wrr.12022 23464634
    [Google Scholar]
  74. GandiniR. ReichenbachT. TanT.C. DivneC. Structural basis for dolichylphosphate mannose biosynthesis.Nat. Commun.20178112010.1038/s41467‑017‑00187‑2 28743912
    [Google Scholar]
  75. WestphalV. KjaergaardS. DavisJ.A. PetersonS.M. SkovbyF. FreezeH.H. Genetic and metabolic analysis of the first adult with congenital disorder of glycosylation type Ib: long-term outcome and effects of mannose supplementation.Mol. Genet. Metab.2001731778510.1006/mgme.2001.3161 11350186
    [Google Scholar]
  76. KoehlerK. MalikM. MahmoodS. GießelmannS. BeetzC. HenningsJ.C. HuebnerA.K. GrahnA. ReunertJ. NürnbergG. ThieleH. AltmüllerJ. NürnbergP. MumtazR. Babovic-VuksanovicD. Basel-VanagaiteL. BorckG. BrämswigJ. MühlenbergR. SardaP. SikiricA. Anyane-YeboaK. ZehariaA. AhmadA. CoubesC. WadaY. MarquardtT. VanderschaegheD. Van SchaftingenE. KurthI. HuebnerA. HübnerC.A. Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction.Am. J. Hum. Genet.201393472773410.1016/j.ajhg.2013.08.002 24035193
    [Google Scholar]
  77. ShrimalS. NgB.G. LosfeldM.E. GilmoreR. FreezeH.H. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation.Hum. Mol. Genet.201322224638464510.1093/hmg/ddt312 23842455
    [Google Scholar]
  78. LefeberD.J. SchönbergerJ. MoravaE. GuillardM. HuybenK.M. VerrijpK. GrafakouO. EvangeliouA. PreijersF.W. MantaP. YildizJ. GrünewaldS. SpiliotiM. van den ElzenC. KleinD. HessD. AshidaH. HofsteengeJ. MaedaY. van den HeuvelL. LammensM. LehleL. WeversR.A. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies.Am. J. Hum. Genet.2009851768610.1016/j.ajhg.2009.06.006 19576565
    [Google Scholar]
  79. NiehuesR. HasilikM. AltonG. KörnerC. Schiebe-SukumarM. KochH.G. ZimmerK.P. WuR. HarmsE. ReiterK. von FiguraK. FreezeH.H. HarmsH.K. MarquardtT. Carbohydrate-deficient glycoprotein syndrome type Ib. Phosphomannose isomerase deficiency and mannose therapy.J. Clin. Invest.199810171414142010.1172/JCI2350 9525984
    [Google Scholar]
  80. FreezeH.H. Genetic defects in the human glycome.Nat. Rev. Genet.20067753755110.1038/nrg1894 16755287
    [Google Scholar]
  81. HuseynovaL.S. Genetic heterogeneity of hereditary metabolic disease phenylketonuria.Adv. Biol. Res Eart. Sci.202162174183
    [Google Scholar]
  82. CusiK. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: Pathophysiology and clinical implications.Gastroenterology20121424711725.e610.1053/j.gastro.2012.02.003 22326434
    [Google Scholar]
  83. SunnyN.E. BrilF. CusiK. Mitochondrial adaptation in nonalcoholic fatty liver disease: Novel mechanisms and treatment strategies.Trends Endocrinol. Metab.201728425026010.1016/j.tem.2016.11.006 27986466
    [Google Scholar]
  84. ZhouX. ZhengY. SunW. ZhangZ. LiuJ. YangW. YuanW. YiY. WangJ. LiuJ. D‐mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF‐2α‐dependent manner.Cell Prolif.20215411e1313410.1111/cpr.13134 34561933
    [Google Scholar]
  85. LinZ. MiaoJ. ZhangT. HeM. ZhouX. ZhangH. GaoY. BaiL. d-Mannose suppresses osteoarthritis development in vivo and delays IL-1β-induced degeneration in vitro by enhancing autophagy activated via the AMPK pathway.Biomed. Pharmacother.202113511119910.1016/j.biopha.2020.111199 33401221
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018275954231220101637
Loading
/content/journals/cdd/10.2174/0115672018275954231220101637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test