Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Niosomes are newly developed, self-assembling sac-like transporters that deliver medication at a specific site in a focused manner, increasing availability in the body and prolonging healing effects. Niosome discovery has increased drugs’ therapeutic effectiveness while also reducing adverse effects.

This article aims to concentrate on the increase in the worldwide utilization of niosomal formulation. This overview presents a thorough perspective of niosomal investigation up until now, encompassing categories and production techniques, their significance in pharmaceutical transportation, and cosmetic use.

The thorough literature review revealed that extensive attention has been given to developing nanocarriers for drug delivery as they hold immense endeavor to attain targeted delivery to the affected area simultaneously shielding the adjacent healthy tissue. Many reviews and research papers have been published that demonstrate the interest of scientists in niosomes. Phytoconstituents, which possess antioxidant, antibiotic, anti-inflammatory, wound healing, anti-acne, and skin whitening properties, are also encapsulated into niosome. Their flexibility allows for the incorporation of various therapeutic agents, including small molecules, proteins, and peptides making them adaptable for different types of drugs. Niosomes can be modified with ligands, enhancing their targeting capabilities.

A flexible drug delivery mechanism provided by non-ionic vesicles, which are self-assembling vesicular nano-carriers created from hydrating non-ionic surfactant, cholesterol, or amphiphilic compounds along comprehensive applications such as transdermal and brain-targeted delivery.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018269199231121055548
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. PhamT.T. Jaafar-MaalejC. CharcossetC. FessiH. Liposome and niosome preparation using a membrane contactor for scale-up.Colloids Surf. B Biointerfaces201294152110.1016/j.colsurfb.2011.12.036 22326648
    [Google Scholar]
  2. MehtaS.K. JindalN. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs.Colloids Surf. B Biointerfaces201310143444110.1016/j.colsurfb.2012.07.006 23010052
    [Google Scholar]
  3. PandoD. GutiérrezG. CocaJ. PazosC. Preparation and characterization of niosomes containing resveratrol.J. Food Eng.2013117222723410.1016/j.jfoodeng.2013.02.020
    [Google Scholar]
  4. WaddadA.Y. AbbadS. YuF. Formulation, characterization and pharmacokinetics of Morin hydrate niosomes prepared from various non-ionic surfactants.Int. J. Pharm.2013456244645810.1016/j.ijpharm.2013.08.040 23998955
    [Google Scholar]
  5. NowrooziF. AlmasiA. JavidiJ. HaeriA. DadashzadehS. Effect of surfactant type, cholesterol content and various downsizing methods on the particle size of niosomes. Iranian journal of pharmaceutical Research.Iran. J. Pharm. Res.2018172111 31011337
    [Google Scholar]
  6. TempromL. KrongsukS. ThapphasaraphongS. PripermA. NamuangrukS. A novel preparation and characterization of melatonin loaded niosomes based on using a ball milling method.Mater. Today Commun.20223110334010.1016/j.mtcomm.2022.103340
    [Google Scholar]
  7. MuzzalupoR. PérezL. PinazoA. TavanoL. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release.Int. J. Pharm.20175291-224525210.1016/j.ijpharm.2017.06.083 28668583
    [Google Scholar]
  8. ZengW. LiQ. WanT. Hyaluronic acid-coated niosomes facilitate tacrolimus ocular delivery: Mucoadhesion, precorneal retention, aqueous humor pharmacokinetics, and transcorneal permeability.Colloids Surf. B Biointerfaces2016141283510.1016/j.colsurfb.2016.01.014 26820107
    [Google Scholar]
  9. KattarA. Quelle-RegaldieA. SánchezL. ConcheiroA. Alvarez-LorenzoC. Formulation and characterization of epalrestat-loaded polysorbate 60 cationic niosomes for ocular delivery.Pharmaceutics2023154124710.3390/pharmaceutics15041247 37111732
    [Google Scholar]
  10. JoshiG. SinghA.K. UpadhyayP. TiwariA. Formulation and evaluation of tropicamide loaded niosomes.J. Drug Deliv. Ther.201993-s6975
    [Google Scholar]
  11. El-FarS.W. Abo El-EninH.A. AbdouE.M. NafeaO.E. AbdelmonemR. Targeting colorectal cancer cells with niosomes systems loaded with two anticancer drugs models; comparative in vitro and anticancer studies.Pharmaceuticals202215781610.3390/ph15070816 35890115
    [Google Scholar]
  12. SalehA. PirouzifardM. Alizadeh khaledabad M, Almasi H. Optimization and Characterization of Lippia citriodora Essential Oil Loaded Niosomes: A Novel Plant-based Food Nano Preservative.Colloids Surf. A Physicochem. Eng. Asp.202265012948010.1016/j.colsurfa.2022.129480
    [Google Scholar]
  13. ElhissiA. HidayatK. PhoenixD.A. Air-jet and vibrating-mesh nebulization of niosomes generated using a particulate-based proniosome technology.Int. J. Pharm.20134441-219319910.1016/j.ijpharm.2012.12.040 23299083
    [Google Scholar]
  14. MittalS. ChaudharyA. ChaudharyA. KumarA. Proniosomes: The effective and efficient drug-carrier system.Ther. Deliv.202011212513710.4155/tde‑2019‑0065 31937205
    [Google Scholar]
  15. MoghassemiS. HadjizadehA. Nano-niosomes as nanoscale drug delivery systems: An illustrated review.J. Control. Release2014185223610.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  16. SammourR. TaherM. ChatterjeeB. ShahiwalaA. MahmoodS. Optimization of aceclofenac proniosomes by using different carriers, part 1: Development and characterization.Pharmaceutics201911735010.3390/pharmaceutics11070350 31323799
    [Google Scholar]
  17. ManosroiA. JantrawutP. ManosroiJ. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium.Int. J. Pharm.20083601-215616310.1016/j.ijpharm.2008.04.033 18539416
    [Google Scholar]
  18. AbdelkaderH. IsmailS. KamalA. AlanyR.G. Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery.J. Pharm. Sci.201110051833184610.1002/jps.22422 21246556
    [Google Scholar]
  19. ZhangY. CaoF. UllahA. A comparative study of niosomal and elastic niosomal carbomer hydrogel for transcutaneous vaccine delivery.Mater. Today Commun.20223110373810.1016/j.mtcomm.2022.103738
    [Google Scholar]
  20. PaolinoD. CoscoD. MuzzalupoR. TrapassoE. PicciN. FrestaM. Innovative bola-surfactant niosomes as topical delivery systems of 5-fluorouracil for the treatment of skin cancer.Int. J. Pharm.20083531-223324210.1016/j.ijpharm.2007.11.037 18191509
    [Google Scholar]
  21. SainiN. SodhiR.K. BajajL. Intravaginal administration of metformin hydrochloride loaded cationic niosomes amalgamated with thermosensitive gel for the treatment of polycystic ovary syndrome: In vitro and in vivo studies.Colloids Surf. B Biointerfaces201614416116910.1016/j.colsurfb.2016.04.016 27085048
    [Google Scholar]
  22. Aboul-EinienM.H. KandilS.M. AbdouE.M. DiabH.M. ZakiM.S.E. Ascorbic acid derivative-loaded modified aspasomes: formulation, in vitro, ex vivo and clinical evaluation for melasma treatment.J. Liposome Res.2020301546710.1080/08982104.2019.1585448 30821553
    [Google Scholar]
  23. MahaleN.B. ThakkarP.D. MaliR.G. WalunjD.R. ChaudhariS.R. Niosomes: Novel sustained release nonionic stable vesicular systems — An overview.Adv. Colloid Interface Sci.2012183-184465410.1016/j.cis.2012.08.002 22947187
    [Google Scholar]
  24. Ag SeleciD. SeleciM. WalterJ.G. StahlF. ScheperT. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications.J. Nanomater.2016201611310.1155/2016/7372306
    [Google Scholar]
  25. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through the blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/6847971 30651728
    [Google Scholar]
  26. EssaE. Effect of formulation and processing variables on the particle size of sorbitan monopalmitate niosomes.Asian J. Pharm.20104422710.4103/0973‑8398.76752
    [Google Scholar]
  27. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  28. ShakerD.S. ShakerM.A. HanafyM.S. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes.Int. J. Pharm.20154931-228529410.1016/j.ijpharm.2015.07.041 26200748
    [Google Scholar]
  29. MuzzalupoR. TavanoL. LaiF. PicciN. Niosomes containing hydroxyl additives as percutaneous penetration enhancers: Effect on the transdermal delivery of sulfadiazine sodium salt.Colloids Surf. B Biointerfaces201412320721210.1016/j.colsurfb.2014.09.017 25260220
    [Google Scholar]
  30. ThabetY. ElsabahyM. EissaN.G. Methods for preparation of niosomes: A focus on thin-film hydration method.Methods202219991510.1016/j.ymeth.2021.05.004 34000392
    [Google Scholar]
  31. UgorjiO.L. UmehO.N.C. AgubataC.O. AdahD. ObitteN.C. ChukwuA. The effect of niosome preparation methods in encapsulating 5-fluorouracil and real time cell assay against HCT-116 colon cancer cell line.Heliyon2022812e1236910.1016/j.heliyon.2022.e12369 36582708
    [Google Scholar]
  32. BendasE.R. AbdullahH. El-KomyM.H.M. KassemM.A.A. Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus.Int. J. Pharm.2013458228729510.1016/j.ijpharm.2013.10.042 24184035
    [Google Scholar]
  33. RajeraR. NagpalK. SinghS.K. MishraD.N. Niosomes: A controlled and novel drug delivery system.Biol. Pharm. Bull.201134794595310.1248/bpb.34.945 21719996
    [Google Scholar]
  34. EscuderoI. GeantaR.M. RuizM.O. BenitoJ.M. Formulation and characterization of Tween 80/cholestherol niosomes modified with tri-n-octylmethylammonium chloride (TOMAC) for carboxylic acids entrapment.Colloids Surf. A Physicochem. Eng. Asp.201446116717710.1016/j.colsurfa.2014.07.042
    [Google Scholar]
  35. ManosroiA. ChutoprapatR. AbeM. ManosroiJ. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid.Int. J. Pharm.20083521-224825510.1016/j.ijpharm.2007.10.013 18036754
    [Google Scholar]
  36. Abd-ElbaryA. El-laithyH.M. TadrosM.I. Sucrose stearate-based proniosome-derived niosomes for the nebulisable delivery of cromolyn sodium.Int. J. Pharm.20083571-218919810.1016/j.ijpharm.2008.01.056 18339494
    [Google Scholar]
  37. García-ManriqueP. MachadoN.D. FernándezM.A. Blanco-LópezM.C. MatosM. GutiérrezG. Effect of drug molecular weight on niosomes size and encapsulation efficiency.Colloids Surf. B Biointerfaces202018611071110.1016/j.colsurfb.2019.110711 31864114
    [Google Scholar]
  38. GharbaviM. AmaniJ. Kheiri-ManjiliH. DanafarH. SharafiA. Niosome: A promising nanocarrier for natural drug delivery through blood-brain barrier.Adv. Pharmacol. Sci.2018201811510.1155/2018/6847971 30651728
    [Google Scholar]
  39. El-MenshaweS.F. A novel approach to topical acetazolamide/PEG 400 ocular niosomes.J. Drug Deliv. Sci. Technol.201222429529910.1016/S1773‑2247(12)50049‑3
    [Google Scholar]
  40. ZubairuY. NegiL.M. IqbalZ. TalegaonkarS. Design and development of novel bioadhesive niosomal formulation for the transcorneal delivery of anti-infective agent: In-vitro and ex-vivo investigations.Asian J Pharma Sci201510432233010.1016/j.ajps.2015.02.001
    [Google Scholar]
  41. AlemiA. Zavar RezaJ. HaghiralsadatF. Paclitaxel and curcumin coadministration in novel cationic PEGylated niosomal formulations exhibit enhanced synergistic antitumor efficacy.J. Nanobiotechnology20181612810.1186/s12951‑018‑0351‑4 29571289
    [Google Scholar]
  42. SharmaV. AnandhakumarS. SasidharanM. Self-degrading niosomes for encapsulation of hydrophilic and hydrophobic drugs: An efficient carrier for cancer multi-drug delivery.Mater. Sci. Eng. C20155639340010.1016/j.msec.2015.06.049 26249606
    [Google Scholar]
  43. Abu HajlehM.N. Abu-HuwaijR. AL-Samydai A, Al-Halaseh LK, Al-Dujaili EA. The revolution of cosmeceuticals delivery by using nanotechnology: A narrative review of advantages and side effects.J. Cosmet. Dermatol.202120123818382810.1111/jocd.14441 34510691
    [Google Scholar]
  44. JunyaprasertV.B. SinghsaP. SuksiriworapongJ. ChantasartD. Physicochemical properties and skin permeation of Span 60/Tween 60 niosomes of ellagic acid.Int. J. Pharm.2012423230331110.1016/j.ijpharm.2011.11.032 22155414
    [Google Scholar]
  45. AkbariJ. SaeediM. EnayatifardR. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery.J. Drug Deliv. Sci. Technol.20206010203510.1016/j.jddst.2020.102035
    [Google Scholar]
  46. SabryS. El hakim Ramadan A, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats.J. Drug Deliv. Sci. Technol.20216110216310.1016/j.jddst.2020.102163
    [Google Scholar]
  47. D’AngeloR.W.O. GonçalvesM.M. FachiM.M. VilhenaR.O. PontaroloR. MalufD.F. UPLC–QToF-MS characterization of blackberry extracts of cultivars ‘Tupy’,‘Guarani’, and ‘Xavante’: Development of extract-loaded niosomes.Rev. Bras. Farmacogn.202030451952710.1007/s43450‑020‑00076‑8
    [Google Scholar]
  48. PintoCS Dos SantosEP MansurCR Niosomes as nano-delivery systems in the pharmaceutical field.Critical Reviews™ in Therapeutic Drug Carrier Systems2016332
    [Google Scholar]
  49. ManosroiJ. ChankhampanC. KitdamrongthamW. In vivo anti‐ageing activity of cream containing niosomes loaded with purple glutinous rice (Oryza sativa Linn.) extract.Int. J. Cosmet. Sci.202042662263110.1111/ics.12658 32812663
    [Google Scholar]
  50. KandilS.M. SolimanI.I. DiabH.M. BedairN.I. MahrousM.H. AbdouE.M. Magnesium ascorbyl phosphate vesicular carriers for topical delivery; preparation, in-vitro and ex-vivo evaluation, factorial optimization and clinical assessment in melasma patients.Drug Deliv.202229153454710.1080/10717544.2022.2036872 35156490
    [Google Scholar]
  51. RadmardA. SaeediM. Morteza-SemnaniK. HashemiS.M.H. NokhodchiA. An eco-friendly and green formulation in lipid nanotechnology for delivery of a hydrophilic agent to the skin in the treatment and management of hyperpigmentation complaints: Arbutin niosome (Arbusome).Colloids Surf. B Biointerfaces202120111161610.1016/j.colsurfb.2021.111616 33618082
    [Google Scholar]
  52. JamalM. ImamS.S. AqilM. AmirM. MirS.R. MujeebM. Transdermal potential and anti-arthritic efficacy of ursolic acid from niosomal gel systems.Int. Immunopharmacol.201529236136910.1016/j.intimp.2015.10.029 26545446
    [Google Scholar]
  53. InalO. AmasyaG. Sezgin BayindirZ. YukselN. Development and quality assessment of glutathione tripeptide loaded niosome containing carbopol emulgels as nanocosmeceutical formulations.Int. J. Biol. Macromol.202324112465110.1016/j.ijbiomac.2023.124651 37119885
    [Google Scholar]
  54. ManosroiA. BoonpisuttinantK. WinitchaiS. ManosroiW. ManosroiJ. Free radical scavenging and tyrosinase inhibition activity of physic nut (Jatropha curcas Linn.) seed oil entrapped in niosomes.Curr. Nanosci.20117582582910.2174/157341311797483709
    [Google Scholar]
  55. TavanoL. MuzzalupoR. PicciN. de CindioB. Co-encapsulation of lipophilic antioxidants into niosomal carriers: Percutaneous permeation studies for cosmeceutical applications.Colloids Surf. B Biointerfaces201411414414910.1016/j.colsurfb.2013.09.055 24176892
    [Google Scholar]
  56. PandoD. MatosM. GutiérrezG. PazosC. Formulation of resveratrol entrapped niosomes for topical use.Colloids Surf. B Biointerfaces201512839840410.1016/j.colsurfb.2015.02.037 25766923
    [Google Scholar]
  57. MachadoN.D. GutiérrezG. MatosM. FernándezM.A. Preservation of the antioxidant capacity of resveratrol via encapsulation in niosomes.Foods202110598810.3390/foods10050988 33946473
    [Google Scholar]
  58. RezaeiroshanA. SaeediM. Morteza-SemnaniK. AkbariJ. GahsemiM. NokhodchiA. Development of trans-Ferulic acid niosome: An optimization and an in-vivo study.J. Drug Deliv. Sci. Technol.20205910185410.1016/j.jddst.2020.101854
    [Google Scholar]
  59. JainS. PatelN. ShahM.K. KhatriP. VoraN. Recent advances in lipid-based vesicles and particulate carriers for topical and transdermal application.J. Pharm. Sci.2017106242344510.1016/j.xphs.2016.10.001 27865609
    [Google Scholar]
  60. LimphapayomW. LoylerdK. LeabwanN. SukhasemS. Encapsulation of alpha-mangostin in cosmetic production by using nanotechnology.InInternational Symposium on Durian and Other Humid Tropical Fruits2015189192
    [Google Scholar]
  61. ManosroiA. ChankhampanC. ManosroiW. ManosroiJ. Transdermal absorption enhancement of papain loaded in elastic niosomes incorporated in gel for scar treatment.Eur. J. Pharm. Sci.201348347448310.1016/j.ejps.2012.12.010 23266464
    [Google Scholar]
  62. QumbarM. Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity.Biomed. Pharmacother.20179325526610.1016/j.biopha.2017.06.043 28738502
    [Google Scholar]
  63. ZhangY. ZhangK. WuZ. Evaluation of transdermal salidroside delivery using niosomes viain vitro cellular uptake.Int. J. Pharm.2015478113814610.1016/j.ijpharm.2014.11.018 25448576
    [Google Scholar]
  64. AljuffaliI. HsuC.Y. LinY.K. FangJ.Y. Cutaneous delivery of natural antioxidants: The enhancement approaches.Curr. Pharm. Des.201521202745275710.2174/1381612821666150428125428 25925121
    [Google Scholar]
  65. SinghS. ParasharP. KanoujiaJ. SinghI. SahaS. SarafS.A. Transdermal potential and anti-gout efficacy of Febuxostat from niosomal gel.J. Drug Deliv. Sci. Technol.20173934836110.1016/j.jddst.2017.04.020
    [Google Scholar]
  66. AllamA. El-MokhtarM.A. ElsabahyM. Vancomycin-loaded niosomes integrated within pH-sensitive in-situ forming gel for treatment of ocular infections while minimizing drug irritation.J. Pharm. Pharmacol.20197181209122110.1111/jphp.13106 31124593
    [Google Scholar]
  67. FetihG. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections.J. Drug Deliv. Sci. Technol.20163581510.1016/j.jddst.2016.06.002
    [Google Scholar]
  68. ParadkarM.U. ParmarM. Formulation development and evaluation of Natamycin niosomal in-situ gel for ophthalmic drug delivery.J. Drug Deliv. Sci. Technol.20173911312210.1016/j.jddst.2017.03.005
    [Google Scholar]
  69. KhatoonM. ShahK.U. DinF.U. Proniosomes derived niosomes: Recent advancements in drug delivery and targeting.Drug Deliv.2017242566910.1080/10717544.2017.1384520 29130758
    [Google Scholar]
  70. KhanM.I. MadniA. PeltonenL. Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein.Eur. J. Pharm. Sci.201695889510.1016/j.ejps.2016.09.002 27600819
    [Google Scholar]
  71. MaestrelliF. MuraP. González-RodríguezM.L. Calcium alginate microspheres containing metformin hydrochloride niosomes and chitosomes aimed for oral therapy of type 2 diabetes mellitus.Int. J. Pharm.20175301-243043910.1016/j.ijpharm.2017.07.083 28778628
    [Google Scholar]
  72. IbrahimM.M. ShehataT.M. Tramadol HCl encapsulated niosomes for extended analgesic effect following oral administration.J. Drug Deliv. Sci. Technol.201846141810.1016/j.jddst.2018.04.011
    [Google Scholar]
  73. MarianecciC. PaolinoD. CeliaC. FrestaM. CarafaM. AlhaiqueF. Non-ionic surfactant vesicles in pulmonary glucocorticoid delivery: Characterization and interaction with human lung fibroblasts.J. Control. Release2010147112713510.1016/j.jconrel.2010.06.022 20603167
    [Google Scholar]
  74. MoazeniE. GilaniK. SotoudeganF. Formulation and in vitro evaluation of ciprofloxacin containing niosomes for pulmonary delivery.J. Microencapsul.201027761862710.3109/02652048.2010.506579 20681747
    [Google Scholar]
  75. AlsaadiM. ItaliaJ.L. MullenA.B. The efficacy of aerosol treatment with non-ionic surfactant vesicles containing amphotericin B in rodent models of leishmaniasis and pulmonary aspergillosis infection.J. Control. Release2012160368569110.1016/j.jconrel.2012.04.004 22516093
    [Google Scholar]
  76. DemirbolatG.M. AktasE. CoskunG.P. ErdoganO. CevikO. New approach to formulate methotrexate-loaded niosomes: In vitro characterization and cellular effectiveness.J. Pharm. Innov.202116
    [Google Scholar]
  77. BragagniM. MenniniN. FurlanettoS. OrlandiniS. GhelardiniC. MuraP. Development and characterization of functionalized niosomes for brain targeting of dynorphin-B.Eur. J. Pharm. Biopharm.2014871737910.1016/j.ejpb.2014.01.006 24462793
    [Google Scholar]
  78. TavanoL. AielloR. IoeleG. PicciN. MuzzalupoR. Niosomes from glucuronic acid-based surfactant as new carriers for cancer therapy: Preparation, characterization and biological properties.Colloids Surf. B Biointerfaces201411871310.1016/j.colsurfb.2014.03.016 24709252
    [Google Scholar]
  79. AL Qtaish N, Gallego I, Villate-Beitia I, et al. Niosome-based approach for in situ gene delivery to retina and brain cortex as immune-privileged tissues.Pharmaceutics202012319810.3390/pharmaceutics12030198 32106545
    [Google Scholar]
  80. PurasG. MashalM. ZárateJ. A novel cationic niosome formulation for gene delivery to the retina.J. Control. Release2014174273610.1016/j.jconrel.2013.11.004 24231407
    [Google Scholar]
  81. Villate-BeitiaI. GallegoI. Martínez-NavarreteG. Polysorbate 20 non-ionic surfactant enhances retinal gene delivery efficiency of cationic niosomes after intravitreal and subretinal administration.Int. J. Pharm.20185501-238839710.1016/j.ijpharm.2018.07.035 30009984
    [Google Scholar]
  82. Carballo-PedraresN. KattarA. ConcheiroA. Alvarez-LorenzoC. Rey-RicoA. Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells.Mater. Sci. Eng. C202112811230710.1016/j.msec.2021.112307 34474858
    [Google Scholar]
  83. TavanoL. VivacquaM. CaritoV. MuzzalupoR. CaroleoM.C. NicolettaF. Doxorubicin loaded magneto-niosomes for targeted drug delivery.Colloids Surf. B Biointerfaces201310280380710.1016/j.colsurfb.2012.09.019 23107959
    [Google Scholar]
  84. KassemM.A. El-SawyH.S. Abd-AllahF.I. AbdelghanyT.M. El-SayK.M. Maximizing the therapeutic efficacy of imatinib mesylate–loaded niosomes on human colon adenocarcinoma using Box-Behnken design.J. Pharm. Sci.2017106111112210.1016/j.xphs.2016.07.007 27544432
    [Google Scholar]
  85. DeA. VenkateshN. SenthilM. SanapalliB.K.R. ShanmughamR. KarriV.V.S.R. Smart niosomes of temozolomide for enhancement of brain targeting.Nanobiomedicine (Rij)2018510.1177/1849543518805355 30344765
    [Google Scholar]
  86. KhazaeliP. SharifiI. TalebianE. HeraviG. MoazeniE. MostafaviM. Anti-leishmanial effect of itraconazole niosome on in vitro susceptibility of Leishmania tropica.Environ. Toxicol. Pharmacol.201438120521110.1016/j.etap.2014.04.003 24956400
    [Google Scholar]
  87. ZidanA.S. HabibM.J. Maximized mucoadhesion and skin permeation of anti-AIDS-loaded niosomal gels.J. Pharm. Sci.2014103395296410.1002/jps.23867 24464823
    [Google Scholar]
  88. MoghddamS.R.M. AhadA. AqilM. ImamS.S. SultanaY. Formulation and optimization of niosomes for topical diacerein delivery using 3-factor, 3-level Box-Behnken design for the management of psoriasis.Mater. Sci. Eng. C20166978979710.1016/j.msec.2016.07.043 27612773
    [Google Scholar]
  89. PandeyS.S. ShahK.M. MaulviF.A. Topical delivery of cyclosporine loaded tailored niosomal nanocarriers for improved skin penetration and deposition in psoriasis: Optimization, ex vivo and animal studies.J. Drug Deliv. Sci. Technol.20216310244110.1016/j.jddst.2021.102441
    [Google Scholar]
  90. AlclantarN. WilliamsE.C. ToomeyR. Niosome hydrogel drug delivery.U.S. Patent 201000682642010
  91. SmithG. ShenoyD.B. LeeR.W. Adjuvant and vaccine compositions.U.S. Patent 201002269322007
  92. AlclantarN. DearbornK. Van AukarM. ToomeyR. HoodE. Niosome hydro gel drug delivery.U.S. Patent 200800504452008
  93. HoodE. StromJ.A. Van AukarM. Ultrasound enhancement of drug release across non-ionic surfactant membranes.U.S. Patent 200602922112011
  94. Van AukarM. PlaasA. HoodE. Immunotargeting of nonionic surfactant vesicles.U.S. Patent 200701725202007
  95. YangC.C. LeY.C. LiuC.C. Compositions and methods of enhanced transdermal delivery of steroidal compounds and preparation methods.U.S. Patent 200502397472005
  96. Aleksandrovich BazikovI GrigorevichKK AnastasovnaSZ Dental gel having niosomes for treatment of inflammatory and dystrophic periodontal diseases.R.U. Patent 2582290C22016
  97. MorrisonE. Unilamellar niosomes having high kow pharmacological compounds solvated theren and a method for the preparation thereof.U.S. Patent 2016/0184228A12016
  98. IgorB. Aleksandrovich Method for making transdermal patch containing Peg-12 dimethicone niosomes.R.U. Patent 2539397C22015
  99. AleksandrovichBI Doxorubicin and organosilicon nanoparticles niosomes-based pharmaceutical gel for skin cancer treating R.U.Patent 2600164C22016
  100. CheillanS. GuerinS.C.L. CanoC.A. Composition comprising an association of niosomes and C-glycoside derivative, Crocus sativus extract and/or Crocus sativus Flower extract, for regulating skin pigmentation.Publication2019B1FR3032115
    [Google Scholar]
  101. AleksandrovichIB DalkhatovichBM NasyrovichAA ZakirovichVA Transdermal anthelmintic agent of silicone niosomes with albendazole R.U.Patent 2541156C12015
  102. Alexandrovich BazikovI AksyonovAV Aleksandrovich AksyonovN MaltsevAN SmirnovAN Pharmaceutical niosomal gel based on N-Hydroxy-2-(2-(naphthalene-2-Yl)-1h-Indole-3-Yl-2- Phenylacetamide with anti-tumour Activity to Glioblastoma. R.U.Patent 2627449C22017
  103. TampaN.A. Alcantar Marzenna Wiranowska: Rana Falahat, Ryan G. Toomey. Enhanced targeted drug delivery system via chitosan hydrogel and chlorotoxin.U.S. Patent 9522114B12016
  104. HossainyS. DavalanD. TrollsasM. StankusJ. KhongY.M. WanJ. Drug delivery system and method of treatment of vascular diseases using photodynamic therapy.U.S. Patent 9572795B22017
  105. ShahJ. NairA.B. ShahH. JacobS. ShehataT.M. MorsyM.A. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel.Asian Journal of Pharmaceutical Sciences202015678679610.1016/j.ajps.2019.05.001 33363633
    [Google Scholar]
  106. GuglevaV. TitevaS. RangelovS. MomekovaD. Design and in vitro evaluation of doxycycline hyclate niosomes as a potential ocular delivery system.Int. J. Pharm.201956711843110.1016/j.ijpharm.2019.06.022 31207279
    [Google Scholar]
  107. AllamA. ElsabahyM. El BadryM. ElerakyN.E. Betaxolol‐loaded niosomes integrated within pH‐sensitive in situ forming gel for management of glaucoma.Int. J. Pharm.202159812038010.1016/j.ijpharm.2021.120380 33609725
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018269199231121055548
Loading
/content/journals/cdd/10.2174/0115672018269199231121055548
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test