Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The field of fiber technology is a dynamic and innovative domain that offers novel solutions for controlled and targeted therapeutic interventions. This abstract provides an overview of key aspects within this field, encompassing a range of techniques, applications, commercial developments, intellectual property, and regulatory considerations. The foundational introduction establishes the significance of fiber-based drug delivery systems. Electrospinning, a pivotal technique, has been explored in this paper, along with its various methods and applications. Monoaxial, coaxial, triaxial, and side-by-side electrospinning techniques each offer distinct advantages and applications. Centrifugal spinning, solution and melt blowing spinning, and pressurized gyration further contribute to the field's diversity. The review also delves into commercial advancements, highlighting marketed products that have successfully harnessed fiber technology. The role of intellectual property is acknowledged, with patents reflecting the innovative strides in fiber-based drug delivery. The regulatory perspective, essential for ensuring safety and efficacy, is discussed in the context of global regulatory agencies' evaluations. This review encapsulates the multidimensional nature of fiber technology in drug delivery and pharmaceuticals, showcasing its potential to revolutionize medical treatments and underscores the importance of continued collaboration between researchers, industry, and regulators for its advancement.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018279628231221105210
2024-01-25
2025-05-04
Loading full text...

Full text loading...

References

  1. ThakkarS. MisraM. Electrospun polymeric nanofibers: New horizons in drug delivery.Eur. J. Pharm. Sci.201710714816710.1016/j.ejps.2017.07.00128690099
    [Google Scholar]
  2. AdepuS. RamakrishnaS. Controlled drug delivery systems: Current status and future directions.Molecules20212619590510.3390/molecules2619590534641447
    [Google Scholar]
  3. BalajiA. VellayappanM.V. JohnA.A. SubramanianA.P. JaganathanS.K. SupriyantoE. RazakS.I.A. An insight on electrospun-nanofibers-inspired modern drug delivery system in the treatment of deadly cancers.RSC Advances2015571579845800410.1039/C5RA07595E
    [Google Scholar]
  4. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S14631529042776
    [Google Scholar]
  5. GaydhaneM.K. SharmaC.S. MajumdarS. Electrospun nanofibres in drug delivery: Advances in controlled release strategies.RSC Advances202313117312732810.1039/D2RA06023J36891485
    [Google Scholar]
  6. Tiozzo FasioloL. MannielloM.D. TrattaE. ButtiniF. RossiA. SonvicoF. BortolottiF. RussoP. ColomboG. Opportunity and challenges of nasal powders: Drug formulation and delivery.Eur. J. Pharm. Sci.201811321710.1016/j.ejps.2017.09.02728942007
    [Google Scholar]
  7. RahmaniF. ZiyadiH. BaghaliM. LuoH. RamakrishnaS. Electrospun PVP/PVA nanofiber mat as a novel potential transdermal drug-delivery system for buprenorphine: A solution needed for pain management.Appl. Sci.2021116277910.3390/app11062779
    [Google Scholar]
  8. ChenS. LiR. LiX. XieJ. Electrospinning: An enabling nanotechnology platform for drug delivery and regenerative medicine.Adv. Drug Deliv. Rev.201813218821310.1016/j.addr.2018.05.00129729295
    [Google Scholar]
  9. RathinamoorthyR. Nanofiber for drug delivery system-principle and application.Pakistan Textile Journal2012612
    [Google Scholar]
  10. DanieleM.A. BoydD.A. AdamsA.A. LiglerF.S. Microfluidic strategies for design and assembly of microfibers and nanofibers with tissue engineering and regenerative medicine applications.Adv. Healthc. Mater.201541112810.1002/adhm.20140014424853649
    [Google Scholar]
  11. Abdul HameedM.M. Mohamed KhanS.A.P. ThamerB.M. RajkumarN. El-HamsharyH. El-NewehyM. Electrospun nanofibers for drug delivery applications: Methods and mechanism.Polym. Adv. Technol.202334162310.1002/pat.5884
    [Google Scholar]
  12. SillT.J. von RecumH.A. Electrospinning: Applications in drug delivery and tissue engineering.Biomaterials200829131989200610.1016/j.biomaterials.2008.01.01118281090
    [Google Scholar]
  13. RenekerD.H. YarinA.L. Electrospinning jets and polymer nanofibers.Polymer200849102387242510.1016/j.polymer.2008.02.002
    [Google Scholar]
  14. BajiA. MaiY.W. WongS.C. AbtahiM. ChenP. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties.Compos. Sci. Technol.201070570371810.1016/j.compscitech.2010.01.010
    [Google Scholar]
  15. MottaghitalabV. HaghiA.K. A study on electrospinning of polyacrylonitrile nanofibers.Korean J. Chem. Eng.201128111411810.1007/s11814‑010‑0348‑7
    [Google Scholar]
  16. LuH. ChenW.J. XingY. YingD.J. JiangB. Design and preparation of an electrospun biomaterial surgical patch.J. Bioact. Compat. Polym.2009241_supplSuppl.15816810.1177/0883911509103559
    [Google Scholar]
  17. NisbetD.R. ForsytheJ.S. ShenW. FinkelsteinD.I. HorneM.K. Review paper: A review of the cellular response on electrospun nanofibers for tissue engineering.J. Biomater. Appl.200924172910.1177/088532820809908619074469
    [Google Scholar]
  18. BhattaraiS.R. BhattaraiN. YiH.K. HwangP.H. ChaD.I. KimH.Y. Novel biodegradable electrospun membrane: Scaffold for tissue engineering.Biomaterials200425132595260210.1016/j.biomaterials.2003.09.04314751745
    [Google Scholar]
  19. LiW.J. LaurencinC.T. CatersonE.J. TuanR.S. KoF.K. Electrospun nanofibrous structure: A novel scaffold for tissue engineering.J. Biomed. Mater. Res.200260461362110.1002/jbm.1016711948520
    [Google Scholar]
  20. LeeS. ObendorfS.K. Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration.Text. Res. J.200777969670210.1177/0040517507080284
    [Google Scholar]
  21. ThavasiV. SinghG. RamakrishnaS. Electrospun nanofibers in energy and environmental applications.Energy Environ. Sci.20081220522110.1039/b809074m
    [Google Scholar]
  22. TuckerN StangerJJ StaigerMP RazzaqH HofmanK The history of the science and technology of electrospinning from 1600 to.Journal of engineered fibers and fabrics199572
    [Google Scholar]
  23. AntonF. inventor; richard schreiber gastell, assignee. process and apparatus for preparing artificial threads.US19755041934
  24. FormhalsA. Method and apparatus for spinning.US2349950A1944
  25. TaylorG.I. Disintegration of water drops in an electric field.Proc. R. Soc. Lond. A Math. Phys. Sci.1964280138238339710.1098/rspa.1964.0151
    [Google Scholar]
  26. TaylorG.I. Electrically driven jets.Proc. R. Soc. Lond. A Math. Phys. Sci.1969313151545347510.1098/rspa.1969.0205
    [Google Scholar]
  27. DoshiJ. RenekerD.H. Electrospinning process and applications of electrospun fibers.J. Electrost.1995352-315116010.1016/0304‑3886(95)00041‑8
    [Google Scholar]
  28. KowalewskiT.A. HillerW.J. BehniaM. An experimental study of evaporating small diameter jets.Phys. Fluids A Fluid Dyn.1993581883189010.1063/1.858814
    [Google Scholar]
  29. VassP. SzabóE. DomokosA. HirschE. GalataD. FarkasB. DémuthB. AndersenS.K. VighT. VerreckG. MarosiG. NagyZ.K. Scale‐up of electrospinning technology: Applications in the pharmaceutical industry.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020124e161110.1002/wnan.161131863572
    [Google Scholar]
  30. HeX.X. ZhengJ. YuG.F. YouM.H. YuM. NingX. LongY.Z. Near-field electrospinning: Progress and applications.J. Phys. Chem. C2017121168663867810.1021/acs.jpcc.6b12783
    [Google Scholar]
  31. PokornyP. KostakovaE. SanetrnikF. MikesP. ChvojkaJ. KalousT. BilekM. PejcharK. ValteraJ. LukasD. Effective AC needleless and collectorless electrospinning for yarn production.Phys. Chem. Chem. Phys.20141648268162682210.1039/C4CP04346D25373725
    [Google Scholar]
  32. BhardwajN. KunduS.C. Electrospinning: A fascinating fiber fabrication technique.Biotechnol. Adv.201028332534710.1016/j.biotechadv.2010.01.00420100560
    [Google Scholar]
  33. GeP. WangS. ZhangJ. YangB. Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications.Mater. Horiz.20207102566259510.1039/D0MH00768D
    [Google Scholar]
  34. KeirouzA. WangZ. ReddyV.S. NagyZ.K. VassP. BuzgoM. RamakrishnaS. RadacsiN. The history of electrospinning: Past, present, and future developments.Adv. Mater. Technol.2023811220172310.1002/admt.202201723
    [Google Scholar]
  35. BlakneyA.K. BallC. KrogstadE.A. WoodrowK.A. Electrospun fibers for vaginal anti-HIV drug delivery.Antiviral Res.2013100Suppl.S9S1610.1016/j.antiviral.2013.09.02224188701
    [Google Scholar]
  36. ZupančičŠ. Sinha-RayS. Sinha-RayS. KristlJ. YarinA.L. Long-term sustained ciprofloxacin release from PMMA and hydrophilic polymer blended nanofibers.Mol. Pharm.201613129530510.1021/acs.molpharmaceut.5b0080426635214
    [Google Scholar]
  37. ChouS.F. CarsonD. WoodrowK.A. Current strategies for sustaining drug release from electrospun nanofibers.J. Control. Release2015220Pt B58459110.1016/j.jconrel.2015.09.00826363300
    [Google Scholar]
  38. KrogstadE.A. WoodrowK.A. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery.Int. J. Pharm.20144751-228229110.1016/j.ijpharm.2014.08.03925169075
    [Google Scholar]
  39. ZahmatkeshanM. AdelM. BahramiS. EsmaeiliF. RezayatS.M. SaeediY. MehraviB. JameieS.B. AshtariK. Polymer-based nanofibers: preparation, fabrication, and applications. InHandbook of nanofibers.ChamSpringer2019215261
    [Google Scholar]
  40. PisaniS. DoratiR. ChiesaE. GentaI. ModenaT. BruniG. GrisoliP. ContiB. Release profile of gentamicin sulfate from polylactide-co-polycaprolactone electrospun nanofiber matrices.Pharmaceutics201911416110.3390/pharmaceutics1104016130987212
    [Google Scholar]
  41. ArkanE. BehboodL. MoradipourP. MoradiF. Mucoadhesive electrospun nanofibers of chitosan/gelatin containing vancomycin as a delivery system.J. Rep. Pharma. Sci.20176215010.4103/2322‑1232.222623
    [Google Scholar]
  42. HadjianfarM. SemnaniD. VarshosazJ. Polycaprolactone/chitosan blend nanofibers loaded by 5‐fluorouracil: An approach to anticancer drug delivery system.Polym. Adv. Technol.201829122972298110.1002/pat.4417
    [Google Scholar]
  43. ZhaoJ. CuiW. Fabrication of acid-responsive electrospun fibers via doping sodium bicarbonate for quick releasing drug.Nanosci. Nanotechnol. Lett.20146433934510.1166/nnl.2014.1764
    [Google Scholar]
  44. KersaniD. MouginJ. LopezM. DegoutinS. TabaryN. CazauxF. JanusL. MatonM. ChaiF. SobocinskiJ. BlanchemainN. MartelB. Stent coating by electrospinning with chitosan/poly-cyclodextrin based nanofibers loaded with simvastatin for restenosis prevention.Eur. J. Pharm. Biopharm.202015015616710.1016/j.ejpb.2019.12.01732179100
    [Google Scholar]
  45. GrimaudoM.A. ConcheiroA. Alvarez-LorenzoC. Crosslinked hyaluronan electrospun nanofibers for ferulic acid ocular delivery.Pharmaceutics202012327410.3390/pharmaceutics1203027432192007
    [Google Scholar]
  46. AkhgariA. HeshmatiZ. Afrasiabi GarekaniH. SadeghiF. SabbaghA. Sharif MakhmalzadehB. NokhodchiA. Indomethacin electrospun nanofibers for colonic drug delivery: In vitro dissolution studies.Colloids Surf. B Biointerfaces2017152293510.1016/j.colsurfb.2016.12.03528064095
    [Google Scholar]
  47. ChenZ. ChenZ. ZhangA. HuJ. WangX. YangZ. Electrospun nanofibers for cancer diagnosis and therapy.Biomater. Sci.20164692293210.1039/C6BM00070C27048889
    [Google Scholar]
  48. Habibi JouybariM. HosseiniS. MahboobniaK. BoloursazL.A. MoradiM. IraniM. Simultaneous controlled release of 5-FU, DOX and PTX from chitosan/PLA/5-FU/g-C3N4-DOX/g-C3N4-PTX triaxial nanofibers for breast cancer treatment in vitro.Colloids Surf. B Biointerfaces201917949550410.1016/j.colsurfb.2019.04.02631005745
    [Google Scholar]
  49. AnothraP. PradhanD. NaikP.K. GhoshG. RathG. Development and characterization of 5-fluorouracil nanofibrous film for the treatment of stomach cancer.J. Drug Deliv. Sci. Technol.20216110221910.1016/j.jddst.2020.102219
    [Google Scholar]
  50. AbsarS. KhanM. EdwardsK. CalamasD. Electrospinning of cisplatin-loaded cellulose nanofibers for cancer drug delivery.InASME International Mechanical Engineering Congress and ExpositionAmerican Society of Mechanical Engineers.20144658310.1115/IMECE2014‑37182
    [Google Scholar]
  51. SamadzadehS. MousazadehH. GhareghomiS. DadashpourM. BabazadehM. ZarghamiN. In vitro anticancer efficacy of Metformin-loaded PLGA nanofibers towards the post-surgical therapy of lung cancer.J. Drug Deliv. Sci. Technol.20216110231810.1016/j.jddst.2020.102318
    [Google Scholar]
  52. KuangG. ZhangZ. LiuS. ZhouD. LuX. JingX. HuangY. Biphasic drug release from electrospun polyblend nanofibers for optimized local cancer treatment.Biomater. Sci.20186232433110.1039/C7BM01018D29242857
    [Google Scholar]
  53. AlavarseA.C. de Oliveira SilvaF.W. ColqueJ.T. da SilvaV.M. PrietoT. VenancioE.C. BonventJ.J. Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing.Mater. Sci. Eng. C20177727128110.1016/j.msec.2017.03.19928532030
    [Google Scholar]
  54. Bakhsheshi-RadH.R. HadisiZ. IsmailA.F. AzizM. AkbariM. BertoF. ChenX.B. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance.Polym. Test.20208210629810.1016/j.polymertesting.2019.106298
    [Google Scholar]
  55. MehtaP. Al-KinaniA.A. ArshadM.S. ChangM.W. AlanyR.G. AhmadZ. Development and characterisation of electrospun timolol maleate-loaded polymeric contact lens coatings containing various permeation enhancers.Int. J. Pharm.2017532140842010.1016/j.ijpharm.2017.09.02928917987
    [Google Scholar]
  56. MalekiM. LatifiM. Amani-TehranM. MathurS. Electrospun core–shell nanofibers for drug encapsulation and sustained release.Polym. Eng. Sci.20135381770177910.1002/pen.23426
    [Google Scholar]
  57. LiJ. LiuY. AbdelhakimH. Drug delivery applications of coaxial electrospun nanofibres in cancer therapy.Molecules2022276180310.3390/molecules2706180335335167
    [Google Scholar]
  58. DziemidowiczK. SangQ. WuJ. ZhangZ. ZhouF. LagaronJ.M. MoX. ParkerG.J.M. YuD.G. ZhuL.M. WilliamsG.R. Electrospinning for healthcare: Recent advancements.J. Mater. Chem. B Mater. Biol. Med.20219493995110.1039/D0TB02124E33367446
    [Google Scholar]
  59. BehereI. IngavleG. In vitro and in vivo advancement of multifunctional electrospun nanofiber scaffolds in wound healing applications: Innovative nanofiber designs, stem cell approaches, and future perspectives.J. Biomed. Mater. Res. A2022110244346110.1002/jbm.a.3729034390324
    [Google Scholar]
  60. StackM ParikhD WangH WangL XuM ZouJ ChengJ WangH Electrospun nanofibers for drug delivery.InElectrospinning: Nanofabrication and ApplicationsWilliam Andrew Publishing.201973576410.1016/B978‑0‑323‑51270‑1.00025‑X
    [Google Scholar]
  61. HawthorneD. PannalaA. SandemanS. LloydA. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside.J. Drug Deliv. Sci. Technol.20227810393610.1016/j.jddst.2022.103936
    [Google Scholar]
  62. Modica de MohacL. KeatingA. de Fátima PinaM. Raimi-AbrahamB. Engineering of nanofibrous amorphous and crystalline solid dispersions for oral drug delivery.Pharmaceutics2018111710.3390/pharmaceutics1101000730586871
    [Google Scholar]
  63. SunZ. ZussmanE. YarinA.L. WendorffJ.H. GreinerA. Compound core–shell polymer nanofibers by co‐electrospinning.Adv. Mater.200315221929193210.1002/adma.200305136
    [Google Scholar]
  64. VasitaR GelainF. Core‐sheath fibers for regenerative medicine.Nanomaterials in Drug Delivery, Imaging, and Tissue Engineering2013449353310.1002/9781118644591.ch15
    [Google Scholar]
  65. YoonJ. YangH.S. LeeB.S. YuW.R. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications.Adv. Mater.20183042170476510.1002/adma.20170476530152180
    [Google Scholar]
  66. PantB. ParkM. ParkS.J. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: a review.Pharmaceutics201911730510.3390/pharmaceutics1107030531266186
    [Google Scholar]
  67. LuY. HuangJ. YuG. CardenasR. WeiS. WujcikE.K. GuoZ. Coaxial electrospun fibers: applications in drug delivery and tissue engineering.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168565467710.1002/wnan.139126848106
    [Google Scholar]
  68. TongH.W. ZhangX. WangM. A new nanofiber fabrication technique based on coaxial electrospinning.Mater. Lett.201266125726010.1016/j.matlet.2011.08.095
    [Google Scholar]
  69. ChenS. GeL. MuellerA. CarlsonM.A. TeusinkM.J. ShulerF.D. XieJ. Twisting electrospun nanofiber fine strips into functional sutures for sustained co-delivery of gentamicin and silver.Nanomedicine20171341435144510.1016/j.nano.2017.01.01628185940
    [Google Scholar]
  70. FazioE. RidolfoA. NeriG. Thermally activated noble metal Nanoparticles incorporated in electrospun fiber-based drug delivery systems.Curr. Nanomater.201941213110.2174/1573407214666180914121929
    [Google Scholar]
  71. YanE. JiangJ. YangX. FanL. WangY. AnQ. ZhangZ. LuB. WangD. ZhangD. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer.J. Drug Deliv. Sci. Technol.20205510145510.1016/j.jddst.2019.101455
    [Google Scholar]
  72. YousefiP. DiniG. MovahediB. VaezifarS. MehdikhaniM. Polycaprolactone/chitosan core/shell nanofibrous mat fabricated by electrospinning process as carrier for rosuvastatin drug.Polym. Bull.202119
    [Google Scholar]
  73. BaghaliM. ZiyadiH. Faridi-MajidiR. Fabrication and characterization of core–shell TiO 2-containing nanofibers of PCL-Zein by coaxial electrospinning method as an erythromycin drug carrier.Polym. Bull.2022121
    [Google Scholar]
  74. LuraghiA. PeriF. MoroniL. Electrospinning for drug delivery applications: A review.J. Control. Release202133446348410.1016/j.jconrel.2021.03.03333781809
    [Google Scholar]
  75. TawfikE.A. CraigD.Q.M. BarkerS.A. Dual drug-loaded coaxial nanofibers for the treatment of corneal abrasion.Int. J. Pharm.202058111929610.1016/j.ijpharm.2020.11929632247813
    [Google Scholar]
  76. SuY. SuQ. LiuW. JinG. MoX. RamakrishnS. Dual-drug encapsulation and release from core-shell nanofibers.J. Biomater. Sci. Polym. Ed.201223786187110.1163/092050611X56413721418751
    [Google Scholar]
  77. WangJ. WindbergsM. Controlled dual drug release by coaxial electrospun fibers – Impact of the core fluid on drug encapsulation and release.Int. J. Pharm.201955636337110.1016/j.ijpharm.2018.12.02630572080
    [Google Scholar]
  78. HuaD. LiuZ. WangF. GaoB. ChenF. ZhangQ. XiongR. HanJ. SamalS.K. De SmedtS.C. HuangC. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery.Carbohydr. Polym.20161511240124410.1016/j.carbpol.2016.06.06627474676
    [Google Scholar]
  79. LvY. PanQ. BlighS.W.A. LiH. WuH. SangQ. ZhuL.M. Core-sheath nanofibers as drug delivery system for thermoresponsive controlled release.J. Pharm. Sci.201710651258126510.1016/j.xphs.2016.12.03128131496
    [Google Scholar]
  80. NagarajanS BechelanyM KalkuraNS MieleP BohatierCP BalmeS Electrospun nanofibers for drug delivery in regenerative medicine.InApplications of targeted nano drugs and delivery systemsElsevier201959562510.1016/B978‑0‑12‑814029‑1.00020‑X
    [Google Scholar]
  81. KajdičS. PlaninšekO. GašperlinM. KocbekP. Electrospun nanofibers for customized drug-delivery systems.J. Drug Deliv. Sci. Technol.20195167268110.1016/j.jddst.2019.03.038
    [Google Scholar]
  82. YuD.G. XuY. LiZ. DuL.P. ZhaoB.G. WangX. Coaxial electrospinning with mixed solvents: From flat to round eudragit L100 nanofibers for better colon-targeted sustained drug release profiles.J. Nanomater.201420141810.1155/2014/967295
    [Google Scholar]
  83. KhalfA. MadihallyS.V. Recent advances in multiaxial electrospinning for drug delivery.Eur. J. Pharm. Biopharm.201711211710.1016/j.ejpb.2016.11.01027865991
    [Google Scholar]
  84. HanD. StecklA.J. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules.ACS Appl. Mater. Interfaces20135168241824510.1021/am402376c23924226
    [Google Scholar]
  85. LiuW. NiC. ChaseD.B. RaboltJ.F. Preparation of multilayer biodegradable nanofibers by triaxial electrospinning.ACS Macro Lett.20132646646810.1021/mz400068835581798
    [Google Scholar]
  86. SharmaGK JamesNR Electrospinning: The technique and applications.InRecent Developments in Nanofibers ResearchIntechopen2022
    [Google Scholar]
  87. LiY. ZhuJ. ChengH. LiG. ChoH. JiangM. GaoQ. ZhangX. Developments of advanced electrospinning techniques: A critical review.Adv. Mater. Technol.2021611210041010.1002/admt.202100410
    [Google Scholar]
  88. HuangC.K. ZhangK. GongQ. YuD.G. WangJ. TanX. QuanH. Ethylcellulose-based drug nano depots fabricated using a modified triaxial electrospinning.Int. J. Biol. Macromol.2020152687610.1016/j.ijbiomac.2020.02.23932097744
    [Google Scholar]
  89. ChenS. BodaS.K. BatraS.K. LiX. XieJ. Emerging roles of electrospun nanofibers in cancer research.Adv. Healthc. Mater.201876170102410.1002/adhm.20170102429210522
    [Google Scholar]
  90. LiuM. ZhangY. SunS. KhanA.R. JiJ. YangM. ZhaiG. Recent advances in electrospun for drug delivery purpose.J. Drug Target.201927327028210.1080/1061186X.2018.148141329798692
    [Google Scholar]
  91. LiX. HeY. HouJ. YangG. ZhouS. A time‐programmed release of dual drugs from an implantable trilayer structured fiber device for synergistic treatment of breast cancer.Small2020169190226210.1002/smll.20190226231322830
    [Google Scholar]
  92. NagiahN. MurdockC.J. BhattacharjeeM. NairL. LaurencinC.T. Development of tripolymeric triaxial electrospun fibrous matrices for dual drug delivery applications.Sci. Rep.202010160910.1038/s41598‑020‑57412‑031953439
    [Google Scholar]
  93. YuD.G. WangM. GeR. Strategies for sustained drug release from electrospun multi‐layer nanostructures.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2022143e177210.1002/wnan.177234964277
    [Google Scholar]
  94. TabakogluS. KołbukD. SajkiewiczP. Multifluid electrospinning for multi-drug delivery systems: Pros and cons, challenges, and future directions.Biomater. Sci.2022111376110.1039/D2BM01513G36367316
    [Google Scholar]
  95. HuangZ.X. WuJ.W. WongS.C. QuJ.P. SrivatsanT.S. The technique of electrospinning for manufacturing core-shell nanofibers.Mater. Manuf. Process.201833220221910.1080/10426914.2017.1303144
    [Google Scholar]
  96. WilliamsL. HattonF.L. WillcockH. MeleE. Electrospinning of stimuli‐responsive polymers for controlled drug delivery: pH‐ and temperature‐driven release.Biotechnol. Bioeng.202211951177118810.1002/bit.2804335075674
    [Google Scholar]
  97. KhodadadiM. AlijaniS. MontazeriM. EsmaeilizadehN. Sadeghi-SourehS. Pilehvar-SoltanahmadiY. Recent advances in electrospun nanofiber‐ mediated drug delivery strategies for localized cancer chemotherapy.J. Biomed. Mater. Res. A202010871444145810.1002/jbm.a.3691232246745
    [Google Scholar]
  98. PerezR.A. KimH.W. Core–shell designed scaffolds for drug delivery and tissue engineering.Acta Biomater.20152121910.1016/j.actbio.2015.03.01325792279
    [Google Scholar]
  99. DingY. DouC. ChangS. XieZ. YuD.G. LiuY. ShaoJ. Core–shell eudragit s100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release.Polymers2020129203410.3390/polym1209203432906728
    [Google Scholar]
  100. AliA. ZamanA. SayedE. EvansD. MorganS. SamwellC. HallJ. ArshadM.S. SinghN. QutachiO. ChangM.W. AhmadZ. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics.Adv. Drug Deliv. Rev.202117611378810.1016/j.addr.2021.04.02633957180
    [Google Scholar]
  101. BhattaraiR. BachuR. BodduS. BhaduriS. Biomedical applications of electrospun nanofibers: Drug and nanoparticle delivery.Pharmaceutics2018111510.3390/pharmaceutics1101000530586852
    [Google Scholar]
  102. GuptaP. WilkesG.L. Some investigations on the fiber formation by utilizing a side-by-side bicomponent electrospinning approach.Polymer200344206353635910.1016/S0032‑3861(03)00616‑5
    [Google Scholar]
  103. AgarwalS. GreinerA. WendorffJ.H. Functional materials by electrospinning of polymers.Prog. Polym. Sci.201338696399110.1016/j.progpolymsci.2013.02.001
    [Google Scholar]
  104. SunY. ZhangX. ZhangM. GeM. WangJ. TangY. ZhangY. MiJ. CaiW. LaiY. FengY. Rational design of electrospun nanofibers for gas purification: Principles, opportunities, and challenges.Chem. Eng. J.202244613709910.1016/j.cej.2022.137099
    [Google Scholar]
  105. YuD.G. YangC. JinM. WilliamsG.R. ZouH. WangX. Annie BlighS.W. Medicated janus fibers fabricated using a teflon-coated side-by-side spinneret.Colloids Surf. B Biointerfaces201613811011610.1016/j.colsurfb.2015.11.05526674839
    [Google Scholar]
  106. WangK. LiuX.K. ChenX.H. YuD.G. YangY.Y. LiuP. Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid.ACS Appl. Mater. Interfaces20181032859286710.1021/acsami.7b1766329272099
    [Google Scholar]
  107. YangJ. WangK. YuD.G. YangY. BlighS.W.A. WilliamsG.R. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing.Mater. Sci. Eng. C202011111080510.1016/j.msec.2020.11080532279788
    [Google Scholar]
  108. ZareM RamakrishnaS Current progress of electrospun nanocarriers for drug delivery applications.InProceedings20204879010.3390/IECP2020‑08790
    [Google Scholar]
  109. ZhouJ. WangP. YuD.G. ZhuY. Biphasic drug release from electrospun structures.Expert Opin. Drug Deliv.202320562164010.1080/17425247.2023.221083437140041
    [Google Scholar]
  110. YooH.S. KimT.G. ParkT.G. Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery.Adv. Drug Deliv. Rev.200961121033104210.1016/j.addr.2009.07.00719643152
    [Google Scholar]
  111. Amalorpava MaryL. SenthilramT. SuganyaS. NagarajanL. VenugopalJ. RamakrishnaS. Giri DevV.R. Centrifugal spun ultrafine fibrous web as a potential drug delivery vehicle.Express Polym. Lett.20137323824810.3144/expresspolymlett.2013.22
    [Google Scholar]
  112. McEachinZ. LozanoK. Production and characterization of polycaprolactone nanofibers via forcespinning™ technology.J. Appl. Polym. Sci.2012126247347910.1002/app.36843
    [Google Scholar]
  113. ZhangX. LuY. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost.Polym. Rev. (Phila. Pa.)201454467770110.1080/15583724.2014.935858
    [Google Scholar]
  114. VoelkerH. ZettlerH.D. FathW. BerbnerH. Inventors; BASF SE, assignee. Production of fibers by Centrifugal Spinning.US54946161996
  115. WeitzR.T. HarnauL. RauschenbachS. BurghardM. KernK. Polymer nanofibers via nozzle-free centrifugal spinning.Nano Lett.2008841187119110.1021/nl080124q18307320
    [Google Scholar]
  116. SarkarK. GomezC. ZambranoS. RamirezM. de HoyosE. VasquezH. LozanoK. Electrospinning to forcespinning™.Mater. Today20101311121410.1016/S1369‑7021(10)70199‑1
    [Google Scholar]
  117. WangL. ShiJ. LiuL. SecretE. ChenY. Fabrication of polymer fiber scaffolds by centrifugal spinning for cell culture studies.Microelectron. Eng.20118881718172110.1016/j.mee.2010.12.054
    [Google Scholar]
  118. YanilmazM. LuY. ZhuJ. ZhangX. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries.J. Power Sources201631320521210.1016/j.jpowsour.2016.02.089
    [Google Scholar]
  119. RenL. Centrifugal jet spinning of polymer nanofiber assembly: process characterization and engineering applications.Rensselaer Polytechnic Institute2014
    [Google Scholar]
  120. ZhouF.L. GongR.H. PoratI. Mass production of nanofibre assemblies by electrostatic spinning.Polym. Int.200958433134210.1002/pi.2521
    [Google Scholar]
  121. SzabóP. SebeI. StiedlB. Kállai-SzabóB. ZelkóR. Tracking of crystalline-amorphous transition of carvedilol in rotary spun microfibers and their formulation to orodispersible tablets for in vitro dissolution enhancement.J. Pharm. Biomed. Anal.201511535936710.1016/j.jpba.2015.07.04226280924
    [Google Scholar]
  122. MaranoS. BarkerS.A. Raimi-AbrahamB.T. MissaghiS. Rajabi-SiahboomiA. CraigD.Q.M. Development of micro-fibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning.Eur. J. Pharm. Biopharm.2016103849410.1016/j.ejpb.2016.03.02127012901
    [Google Scholar]
  123. YangY. ZhengN. ZhouY. ShanW. ShenJ. Mechanistic study on rapid fabrication of fibrous films via centrifugal melt spinning.Int. J. Pharm.201956015516510.1016/j.ijpharm.2019.02.00530769130
    [Google Scholar]
  124. WangL. ChangM.W. AhmadZ. ZhengH. LiJ.S. Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems.Chem. Eng. J.201730766166910.1016/j.cej.2016.08.135
    [Google Scholar]
  125. LiX. LuY. HouT. ZhouJ. YangB. Centrifugally spun ultrafine starch/PEO fibres as release formulation for poorly water‐soluble drugs.Micro & Nano Lett.201813121688169210.1049/mnl.2018.5267
    [Google Scholar]
  126. CremarL. GutierrezJ. MartinezJ. MateronL.A. GilkersonR. XuF. LozanoK. Development of antimicrobial chitosan based nanofiber dressings for wound healing applications.Nanomed. J.2018
    [Google Scholar]
  127. RampichováM. BuzgoM. MíčkováA. VocetkováK. SovkováV. LukášováV. FilováE. RustichelliF. AmlerE. Platelet-functionalized three-dimensional poly-ϵ-caprolactone fibrous scaffold prepared using centrifugal spinning for delivery of growth factors.Int. J. Nanomedicine20171234736110.2147/IJN.S12020628123295
    [Google Scholar]
  128. RampichováM. LukášováV. BuzgoM. VocetkováK. SovkováV. BlahnováV. AmlerE. FilováE. Coaxial nanofibrous scaffold prepared using centrifugal spinning as a drug delivery system for skeletal tissue engineering.Key Eng. Mater.202083416216810.4028/www.scientific.net/KEM.834.162
    [Google Scholar]
  129. AL-JbourN.D. BegM.D. GimbunJ. AlamA.K.M.M. An overview of chitosan nanofibers and their applications in the drug delivery process.Curr. Drug Deliv.201916427229410.2174/156720181666619012312142530674256
    [Google Scholar]
  130. MehtaP. RasekhM. PatelM. OnaiwuE. NazariK. KucukI. WilsonP.B. ArshadM.S. AhmadZ. ChangM.W. Recent applications of electrical, centrifugal, and pressurised emerging technologies for fibrous structure engineering in drug delivery, regenerative medicine and theranostics.Adv. Drug Deliv. Rev.202117511382310.1016/j.addr.2021.05.03334089777
    [Google Scholar]
  131. SatishS. PriyaR. A mini review on centrifugal spinning technique for production of nanofibers and its applications in drug delivery.J. med. pharma. allied sci.20221114349435210.55522/jmpas.V11I1.2176
    [Google Scholar]
  132. da Silva ParizeD.D. FoschiniM.M. de OliveiraJ.E. KlamczynskiA.P. GlennG.M. MarconciniJ.M. MattosoL.H.C. Solution blow spinning: Parameters optimization and effects on the properties of nanofibers from poly(lactic acid)/dimethyl carbonate solutions.J. Mater. Sci.20165194627463810.1007/s10853‑016‑9778‑x
    [Google Scholar]
  133. BehrensA.M. CaseyB.J. SikorskiM.J. WuK.L. TutakW. SandlerA.D. KofinasP. In situ deposition of PLGA nanofibers via solution blow spinning.ACS Macro Lett.20143324925410.1021/mz500049x35590515
    [Google Scholar]
  134. DadolG.C. KilicA. TijingL.D. LimK.J.A. CabatinganL.K. TanN.P.B. StojanovskaE. PolatY. Solution blow spinning (SBS) and SBS-spun nanofibers: Materials, methods, and applications.Mater. Today Commun.20202510165610.1016/j.mtcomm.2020.101656
    [Google Scholar]
  135. VasireddiR. KruseJ. VakiliM. KulkarniS. KellerT.F. MonteiroD.C.F. TrebbinM. Solution blow spinning of polymer/nanocomposite micro-/nanofibers with tunable diameters and morphologies using a gas dynamic virtual nozzle.Sci. Rep.2019911429710.1038/s41598‑019‑50477‑631586141
    [Google Scholar]
  136. DaristotleJ.L. BehrensA.M. SandlerA.D. KofinasP. A review of the fundamental principles and applications of solution blow spinning.ACS Appl. Mater. Interfaces2016851349513496310.1021/acsami.6b1299427966857
    [Google Scholar]
  137. MedeirosE.S. GlennG.M. KlamczynskiA.P. OrtsW.J. MattosoL.H.C. Solution blow spinning: A new method to produce micro‐ and nanofibers from polymer solutions.J. Appl. Polym. Sci.200911342322233010.1002/app.30275
    [Google Scholar]
  138. OliveiraJ.E. MedeirosE.S. CardozoL. VollF. MadureiraE.H. MattosoL.H.C. AssisO.B.G. Development of poly(lactic acid) nanostructured membranes for the controlled delivery of progesterone to livestock animals.Mater. Sci. Eng. C201333284484910.1016/j.msec.2012.10.03225427496
    [Google Scholar]
  139. SouzaM.A. SakamotoK.Y. MattosoL.H.C. Release of the diclofenac sodium by nanofibers of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) obtained from electrospinning and solution blow spinning.J. Nanomater.201420141810.1155/2014/129035
    [Google Scholar]
  140. BonanR.F. BonanP.R.F. BatistaA.U.D. SampaioF.C. AlbuquerqueA.J.R. MoraesM.C.B. MattosoL.H.C. GlennG.M. MedeirosE.S. OliveiraJ.E. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil.Mater. Sci. Eng. C20154837237710.1016/j.msec.2014.12.02125579936
    [Google Scholar]
  141. ErikssonV. MistralJ. Yang NilssonT. Andersson TrojerM. EvenäsL. Microcapsule functionalization enables rate-determining release from cellulose nonwovens for long-term performance.J. Mater. Chem. B Mater. Biol. Med.202311122693269910.1039/D2TB02485C36807389
    [Google Scholar]
  142. LiZ. MeiS. DongY. SheF. LiY. LiP. KongL. Functional nanofibrous biomaterials of tailored structures for drug delivery—a critical review.Pharmaceutics202012652210.3390/pharmaceutics1206052232521627
    [Google Scholar]
  143. KapahiH. KhanN. BhardwajA. MishraN. Implication of nanofibers in oral drug delivery.Curr. Pharm. Des.201521152021203610.2174/138161282166615030215330625732659
    [Google Scholar]
  144. El-NewehyM.H. El-HamsharyH. SalemW.M. Solution blowing spinning technology towards green development of urea sensor nanofibers immobilized with hydrazone probe.Polymers (Basel)202113453110.3390/polym1304053133670291
    [Google Scholar]
  145. ZhuangX. ShiL. ZhangB. ChengB. KangW. Coaxial solution blown core-shell structure nanofibers for drug delivery.Macromol. Res.201321434634810.1007/s13233‑013‑1039‑0
    [Google Scholar]
  146. HeseltineP.L. AhmedJ. EdirisingheM. Developments in pressurized gyration for the mass production of polymeric fibers.Macromol. Mater. Eng.20183039180021810.1002/mame.201800218
    [Google Scholar]
  147. AhmedJ. GultekinogluM. EdirisingheM. Recent developments in the use of centrifugal spinning and pressurized gyration for biomedical applications.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2023e191610.1002/wnan.191637553260
    [Google Scholar]
  148. Raimi-AbrahamB.T. MahalingamS. DaviesP.J. EdirisingheM. CraigD.Q.M. Development and characterization of amorphous nanofiber drug dispersions prepared using pressurized gyration.Mol. Pharm.201512113851386110.1021/acs.molpharmaceut.5b0012726402331
    [Google Scholar]
  149. BrakoF. Raimi-AbrahamB.T. MahalingamS. CraigD.Q.M. EdirisingheM. The development of progesterone-loaded nanofibers using pressurized gyration: A novel approach to vaginal delivery for the prevention of pre-term birth.Int. J. Pharm.20185401-2313910.1016/j.ijpharm.2018.01.04329408268
    [Google Scholar]
  150. CamM.E. Hazar-YavuzA.N. CesurS. OzkanO. AleneziH. Turkoglu SasmazelH. Sayip ErogluM. BrakoF. AhmedJ. KabasakalL. RenG. GunduzO. EdirisingheM. A novel treatment strategy for preterm birth: Intra-vaginal progesterone-loaded fibrous patches.Int. J. Pharm.202058811978210.1016/j.ijpharm.2020.11978232822780
    [Google Scholar]
  151. AhmedJ. MatharuR.K. ShamsT. IllangakoonU.E. EdirisingheM. A comparison of electric‐field‐driven and pressure‐driven fiber generation methods for drug delivery.Macromol. Mater. Eng.20183035170057710.1002/mame.201700577
    [Google Scholar]
  152. AhmedJ. AltunE. AydogduM.O. GunduzO. KeraiL. RenG. EdirisingheM. Anti‐fungal bandages containing cinnamon extract.Int. Wound J.201916373073610.1111/iwj.1309030767437
    [Google Scholar]
  153. CamM.E. ErtasB. AleneziH. Hazar-YavuzA.N. CesurS. OzcanG.S. EkentokC. GulerE. KatsakouliC. DemirbasZ. AkakinD. ErogluM.S. KabasakalL. GunduzO. EdirisingheM. Accelerated diabetic wound healing by topical application of combination oral antidiabetic agents-loaded nanofibrous scaffolds: An in vitro and in vivo evaluation study.Mater. Sci. Eng. C202111911158610.1016/j.msec.2020.11158633321632
    [Google Scholar]
  154. ParhizkarM. MahalingamS. Homer-VanniasinkamS. EdirisingheM. Latest developments in innovative manufacturing to combine nanotechnology with healthcare.Nanomedicine20181315810.2217/nnm‑2017‑028329185387
    [Google Scholar]
  155. QiS. CraigD. Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms.Adv. Drug Deliv. Rev.2016100678410.1016/j.addr.2016.01.00326776230
    [Google Scholar]
  156. KleinubingS.A. OutukiP.M. HoscheidJ. PelegriniB.L. Antonio da SilvaE. Renata de Almeida CanoffJ. Miriam de Souza LimaM. Carvalho CardosoM.L. Hyaluronic acid incorporation into nanoemulsions containing Pterodon pubescens Benth. Fruit oil for topical drug delivery.Biocatal. Agric. Biotechnol.20213210193910.1016/j.bcab.2021.101939
    [Google Scholar]
  157. KunduK. AfsharA. KattiD.R. EdirisingheM. KattiK.S. Composite nanoclay-hydroxyapatite-polymer fiber scaffolds for bone tissue engineering manufactured using pressurized gyration.Compos. Sci. Technol.202120210859810.1016/j.compscitech.2020.108598
    [Google Scholar]
  158. DuanX. ChenH. GuoC. Polymeric nanofibers for drug delivery applications: A recent review.J. Mater. Sci. Mater. Med.202233127810.1007/s10856‑022‑06700‑436462118
    [Google Scholar]
  159. TopcuB. GultekinogluM. TimurS.S. ErogluI. UlubayramK. ErogluH. Current approaches and future prospects of nanofibers: A special focus on antimicrobial drug delivery.J. Drug Target.202129656357510.1080/1061186X.2020.186799133345641
    [Google Scholar]
  160. LuoC.J. StoyanovS.D. StrideE. PelanE. EdirisingheM. Electrospinning versus fibre production methods: from specifics to technological convergence.Chem. Soc. Rev.201241134708473510.1039/c2cs35083a22618026
    [Google Scholar]
  161. BrownT.D. DaltonP.D. HutmacherD.W. Melt electrospinning today: An opportune time for an emerging polymer process.Prog. Polym. Sci.20165611616610.1016/j.progpolymsci.2016.01.001
    [Google Scholar]
  162. ChengJ. JunY. QinJ. LeeS.H. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications.Biomaterials201711412114310.1016/j.biomaterials.2016.10.04027880892
    [Google Scholar]
  163. SridharR. RamakrishnaS. Electrosprayed nanoparticles for drug delivery and pharmaceutical applications.Biomatter201333e2428110.4161/biom.2428123512013
    [Google Scholar]
  164. BaloghA. HorváthováT. FülöpZ. LoftssonT. HarasztosA.H. MarosiG. NagyZ.K. Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection.J. Drug Deliv. Sci. Technol.201526283410.1016/j.jddst.2015.02.003
    [Google Scholar]
  165. ZhangM. PengX. FanP. ZhouY. XiaoP. Recent progress in preparation and application of fibers using microfluidic spinning technology.Macromol. Chem. Phys.20222235210045110.1002/macp.202100451
    [Google Scholar]
  166. RazaF. ZafarH. ZhuY. RenY. -UllahA. KhanA. HeX. HanH. AquibM. Boakye-YiadomK. GeL. A review on recent advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers.Pharmaceutics20181011610.3390/pharmaceutics1001001629346275
    [Google Scholar]
  167. ChenK. HuH. ZengY. PanH. WangS. ZhangY. ShiL. TanG. PanW. LiuH. Recent advances in electrospun nanofibers for wound dressing.Eur. Polym. J.202217811149010.1016/j.eurpolymj.2022.111490
    [Google Scholar]
  168. ParhiR. JenaG.K. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms.Drug Deliv. Transl. Res.202113534613595
    [Google Scholar]
  169. BajracharyaR. SongJ.G. BackS.Y. HanH.K. Recent advancements in non-invasive formulations for protein drug delivery.Comput. Struct. Biotechnol. J.2019171290130810.1016/j.csbj.2019.09.00431921395
    [Google Scholar]
  170. GalzoteR. RafieS. TealR. ModyS. Transdermal delivery of combined hormonal contraception: A review of the current literature.Int. J. Womens Health2017931532110.2147/IJWH.S10230628553144
    [Google Scholar]
  171. SidhartaP.N. TreiberA. DingemanseJ. Clinical pharmacokinetics and pharmacodynamics of the endothelin receptor antagonist macitentan.Clin. Pharmacokinet.201554545747110.1007/s40262‑015‑0255‑525860376
    [Google Scholar]
  172. SkarfLM JonesKF MeyersonJL AbrahmJL Pharmacologic pain management: What radiation oncologists should know.InSeminars in Radiation OncologyWB Saunders20233393103
    [Google Scholar]
  173. WoodringR.N. GuryshE.G. BachelderE.M. AinslieK.M. Drug delivery systems for localized cancer combination therapy.ACS Appl. Bio Mater.20236393495010.1021/acsabm.2c0097336791273
    [Google Scholar]
  174. JindalA.B. BhideA.R. SalaveS. RanaD. BenivalD. Long-acting parenteral drug delivery systems for the treatment of chronic diseases.Adv. Drug Deliv. Rev.202319811486210.1016/j.addr.2023.11486237160247
    [Google Scholar]
  175. HeidbrederC FudalaPJ GreenwaldMK History of the discovery, development, and FDA-approval of buprenorphine medications for the treatment of opioid use disorder.Drug and Alcohol Dependence Reports2023100133
    [Google Scholar]
  176. HuangM. SunY. TanC. Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds.Food Hydrocoll.202314010868210.1016/j.foodhyd.2023.108682
    [Google Scholar]
  177. NairV.V. CabreraP. Ramírez-LecarosC. JaraM.O. BraydenD.J. MoralesJ.O. Buccal delivery of small molecules and biologics: Of mucoadhesive polymers, films, and nanoparticles – An update.Int. J. Pharm.202363612278910.1016/j.ijpharm.2023.12278936868332
    [Google Scholar]
  178. NabievaN. FaschingP. CDK4/6 inhibitors—overcoming endocrine resistance is the standard in patients with hormone receptor-positive breast cancer.Cancers2023156176310.3390/cancers1506176336980649
    [Google Scholar]
  179. LamprouDA.3D Printing methods for pharmaceutical manufacturing and personalised drug delivery opportunities and challenges.Curr Pharm Des.2018244249494956
    [Google Scholar]
  180. SekarM.P. BudharajuH. ZenniferA. SethuramanS. VermeulenN. SundaramurthiD. KalaskarD.M. Current standards and ethical landscape of engineered tissues—3D bioprinting perspective.J. Tissue Eng.20211210.1177/2041731421102767734377431
    [Google Scholar]
  181. SidambeA. Biocompatibility of advanced manufactured titanium implants—A review.Materials20147128168818810.3390/ma712816828788296
    [Google Scholar]
  182. KakkarA.K. Pharmaceutical price regulation and its impact on drug innovation: Mitigating the trade-offs.Expert Opin. Ther. Pat.202131318919210.1080/13543776.2021.187602933435784
    [Google Scholar]
  183. LukA. JunnarkarG. Critical challenges to the design of drug-eluting medical devices.Ther. Deliv.20134447147710.4155/tde.13.1723557288
    [Google Scholar]
  184. Seoane-ViañoI. OngJ.J. BasitA.W. GoyanesA. To infinity and beyond: Strategies for fabricating medicines in outer space.Int. J. Pharm. X2022410012110.1016/j.ijpx.2022.10012135782363
    [Google Scholar]
  185. SellS. BarnesC. SmithM. McClureM. MadurantakamP. GrantJ. McManusM. BowlinG. Extracellular matrix regenerated: Tissue engineering via electrospun biomimetic nanofibers.Polym. Int.200756111349136010.1002/pi.2344
    [Google Scholar]
  186. LuziF PugliaD TorreL Natural fiber biodegradable composites and nanocomposites: A biomedical application.InBiomass, Biopolymer-Based Materials, and BioenergyWoodhead Publishing2019179201
    [Google Scholar]
  187. AbdullahM.F. NugeT. AndriyanaA. AngB.C. MuhamadF. Core–shell fibers: Design, roles, and controllable release strategies in tissue engineering and drug delivery.Polymers20191112200810.3390/polym1112200831817133
    [Google Scholar]
  188. Vega-VásquezP. MosierN.S. IrudayarajJ. Nanoscale drug delivery systems: From medicine to agriculture.Front. Bioeng. Biotechnol.202087910.3389/fbioe.2020.0007932133353
    [Google Scholar]
  189. GiaquintoM. (INVITED) Stimuli-responsive materials for smart Lab-on-Fiber optrodes.Results in Optics2021210005110.1016/j.rio.2020.100051
    [Google Scholar]
  190. GerailiA. XingM. MequanintK. Design and fabrication of drug‐delivery systems toward adjustable release profiles for personalized treatment.VIEW2021252020012610.1002/VIW.20200126
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018279628231221105210
Loading
/content/journals/cdd/10.2174/0115672018279628231221105210
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): drug delivery; drug release; marketed products; microfibers; Nanofibers; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test