Skip to content
2000
Volume 22, Issue 3
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The advent of drug resistance in response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) targeted therapy represents a serious challenge in the management of non-small cell lung cancer (NSCLC). These acquired resistance mutations, attributed to several advanced EGFR mutations and, necessitated the development of new-generation TKIs. Nanomedicine approaches provide a plausible way to address these problems by providing targeted delivery and sustained release, which have demonstrated success in preclinical trials. This review article provides a summary of nano-formulations designed for EGFR-TKI-resistant NSCLC, highlighting their efficacy in both and models. These findings reveal insights into the design of nanoparticles and multifunctional nanosystems, offering a potential avenue for efficacious treatment of EGFR-TKI-resistant NSCLC.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018278617231207051907
2024-01-24
2025-05-01
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. DoumatG. DaherD. ZerdanM.B. NasraN. BahmadH.F. RecineM. PoppitiR. Drug repurposing in non-small cell lung carcinoma: Old solutions for new problems.Curr. Oncol.202330170471910.3390/curroncol30010055 36661704
    [Google Scholar]
  3. TravisW.D. BrambillaE. NicholsonA.G. YatabeY. AustinJ.H.M. BeasleyM.B. ChirieacL.R. DacicS. DuhigE. FliederD.B. GeisingerK. HirschF.R. IshikawaY. KerrK.M. NoguchiM. PelosiG. PowellC.A. TsaoM.S. WistubaI. The 2015 world health organization classification of lung tumors.J. Thorac. Oncol.20151091243126010.1097/JTO.0000000000000630 26291008
    [Google Scholar]
  4. LiQ. YuanD. MaC. LiuY. MaL. LvT. SongY. A new hope: The immunotherapy in small cell lung cancer.Neoplasma201663334235010.4149/302_151001N511 26925794
    [Google Scholar]
  5. BhuimaliM. MunshiS. HapaK. KaduP.K. KaleP.P. Evaluation of liposomes for targeted drug delivery in lung cancer treatment.Int. J. Polym. Mater.20230011010.1080/00914037.2022.2163639
    [Google Scholar]
  6. InamuraK. Lung cancer: Understanding its molecular pathology and the 2015 who classification.Front. Oncol.20177Aug19310.3389/fonc.2017.00193 28894699
    [Google Scholar]
  7. BolokerG. WangC. ZhangJ. Updated statistics of lung and bronchus cancer in United States (2018).J. Thorac. Dis.20181031158116110.21037/jtd.2018.03.15 29708136
    [Google Scholar]
  8. YasumotoK. HanagiriT. TakenoyamaM. Lung cancer-associated tumor antigens and the present status of immunotherapy against non-small-cell lung cancer.Gen. Thorac. Cardiovasc. Surg.200957944945710.1007/s11748‑008‑0433‑6 19756930
    [Google Scholar]
  9. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  10. YangY.M. JangY. LeeS.H. KangB. LimS.M. AXL/MET dual inhibitor, CB469, has activity in non-small cell lung cancer with acquired resistance to EGFR TKI with AXL or MET activation.Lung Cancer2020146707710.1016/j.lungcan.2020.05.031 32521387
    [Google Scholar]
  11. YangJ.C.H. ChengY. MurakamiH. YangP.C. HeJ. NakagawaK. KangJ.H. KimJ.H. HozakR.R. NguyenT.S. ZhangW.L. EnatsuS. PuriT. OrlandoM. A randomized phase 2 study of gefitinib with or without pemetrexed as first-line treatment in nonsquamous NSCLC with EGFR mutation: Final overall survival and biomarker analysis.J. Thorac. Oncol.20201519110010.1016/j.jtho.2019.09.008 31605797
    [Google Scholar]
  12. FerraraM.G. Di NoiaV. D’ArgentoE. VitaE. DamianoP. CannellaA. RibelliM. PilottoS. MilellaM. TortoraG. BriaE. Oncogene-addicted non-small-cell lung cancer: Treatment opportunities and future perspectives.Cancers2020125119610.3390/cancers12051196 32397295
    [Google Scholar]
  13. RussanoM. La CavaG. CortelliniA. CitarellaF. GallettiA. Di FazioG.R. SantoV. BrunettiL. VendittelliA. FioroniI. PantanoF. ToniniG. VincenziB. Immunotherapy for metastatic non-small cell lung cancer: Therapeutic advances and biomarkers.Curr. Oncol.20233022366238710.3390/curroncol30020181 36826142
    [Google Scholar]
  14. SosM.L. KokerM. WeirB.A. HeynckS. RabinovskyR. ZanderT. SeegerJ.M. WeissJ. FischerF. FrommoltP. MichelK. PeiferM. MermelC. GirardL. PeytonM. GazdarA.F. MinnaJ.D. GarrawayL.A. KashkarH. PaoW. MeyersonM. ThomasR.K. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR.Cancer Res.20096983256326110.1158/0008‑5472.CAN‑08‑4055 19351834
    [Google Scholar]
  15. RosellR. MoranT. QueraltC. PortaR. CardenalF. CampsC. MajemM. Lopez-VivancoG. IslaD. ProvencioM. InsaA. MassutiB. Gonzalez-LarribaJ.L. Paz-AresL. BoverI. Garcia-CampeloR. MorenoM.A. CatotS. RolfoC. ReguartN. PalmeroR. SánchezJ.M. BastusR. MayoC. Bertran-AlamilloJ. MolinaM.A. SanchezJ.J. TaronM. Screening for epidermal growth factor receptor mutations in lung cancer.N. Engl. J. Med.20093611095896710.1056/NEJMoa0904554 19692684
    [Google Scholar]
  16. RoskoskiR. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.Pharmacol. Res.201913939541110.1016/j.phrs.2018.11.014 30500458
    [Google Scholar]
  17. HeJ. HuangZ. HanL. GongY. XieC. Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review).Int. J. Oncol.20215959010.3892/ijo.2021.5270 34558640
    [Google Scholar]
  18. JohnsonM. GarassinoM.C. MokT. MitsudomiT. Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: Focus on novel therapies.Lung Cancer2022170March415110.1016/j.lungcan.2022.05.011 35714425
    [Google Scholar]
  19. AttiliI. PassaroA. PisapiaP. MalapelleU. de MarinisF. Uncommon EGFR compound mutations in non-small cell lung cancer (NSCLC): A systematic review of available evidence.Curr. Oncol.202229125526610.3390/curroncol29010024 35049698
    [Google Scholar]
  20. TianX. GuT. LeeM.H. DongZ. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer.Biochim. Biophys. Acta Rev. Cancer20221877118864510.1016/j.bbcan.2021.188645 34793897
    [Google Scholar]
  21. MtewaA.G. BvunzawabayaJ.T. LampiaoF. Nanodrug delivery systems in cancer therapy. In: Applications of Nanotechnology in Drug Discovery and Delivery.Elsevier202223925410.1016/B978‑0‑12‑824408‑1.00002‑8
    [Google Scholar]
  22. VaghasiyaK. RayE. SharmaA. SinghR. JadhavK. KhanR. KatareO.P. VermaR.K. Systematic development and optimization of spray-dried Quercetin-HP-β-cyclodextrin microparticles for DPI-based therapy of lung cancer.J. Mater. Sci.20215626147001471610.1007/s10853‑021‑06205‑5
    [Google Scholar]
  23. LiJ. ZhuL. KwokH.F. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment.Drug Resist. Updat.20236610090410.1016/j.drup.2022.100904 36462375
    [Google Scholar]
  24. ThakkarA.B. SubramanianR.B. ThakkarV.R. ThakorP. Applications of nanotechnology in lung cancer. In: Applications of Nanotechnology in Drug Discovery and Delivery.Elsevier202232934310.1016/B978‑0‑12‑824408‑1.00010‑7
    [Google Scholar]
  25. BhattacharjeeS. Craft of co-encapsulation in nanomedicine: A struggle to achieve synergy through reciprocity.ACS Pharmacol. Transl. Sci.20225527829810.1021/acsptsci.2c00033 35592431
    [Google Scholar]
  26. DeshmukhR.K. NaikJ.B. Study of formulation variables influencing polymeric microparticles by experimental design.ADMET DMPK2014216370
    [Google Scholar]
  27. JadhavK. SinghR. RayE. SinghA.K. VermaR.K. Taming the devil: Antimicrobial peptides for safer TB therapeutics.Curr Protein Pept Sci2022Available from: http://www.ncbi.nlm.nih.gov/pubmed/35619262
    [Google Scholar]
  28. VaghasiyaK. RayE. SinghR. JadhavK. SharmaA. KhanR. KatareO.P. VermaR.K. Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy.Mater. Sci. Eng. C202112311202710.1016/j.msec.2021.112027 33812642
    [Google Scholar]
  29. ZhouX. ShiK. HaoY. YangC. ZhaR. YiC. Advances in nanotechnology-based delivery systems for EGFR tyrosine kinases inhibitors in cancer therapy; Asian Journal of Pharmaceutical Sciences.Elsevier B.V.2020152641
    [Google Scholar]
  30. YadavP. AmbudkarS.V. Rajendra PrasadN. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer.J. Nanobiotechnology202220142310.1186/s12951‑022‑01626‑z 36153528
    [Google Scholar]
  31. LiaoZ.X. HuangK.Y. KempsonI.M. LiH.J. TsengS.J. YangP.C. Nanomodified strategies to overcome EGFR-tyrosine kinase inhibitors resistance in non-small cell lung cancer.J. Control. Release2020324June48249210.1016/j.jconrel.2020.05.043 32497570
    [Google Scholar]
  32. GorachinovF. MraicheF. MoustafaD.A. HishariO. IsmailY. JosephJ. CrcarevskaM.S. DodovM.G. GeskovskiN. GoracinovaK. Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer.Beilstein J. Nanotechnol.202314240261 https://www.beilstein-journals.org/bjnano/articles/14/23 10.3762/bjnano.14.23 36865093
    [Google Scholar]
  33. PardeshiS.R. MoreM.P. PagarR. KoleE.B. PatilT.S. GiramP.S. Importance of nanomedicine in human health. In: Green Sustainable Process for Chemical and Environmental Engineering and Science.Elsevier2023333 https://linkinghub.elsevier.com/retrieve/pii/B9780323951715000145 Internet10.1016/B978‑0‑323‑95171‑5.00014‑5
    [Google Scholar]
  34. PardeshiC.V. PardeshiS.R. NaikJ.B. Strategies for enhanced drug targeting to inflamed lungs: Novel perspectives. In: Advanced Drug Delivery Strategies for Targeting Chronic Inflammatory Lung Diseases.SingaporeSpringer Singapore2022219258 https://link.springer.com/10.1007/978-981-16-4392-7_12 Internet10.1007/978‑981‑16‑4392‑7_12
    [Google Scholar]
  35. MoreM.P. PardeshiS.R. PardeshiC.V. SonawaneG.A. ShindeM.N. DeshmukhP.K. NaikJ.B. KulkarniA.D. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer.Medicine in Drug Discovery20211010008210.1016/j.medidd.2021.100082
    [Google Scholar]
  36. ChenJ. CongX. Surface-engineered nanoparticles in cancer immune response and immunotherapy: Current status and future prospects.Biomed. Pharmacother.2022113998Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332222013877
    [Google Scholar]
  37. ZhaoY. SongQ. YinY. WuT. HuX. GaoX. LiG. TanS. ZhangZ. Immunochemotherapy mediated by thermosponge nanoparticles for synergistic anti-tumor effects.J. Control. Release201826932233610.1016/j.jconrel.2017.11.037 29174440
    [Google Scholar]
  38. ChengJ. GuY.J. ChengS.H. WongW.T. Surface functionalized gold nanoparticles for drug delivery.J. Biomed. Nanotechnol.2013981362136910.1166/jbn.2013.1536 23926802
    [Google Scholar]
  39. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  40. JiangP. LiangB. ZhangZ. FanB. ZengL. ZhouZ. MaoZ. XuQ. YaoW. ShenQ. New insights into nanosystems for non-small-cell lung cancer: Diagnosis and treatment.RSC Advances20231328195401956410.1039/D3RA03099G 37388143
    [Google Scholar]
  41. FuK. XieF. WangF. FuL. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance.J. Hematol. Oncol.202215117310.1186/s13045‑022‑01391‑4 36482474
    [Google Scholar]
  42. Nguyen-NgocT. ReckM. TanD.S.W. PetersS. Immunotherapy and targeted therapies in the treatment of non-small cell lung cancer.Eur. Oncol. Haematol.2017131355210.17925/EOH.2017.13.01.35
    [Google Scholar]
  43. TiefenbacherA. PirkerR. EGFR tyrosine kinase inhibitors as first-line therapy in advanced EGFR mutation-positive non-small cell lung cancer: strategies to improve clinical outcome.J. Thorac. Dis.20179114208421110.21037/jtd.2017.10.02 29268473
    [Google Scholar]
  44. XuL. XuB. WangJ. GaoY. HeX. XieT. YeX.Y. Recent advances of novel fourth generation EGFR inhibitors in overcoming C797S mutation of lung cancer therapy.Eur. J. Med. Chem.2023245Pt 111490010.1016/j.ejmech.2022.114900 36417820
    [Google Scholar]
  45. KarachaliouN. Fernandez-BrunoM. BrachtJ.W.P. RosellR. EGFR first- and second-generation TKIs—there is still place for them in EGFR-mutant NSCLC patients.Transl. Cancer Res.20188S1Suppl. 1S23S4710.21037/tcr.2018.10.06 35117062
    [Google Scholar]
  46. RielyG.J. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer.J. Thorac. Oncol.200836Suppl. 2S146S14910.1097/JTO.0b013e318174e96e 18520300
    [Google Scholar]
  47. SequistL.V. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer.Oncologist200712332533010.1634/theoncologist.12‑3‑325 17405897
    [Google Scholar]
  48. YuH.A. RielyG.J. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in lung cancers.J. Natl. Compr. Canc. Netw.201311216116910.6004/jnccn.2013.0024 23411383
    [Google Scholar]
  49. ChoiY.J. KimD-S. SungY.H. KimD.H. ImK. LeeH. The reversible fourth-generation EGFR tyrosine kinase inhibitor OBX02–011 overcomes C797S-mediated resistance in lung cancer.Cancer Res2022AugOF1OF10
    [Google Scholar]
  50. SullivanI. PlanchardD. Next-generation EGFR tyrosine kinase inhibitors for treating EGFR-mutant lung cancer beyond first line.Front. Med.20173Jan7610.3389/fmed.2016.00076 28149837
    [Google Scholar]
  51. ChenL. FuW. ZhengL. LiuZ. LiangG. recent progress of small-molecule epidermal growth factor receptor (EGFR) inhibitors against C797S resistance in non-small-cell lung cancer.J. Med. Chem.201861104290430010.1021/acs.jmedchem.7b01310 29136465
    [Google Scholar]
  52. UchiboriK. InaseN. ArakiM. KamadaM. SatoS. OkunoY. FujitaN. KatayamaR. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer.Nat. Commun.2017811476810.1038/ncomms14768 28287083
    [Google Scholar]
  53. DuX. YangB. AnQ. AssarafY.G. CaoX. XiaJ. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors.Innovation20212210010310.1016/j.xinn.2021.100103 34557754
    [Google Scholar]
  54. EnricoD. TsouF. CataniG. PupareliC. GirottiM.R. Ulloa AlvarezD.E. Overcoming resistance to osimertinib by T790M loss and C797S acquisition using gefitinib in a patient with EGFR-mutant non-small cell lung cancer: A case report.JTO Clin Res Reports.20234210045610.1016/j.jtocrr.2022.100456 36798785
    [Google Scholar]
  55. EnoM.S. BrubakerJ.D. CampbellJ.E. De SaviC. GuziT.J. WilliamsB.D. WilsonD. WilsonK. BrooijmansN. KimJ. ÖzenA. PerolaE. HsiehJ. BrownV. FetalveroK. GarnerA. ZhangZ. StevisonF. WoessnerR. SinghJ. TimsitY. KinkemaC. MedendorpC. LeeC. AlbayyaF. ZalutskayaA. SchalmS. DineenT.A. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer.J. Med. Chem.202265149662967710.1021/acs.jmedchem.2c00704 35838760
    [Google Scholar]
  56. HE, J.; HUANG, Z.; HAN, L.; GONG, R.; XIE, T. Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer.Int. J. Oncol.2021595120[Review]
    [Google Scholar]
  57. TsubataY. TaninoR. IsobeT. Current therapeutic strategies and prospects for EGFR mutation-positive lung cancer based on the mechanisms underlying drug resistance.Cells20211011319210.3390/cells10113192 34831415
    [Google Scholar]
  58. HaiderM. ElsherbenyA. PittalàV. ConsoliV. AlghamdiM.A. HussainZ. KhoderG. GreishK. Nanomedicine strategies for management of drug resistance in lung cancer.Int. J. Mol. Sci.2022233185310.3390/ijms23031853
    [Google Scholar]
  59. TfayliA. MohtyR. EGFR tyrosine kinase inhibitors in non-small cell lung cancer: Treatment paradigm, current evidence, and challenges.Tumori2021107537638410.1177/0300891620968138 33153414
    [Google Scholar]
  60. CaoL. ZhuY. WangW. WangG. ZhangS. ChengH. Emerging nano-based strategies against drug resistance in tumor chemotherapy.Front. Bioeng. Biotechnol.2021979888210.3389/fbioe.2021.798882
    [Google Scholar]
  61. UlldemolinsA. Seras-FranzosoJ. AndradeF. RafaelD. AbasoloI. GenerP. SchwartzS.Jr Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics.Cancer Drug Resist.202141446810.20517/cdr.2020.59 35582007
    [Google Scholar]
  62. KoleE. JadhavK. ShirsathN. DudheP. VermaR.K. ChatterjeeA. NaikJ. Nanotherapeutics for pulmonary drug delivery: An emerging approach to overcome respiratory diseases.J. Drug Deliv. Sci. Technol.20238110426110.1016/j.jddst.2023.104261
    [Google Scholar]
  63. JadhavK. JhiltaA. SinghR. RayE. SharmaN. ShuklaR. Clofazimine nanoclusters show high efficacy in experimental TB with amelioration in paradoxical lung inflammation.Biomater Adv2023154213594[Available from: https://linkinghub.elsevier.com/retrieve/pii/S2772950823003175 10.1016/j.bioadv.2023.213594
    [Google Scholar]
  64. KoleE. PardeshiS. MujumdarA.S. NaikJ. Prospects for the development of the industrial process for drying nanoformulations.In: Particulate Drying; CRC Press: Boca Raton2023131150Internet10.1201/9781003207108‑8
    [Google Scholar]
  65. ChauhanG. WangX. YousryC. GuptaV. Scalable production and in vitro efficacy of inhaled erlotinib nanoemulsion for enhanced efficacy in non-small cell lung cancer (NSCLC).Pharmaceutics202315399610.3390/pharmaceutics15030996 36986858
    [Google Scholar]
  66. BouchnitaA. VolpertV. KouryM.J. HellanderA. A multiscale model to design therapeutic strategies that overcome drug resistance to tyrosine kinase inhibitors in multiple myeloma.Math. Biosci.202031910829310.1016/j.mbs.2019.108293 31809782
    [Google Scholar]
  67. MandpeS. KoleE. ParateV. ChatterjeeA. MujumdarA. NaikJ. Design, development, and evaluation of spray dried flurbiprofen loaded sustained release polymeric nanoparticles using QBD approach to manage inflammation.Dry. Technol.2023411524182430 https://www.tandfonline.com/doi/full/10.1080/07373937.2023.2251572 10.1080/07373937.2023.2251572
    [Google Scholar]
  68. BhattacharyaS. Genotoxicity and in vitro investigation of Gefitinib-loaded polycaprolactone fabricated nanoparticles for anticancer activity against NCI-H460 cell lines.J. Exp. Nanosci.202217121424610.1080/17458080.2022.2060501
    [Google Scholar]
  69. AlshetailiA.S. Gefitinib loaded PLGA and chitosan coated PLGA nanoparticles with magnified cytotoxicity against A549 lung cancer cell lines.Saudi J. Biol. Sci.20212895065507310.1016/j.sjbs.2021.05.025 34466084
    [Google Scholar]
  70. AminH. OsmanS.K. MohammedA.M. ZayedG. Gefitinib-loaded starch nanoparticles for battling lung cancer: Optimization by full factorial design and in vitro cytotoxicity evaluation.Saudi Pharm. J.2023311295410.1016/j.jsps.2022.11.004 36685309
    [Google Scholar]
  71. WangY. HuangH.Y. YangL. ZhangZ. JiH. Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance.Sci. Rep.2016612546810.1038/srep25468 27151505
    [Google Scholar]
  72. K, S.K.; Choppala, A. Development and optimization of osimertinib-loaded biodegradable polymeric nanoparticles enhance in-vitro cytotoxicity in mutant EGFR NSCLC cell models and in-vivo tumor reduction in H1975 xenograft mice models.AAPS PharmSciTech202223515910.1208/s12249‑022‑02314‑9 35676448
    [Google Scholar]
  73. KaraG. CalinG.A. OzpolatB. RNAi-based therapeutics and tumor targeted delivery in cancer.Adv. Drug Deliv. Rev.202218211411310.1016/j.addr.2022.114113 35063535
    [Google Scholar]
  74. SuC. RenX. YangF. LiB. WuH. LiH. NieF. Ultrasound-sensitive siRNA-loaded nanobubbles fabrication and antagonism in drug resistance for NSCLC.Drug Deliv.20222919911010.1080/10717544.2021.2021321 34964410
    [Google Scholar]
  75. ZhangY. LvW. LiH. DongT. WuH. SuC. ShuH. NieF. Exploring the relationship between autophagy and Gefitinib resistance in NSCLC by silencing PDLIM5 using ultrasound-targeted microbubble destruction technology.Cancer Cell Int.202222129310.1186/s12935‑022‑02718‑4 36154921
    [Google Scholar]
  76. WuH. LvW. ZhuY. JiaY. NieF. Ultrasound-mediated mesoporous silica nanoparticles loaded with PDLIM5 siRNA inhibit gefitinib resistance in NSCLC cells by attenuating EMT.Eur. J. Pharm. Sci.20231828210637210.1016/j.ejps.2023.106372 36621614
    [Google Scholar]
  77. NascimentoA.V. SinghA. BousbaaH. FerreiraD. SarmentoB. AmijiM.M. Mad2 checkpoint gene silencing using epidermal growth factor receptor-targeted chitosan nanoparticles in non-small cell lung cancer model.Mol. Pharm.201411103515352710.1021/mp5002894 25256346
    [Google Scholar]
  78. NascimentoA.V. GattaccecaF. SinghA. BousbaaH. FerreiraD. SarmentoB. AmijiM.M. Biodistribution and pharmacokinetics of Mad2 siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models.Nanomedicine201611776778110.2217/nnm.16.14 26980454
    [Google Scholar]
  79. KutkutM. ShakyaA.K. NsairatH. El-TananiM. Formulation, development, and in vitro evaluation of a nanoliposomal delivery system for mebendazole and gefitinib.J. Appl. Pharm. Sci.202313316517810.7324/JAPS.2023.110512
    [Google Scholar]
  80. LiuY. DaiX. JiangS. QaharM. FengC. GuoD. WangL. MaS. HuangL. Targeted co-delivery of gefitinib and rapamycin by aptamer-modified nanoparticles overcomes EGFR-TKI resistance in NSCLC via promoting autophagy.Int. J. Mol. Sci.20222314802510.3390/ijms23148025 35887373
    [Google Scholar]
  81. ZhengY. SuC. ZhaoL. ShiY. mAb MDR1-modified chitosan nanoparticles overcome acquired EGFR-TKI resistance through two potential therapeutic targets modulation of MDR1 and autophagy.J. Nanobiotechnology20171516610.1186/s12951‑017‑0302‑5 28978341
    [Google Scholar]
  82. WangL. FuH. SongL. WuZ. YuJ. GuoQ. Overcoming AZD9291 resistance and metastasis of NSCLC via ferroptosis and multitarget interference by nanocatalytic sensitizer plus AHP-DRI-12.Small2023194220413310.1002/smll.202204133 36420659
    [Google Scholar]
  83. HanW. ShiL. RenL. ZhouL. LiT. QiaoY. WangH. A nanomedicine approach enables co-delivery of cyclosporin A and gefitinib to potentiate the therapeutic efficacy in drug-resistant lung cancer.Signal Transduct. Target. Ther.2018311610.1038/s41392‑018‑0019‑4 29942660
    [Google Scholar]
  84. NimmaR. KalvalaA.K. PatelN.K. SurapaneniS.K. SunL. SinghR. Superior anti-cancer activity of osimertinib in combination with CARP-1 functional mimetic (CFM4.17) and telmisartan via lamin B2 and apoptotic pathway against non-small cell lung cancer.SSRN Electron J202210.2139/ssrn.4023235
    [Google Scholar]
  85. ChenW. YuD. SunS.Y. LiF. Nanoparticles for co-delivery of osimertinib and selumetinib to overcome osimertinib-acquired resistance in non-small cell lung cancer.Acta Biomater.20211291025826810.1016/j.actbio.2021.05.018 34048974
    [Google Scholar]
  86. ChenD. ZhangF. WangJ. HeH. DuanS. ZhuR. ChenC. YinL. ChenY. Biodegradable nanoparticles mediated Co-delivery of erlotinib (ELTN) and fedratinib (FDTN) toward the treatment of ELTN-resistant Non-small cell lung Cancer (NSCLC) via suppression of the JAK2/STAT3 signaling pathway.Front. Pharmacol.20189NOV121410.3389/fphar.2018.01214 30483119
    [Google Scholar]
  87. WangJ. SuG. YinX. LuoJ. GuR. WangS. FengJ. ChenB. Non-small cell lung cancer-targeted, redox-sensitive lipid-polymer hybrid nanoparticles for the delivery of a second-generation irreversible epidermal growth factor inhibitor—Afatinib: In vitro and in vivo evaluation.Biomed. Pharmacother.2019120September10949310.1016/j.biopha.2019.109493 31586902
    [Google Scholar]
  88. SundarrajS. GalatV. Embryonic vs. Induced pluripotent stem cells: Considerations for clinical applications.J. Cell Sci. Ther.201201S17013
    [Google Scholar]
  89. KurodaS. TamJ. RothJ.A. SokolovK. RameshR. EGFR-targeted plasmonic magnetic nanoparticles suppress lung tumor growth by abrogating G2/M cell-cycle arrest and inducing DNA damage.Int. J. Nanomedicine20149Aug38253839 25143731
    [Google Scholar]
  90. LiuC. ShaurovaT. ShoemakerS. PetkovichM. HershbergerP.A. WuY. Tumor-targeted nanoparticles deliver a vitamin d-based drug payload for the treatment of EGFR tyrosine kinase inhibitor-resistant lung cancer.Mol. Pharm.20181583216322610.1021/acs.molpharmaceut.8b00307 29902012
    [Google Scholar]
  91. ChanC.Y. HongS.C. ChangC.M. ChenY.H. LiaoP.C. HuangC.Y. Oral squamous cell carcinoma cells with acquired resistance to erlotinib are sensitive to anti-cancer effect of quercetin via pyruvate kinase M2 (PKM2).Cells202312117910.3390/cells12010179 36611972
    [Google Scholar]
  92. GanthalaP.D. AlavalaS. ChellaN. AndugulapatiS.B. BathiniN.B. SistlaR. Co-encapsulated nanoparticles of Erlotinib and Quercetin for targeting lung cancer through nuclear EGFR and PI3K/AKT inhibition.Colloids Surf. B Biointerfaces202221111230510.1016/j.colsurfb.2021.112305 34998178
    [Google Scholar]
  93. HuangH. YiX. WeiQ. LiM. CaiX. LvY. WengL. MaoY. FanW. ZhaoM. WengZ. ZhaoQ. ZhaoK. CaoM. ChenJ. CaoP. Edible and cation-free kiwi fruit derived vesicles mediated EGFR-targeted siRNA delivery to inhibit multidrug resistant lung cancer.J. Nanobiotechnology20232114110.1186/s12951‑023‑01766‑w 36740689
    [Google Scholar]
  94. HeS. GuiJ. XiongK. ChenM. GaoH. FuY. A roadmap to pulmonary delivery strategies for the treatment of infectious lung diseases.J. Nanobiotechnology202220110110.1186/s12951‑022‑01307‑x 35241085
    [Google Scholar]
  95. KoutuV. GuptaM. DasS. RawatD.K. KharadeV. PasrichaR.K. Nanotechnology in lung cancer therapeutics: A narrative review.Cureus2023151e3424510.7759/cureus.34245 36855484
    [Google Scholar]
  96. DonkorM. JonesH.P. The proposition of the pulmonary route as an attractive drug delivery approach of nano-based immune therapies and cancer vaccines to treat lung tumors.Front. nanotechnol.20213Mar63519410.3389/fnano.2021.635194
    [Google Scholar]
  97. WangX. LiC. WangY. ChenH. ZhangX. LuoC. ZhouW. LiL. TengL. YuH. WangJ. Smart drug delivery systems for precise cancer therapy.Acta Pharm. Sin. B202212114098412110.1016/j.apsb.2022.08.013 36386470
    [Google Scholar]
  98. AlshammariM.K. AlmomenE.Y. AlshahraniK.F. AltwalahS.F. KamalM. Al-TwallahM.F. AlsanadS.H. Al-BattiM.H. Al-RasheedF.J. AlsalamahA.Y. AlhazzaM.B. AlasmariF.A. Abida; Imran, M. Nano-enabled strategies for the treatment of lung cancer: Potential bottlenecks and future perspectives.Biomedicines202311247310.3390/biomedicines11020473 36831009
    [Google Scholar]
  99. RamanathanS. GopinathS.C.B. ArshadM.K.M. PoopalanP. AnbuP. A DNA based visual and colorimetric aggregation assay for the early growth factor receptor (EGFR) mutation by using unmodified gold nanoparticles.Mikrochim. Acta2019186854610.1007/s00604‑019‑3696‑y 31321546
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018278617231207051907
Loading
/content/journals/cdd/10.2174/0115672018278617231207051907
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test