Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer’s disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018278641231221051359
2024-02-15
2025-01-16
Loading full text...

Full text loading...

References

  1. SamantaD. Hosseini-NassabN. ZareR.N. Electroresponsive nanoparticles for drug delivery on demand.Nanoscale20168179310931710.1039/C6NR01884J 27088543
    [Google Scholar]
  2. ChenH. ZengX. ThamH.P. PhuaS.Z.F. ChengW. ZengW. ShiH. MeiL. ZhaoY. NIR‐light‐activated combination therapy with a precise ratio of photosensitizer and prodrug using a host–guest strategy.Angew. Chem. Int. Ed.201958237641764610.1002/anie.201900886 30980463
    [Google Scholar]
  3. KocakG. TuncerC. BütünV. pH-Responsive polymers.Polym. Chem.20178114417610.1039/C6PY01872F
    [Google Scholar]
  4. AskariE. SeyfooriA. AmerehM. GharaieS.S. GhazaliH.S. GhazaliZ.S. Stimuli-responsive hydrogels for local post-surgical drug delivery.Gels2020621410.3390/gels6020014
    [Google Scholar]
  5. RahimM.A. JanN. KhanS. ShahH. MadniA. KhanA. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers202113467010.3390/cancers13040670
    [Google Scholar]
  6. VinchhiP. RawalS.U. PatelM.M. External stimuli-responsive drug delivery systems.Drug Delivery Devices and Therapeutic Systems202126728810.1016/B978‑0‑12‑819838‑4.00023‑7
    [Google Scholar]
  7. PhamS.H. ChoiY. ChoiJ. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery.Pharmaceutics202012763010.3390/pharmaceutics12070630 32635539
    [Google Scholar]
  8. LopesJ. SantosG. BarataP. OliveiraR. LopesC. Physical and chemical stimuli-responsive drug delivery systems: Targeted delivery and main routes of administration.Curr. Pharm. Des.201319417169718410.2174/13816128113199990698 23489197
    [Google Scholar]
  9. KhanF. AtifM. HaseenM. KamalS. KhanM.S. ShahidS. NamiS.A.A. Synthesis, classification and properties of hydrogels: Their applications in drug delivery and agriculture.J. Mater. Chem. B Mater. Biol. Med.202210217020310.1039/D1TB01345A 34889937
    [Google Scholar]
  10. ChatterjeeS. HuiP.C.L. Review of applications and future prospects of stimuli-responsive hydrogel based on thermo-responsive biopolymers in drug delivery systems.Polymers20211313208610.3390/polym13132086
    [Google Scholar]
  11. QiaoS. WangH. Temperature-responsive polymers: Synthesis, properties, and biomedical applications.Nano Res.201811105400542310.1007/s12274‑018‑2121‑x
    [Google Scholar]
  12. FanJ.P. TaoF.H. ZhangX.H. YuanT.T. XieC.F. ChenH.P. PengH-L. Synthesis of an ursolic acid organic salt based low-molecular-weight supramolecular hydrogel with unique thermo-responsiveness behavior.Colloids Surf. A Physicochem. Eng. Asp.202265212983910.1016/j.colsurfa.2022.129839
    [Google Scholar]
  13. KuboT. TachibanaK. NaitoT. MukaiS. AkiyoshiK. BalachandranJ. OtsukaK. Magnetic field stimuli-sensitive drug release using a magnetic thermal seed coated with thermal-responsive molecularly imprinted polymer.ACS Biomater. Sci. Eng.20195275976710.1021/acsbiomaterials.8b01401 33405837
    [Google Scholar]
  14. JoseR. RinitaJ. JothiN.S.N. Synthesis and characterisation of stimuli-responsive drug delivery system using ZnFe2O4 and Ag1-XZnxFe2O4 nanoparticles.Mater. Technol.202136634735510.1080/10667857.2020.1758481
    [Google Scholar]
  15. KangB. ShinM.K. HanS. OhI. KimE. ParkJ. SonH.Y. KangT. JungJ. HuhY-M. HaamS. LimE-K. Magnetic nanochain-based smart drug delivery system with remote tunable drug release by a magnetic field.Biochip J.202216328029010.1007/s13206‑022‑00072‑1
    [Google Scholar]
  16. VlasovaK.Y. PiroyanA. Le-DeygenI.M. VishwasraoH.M. RamseyJ.D. KlyachkoN.L. GolovinY.I. RudakovskayaP.G. KireevI.I. KabanovA.V. Sokolsky-PapkovM. Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF).J. Colloid Interface Sci.201955268970010.1016/j.jcis.2019.05.071 31176052
    [Google Scholar]
  17. kianfarE. Magnetic nanoparticles in targeted drug delivery: A Review.J. Superconduc. Novel. Magnet.2021341709173510.1007/s10948‑021‑05932‑9
    [Google Scholar]
  18. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.201901058 32196144
    [Google Scholar]
  19. QiuY. ParkK. Environment-sensitive hydrogels for drug delivery.Adv. Drug Deliv. Rev.200153332133910.1016/S0169‑409X(01)00203‑4 11744175
    [Google Scholar]
  20. QuJ. LiangY. ShiM. GuoB. GaoY. YinZ. Biocompatible conductive hydrogels based on dextran and aniline trimer as electro-responsive drug delivery system for localized drug release.Int. J. Biol. Macromol.201914025526410.1016/j.ijbiomac.2019.08.120 31421175
    [Google Scholar]
  21. MazidiZ. JavanmardiS. NaghibS.M. MohammadpourZ. Smart stimuli-responsive implantable drug delivery systems for programmed and on-demand cancer treatment: An overview on the emerging materials.Chem. Eng. J.202243313456910.1016/j.cej.2022.134569
    [Google Scholar]
  22. LiuY. ServantA. GuyO.J. Al-JamalK.T. WilliamsP.R. HawkinsK.M. KostarelosK. An electric-field responsive microsystem for controllable miniaturised drug delivery applications.Sens. Actuators B Chem.201217510010510.1016/j.snb.2011.12.069
    [Google Scholar]
  23. DobryninA. RubinsteinM. Theory of polyelectrolytes in solutions and at surfaces.Prog. Polym. Sci.200530111049111810.1016/j.progpolymsci.2005.07.006
    [Google Scholar]
  24. HajebiS. RabieeN. BagherzadehM. AhmadiS. RabieeM. Roghani-MamaqaniH. TahririM. TayebiL. HamblinM.R. Stimulus-responsive polymeric nanogels as smart drug delivery systems.Acta Biomater.20199211810.1016/j.actbio.2019.05.018 31096042
    [Google Scholar]
  25. CastanoA.P. DemidovaT.N. HamblinM.R. Mechanisms in photodynamic therapy: Part two—cellular signaling, cell metabolism and modes of cell death.Photodiagn. Photodyn. Ther.20052112310.1016/S1572‑1000(05)00030‑X 25048553
    [Google Scholar]
  26. PittW.G. HusseiniG.A. StaplesB.J. Ultrasonic drug delivery: A general review.Expert Opin. Drug Deliv.200411375610.1517/17425247.1.1.37 16296719
    [Google Scholar]
  27. EntzianK. AignerA. Drug delivery by ultrasound-responsive nanocarriers for cancer treatment.Pharmaceutics2021138113510.3390/pharmaceutics13081135 34452096
    [Google Scholar]
  28. BamrungsapS. ZhaoZ. ChenT. WangL. LiC. FuT. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system.nanomedicine7810.2217/nnm.12.87
    [Google Scholar]
  29. SubramaniK. HosseinkhaniH. KhraisatA. HosseinkhaniM. PathakY. Targeting nanoparticles as drug delivery systems for cancer treatment.Curr. Nanosci.20095213514010.2174/157341309788185406
    [Google Scholar]
  30. SongG. PetschauerJ. MaddenA. ZamboniW. Nanoparticles and the mononuclear phagocyte system: Pharmacokinetics and applications for inflammatory diseases.Curr. Rheumatol. Rev.2014101223410.2174/1573403X10666140914160554 25229496
    [Google Scholar]
  31. CaiX. JiangY. LinM. ZhangJ. GuoH. YangF. LeungW. XuC. Ultrasound-responsive materials for drug/gene delivery.Front. Pharmacol.202010165010.3389/fphar.2019.01650 32082157
    [Google Scholar]
  32. HuangD. SunM. BuY. LuoF. LinC. LinZ. WengZ. YangF. WuD. Microcapsule-embedded hydrogel patches for ultrasound responsive and enhanced transdermal delivery of diclofenac sodium.J. Mater. Chem. B Mater. Biol. Med.20197142330233710.1039/C8TB02928H 32254681
    [Google Scholar]
  33. ZhaoH. SternerE.S. CoughlinE.B. TheatoP. O-Nitrobenzyl alcohol derivatives: Opportunities in polymer and materials science.Macromolecules20124541723173610.1021/ma201924h
    [Google Scholar]
  34. SunS. LiangS. XuW.C. XuG. WuS. Photoresponsive polymers with multi-azobenzene groups.Polym. Chem.201910324389440110.1039/C9PY00793H
    [Google Scholar]
  35. KortekaasL. ChenJ. JacqueminD. BrowneW.R. Proton-stabilized photochemically reversible E/Z isomerization of spiropyrans.J. Phys. Chem. B2018122246423643010.1021/acs.jpcb.8b03528 29847129
    [Google Scholar]
  36. ZhouT. XieS. ZhouC. ChenY. LiH. LiuP. JiangR. HangL. JiangG. All-in-one second near-infrared light-responsive drug delivery system for synergistic chemo-photothermal therapy.ACS Appl. Bio Mater.2022583841384910.1021/acsabm.2c00208 35815771
    [Google Scholar]
  37. XingY. ZengB. YangW. Light responsive hydrogels for controlled drug delivery.Front. Bioeng. Biotechnol.202210107567010.3389/fbioe.2022.1075670 36588951
    [Google Scholar]
  38. BarhoumiA. LiuQ. KohaneD.S. Ultraviolet light-mediated drug delivery: Principles, applications, and challenges.J. Control. Release2015219314210.1016/j.jconrel.2015.07.018 26208426
    [Google Scholar]
  39. RweiA.Y. LeeJ.J. ZhanC. LiuQ. OkM.T. ShankarappaS.A. LangerR. KohaneD.S. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes.Proc. Natl. Acad. Sci.201511251157191572410.1073/pnas.1518791112 26644576
    [Google Scholar]
  40. Alvarez-LorenzoC. ConcheiroA. Smart drug delivery systems: From fundamentals to the clinic.Chem. Commun.201450587743776510.1039/C4CC01429D 24805962
    [Google Scholar]
  41. LinsleyC.S. WuB.M. Recent advances in light-responsive on-demand drug-delivery systems.Ther. Deliv.2017828910710.4155/tde‑2016‑0060 28088880
    [Google Scholar]
  42. PalanikumarL. Al-HosaniS. KalmouniM. NguyenV.P. AliL. PasrichaR. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics.Commun. Biol.2020319510.1038/s42003‑020‑0817‑4
    [Google Scholar]
  43. MutalabisinM.F. ChatterjeeB. JaffriJ.M. ph responsive polymers in drug delivery.Res. J. Pharm. Technol.201811115115512210.5958/0974‑360X.2018.00934.4
    [Google Scholar]
  44. TanR.Y.H. LeeC.S. PichikaM.R. ChengS.F. LamK.Y. PH responsive polyurethane for the advancement of biomedical and drug delivery.Polymers2022149167210.3390/polym14091672
    [Google Scholar]
  45. ZhuoS. ZhangF. YuJ. ZhangX. YangG. LiuX. pH-sensitive biomaterials for drug delivery.Molecules20202523564910.3390/molecules25235649 33266162
    [Google Scholar]
  46. BamiM.S. Raeisi EstabraghM.A. KhazaeliP. OhadiM. DehghannoudehG. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application.J. Drug Deliv. Sci. Technol.20227010298710.1016/j.jddst.2021.102987
    [Google Scholar]
  47. ZhuY.J. ChenF. pH-responsive drug-delivery systems.Chem. Asian J.201510228430510.1002/asia.201402715 25303435
    [Google Scholar]
  48. HoffmanA.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation.Adv. Drug Deliv. Rev.2013651101610.1016/j.addr.2012.11.004 23246762
    [Google Scholar]
  49. MuY. GongL. PengT. YaoJ. LinZ. Advances in pH-responsive drug delivery systems.OpenNano2021510003110.1016/j.onano.2021.100031
    [Google Scholar]
  50. WangK. LiX. WangH. LuH. DiD. ZhaoQ. WangS. Evaluation on redox-triggered degradation of thioether-bridged hybrid mesoporous organosilica nanoparticles.Colloids Surf. A Physicochem. Eng. Asp.202160812556610.1016/j.colsurfa.2020.125566
    [Google Scholar]
  51. SongY. ChengD. LuoJ. ZhangM. YangY. Surfactant-free synthesis of monodispersed organosilica particles with pure sulfide-bridged silsesquioxane framework chemistry via extension of Stöber method.J. Colloid Interface Sci.202159112913810.1016/j.jcis.2021.01.071 33596502
    [Google Scholar]
  52. SongH. PengT. WangX. LiB. WangY. SongD. XuT. LiuX. Glutathione-sensitive mesoporous organosilica-coated gold nanorods as drug delivery system for photothermal therapy-enhanced precise chemotherapy.Front Chem.20221084268210.3389/fchem.2022.842682 35281558
    [Google Scholar]
  53. LiuB. FengL. BianY. YuanM. ZhuY. YangP. ChengZ. LinJ. Mn 2+/Fe 3+/Co 2+ and tetrasulfide bond co‐incorporated dendritic mesoporous organosilica as multifunctional nanocarriers: One‐step synthesis and applications for cancer therapy.Adv. Healthc. Mater.20221114220066510.1002/adhm.202200665 35609979
    [Google Scholar]
  54. WuH. LeValleyP.J. LuoT. KloxinA.M. KiickK.L. Manipulation of glutathione-mediated degradation of thiol–maleimide conjugates.Bioconjug. Chem.201829113595360510.1021/acs.bioconjchem.8b00546 30285419
    [Google Scholar]
  55. XuW. WangH. DongL. ZhangP. MuY. CuiX. ZhouJ. HuoM. YinT. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid.Int. J. Nanomedicine2019144649466610.2147/IJN.S201110 31303753
    [Google Scholar]
  56. LiangY. KiickK.L. Liposome-cross-linked hybrid hydrogels for glutathione-triggered delivery of multiple cargo molecules.Biomacromolecules201617260161410.1021/acs.biomac.5b01541 26751084
    [Google Scholar]
  57. BehrooziF. AbdkhodaieM.J. AbandansariH.S. SatarianL. MolazemM. Al-JamalK.T. BaharvandH. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo.Acta Biomater.20187623925610.1016/j.actbio.2018.05.031 29928995
    [Google Scholar]
  58. GuoX. ChengY. ZhaoX. LuoY. ChenJ. YuanW.E. Advances in redox-responsive drug delivery systems of tumor microenvironment.J. Nanobiotechnology20181617410.1186/s12951‑018‑0398‑2 30243297
    [Google Scholar]
  59. AbedH.F. AbuwatfaW.H. HusseiniG.A. Redox-responsive drug delivery systems: A chemical perspective.Nanomaterials202212318310.3390/nano12183183
    [Google Scholar]
  60. JiaR. TengL. GaoL. SuT. FuL. QiuZ. BiY. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy.Int. J. Nanomedicine2021161525155110.2147/IJN.S293427 33658782
    [Google Scholar]
  61. LiuY. WuY. LuoZ. LiM. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy.iScience202326310627910.1016/j.isci.2023.106279 36936787
    [Google Scholar]
  62. GaoJ. SiF. WangF. LiY. WangG. ZhaoJ. MaY. YuR. LiY. JinC. LiD. Hollow mesoporous structured MnFe2O4 nanospheres: A biocompatible drug delivery system with pH-responsive release for potential application in cancer treatment.Solid State Sci.202313510706610.1016/j.solidstatesciences.2022.107066
    [Google Scholar]
  63. XuJ. ChenM. LiM. XuS. LiuH. Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy.Colloids Surf. A Physicochem. Eng. Asp.202366313101510.1016/j.colsurfa.2023.131015
    [Google Scholar]
  64. HuL. XiongC. WeiG. YuY. LiS. XiongX. ZouJ.J. TianJ. Stimuli-responsive charge-reversal MOF@polymer hybrid nanocomposites for enhanced co-delivery of chemotherapeutics towards combination therapy of multidrug-resistant cancer.J. Colloid Interface Sci.2022608Pt 21882189310.1016/j.jcis.2021.10.070 34749141
    [Google Scholar]
  65. KaulS. NagaichU. VermaN. Investigating nanostructured liquid crystalline particles as prospective ocular delivery vehicle for tobramycin sulfate: Ex vivo and in vivo studies.J. Adv. Pharm. Technol. Res.202112435636110.4103/japtr.japtr_188_21 34820309
    [Google Scholar]
  66. ZhouJ. LiK. QinH. XieB. LiaoH. SuX. LiC. HeX. ChenW. JiangX. Programmed-stimuli responsive carrier-free multidrug delivery system for highly efficient trimodal combination therapy.J. Colloid Interface Sci.202363745346410.1016/j.jcis.2023.01.091 36716669
    [Google Scholar]
  67. LinX. WuJ. LiuY. LinN. HuJ. ZhangB. Stimuli-responsive drug delivery systems for the diagnosis and therapy of lung cancer.Molecules202227394810.3390/molecules27030948 35164213
    [Google Scholar]
  68. ZhangQ. KuangG. LiW. WangJ. RenH. ZhaoY. Stimuli-responsive gene delivery nanocarriers for cancer therapy.Nano-Micro Lett.20231514410.1007/s40820‑023‑01018‑4
    [Google Scholar]
  69. ZhuH. ZhangL. TongS. LeeC.M. DeshmukhH. BaoG. Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets.Nat. Biomed. Eng.20183212613610.1038/s41551‑018‑0318‑7
    [Google Scholar]
  70. ZhangM. HuW. CaiC. WuY. LiJ. DongS. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment.Mater. Today Bio20221410022310.1016/j.mtbio.2022.100223 35243298
    [Google Scholar]
  71. JahanbekamS. MozafariN. Bagheri-AlamootiA. Mohammadi-SamaniS. DaneshamouzS. HeidariR. AzarpiraN. AshrafiH. AzadiA. Ultrasound-responsive hyaluronic acid hydrogel of hydrocortisone to treat osteoarthritis.Int. J. Biol. Macromol.202324012444910.1016/j.ijbiomac.2023.124449 37072059
    [Google Scholar]
  72. KhanD. QindeelM. AhmedN. AsadM.I. ShahK. Development of an intelligent, stimuli-responsive transdermal system for efficient delivery of Ibuprofen against rheumatoid arthritis.Int. J. Pharm.202161012124210.1016/j.ijpharm.2021.121242 34737113
    [Google Scholar]
  73. FrancoP. de MarcoI. Eudragit: A novel carrier for controlled drug delivery in supercritical antisolvent coprecipitation.Polymers202012123410.3390/polym12010234
    [Google Scholar]
  74. LiuY. JinJ. XuH. WangC. YangY. ZhaoY. HanH. HouT. YangG. ZhangL. WangY. ZhangW. LiangQ. Construction of a pH-responsive, ultralow-dose triptolide nanomedicine for safe rheumatoid arthritis therapy.Acta Biomater.202112154155310.1016/j.actbio.2020.11.027 33227489
    [Google Scholar]
  75. KaulS. NagaichU. VermaN. Preclinical assessment of nanostructured liquid crystalline particles for the management of bacterial keratitis: In vivo and pharmacokinetics study.Drug Deliv. Transl. Res.202110.1007/s13346‑021‑01072‑8 34582029
    [Google Scholar]
  76. XiaoY. GuY. QinL. ChenL. ChenX. CuiW. LiF. XiangN. HeX. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy.Colloids Surf. B Biointerfaces202120011158110.1016/j.colsurfb.2021.111581 33524696
    [Google Scholar]
  77. HaloiP. ChawlaS. KonkimallaV.B. Thermosensitive smart hydrogel of PEITC ameliorates the therapeutic efficacy in rheumatoid arthritis.Eur. J. Pharm. Sci.202318110636710.1016/j.ejps.2022.106367 36572358
    [Google Scholar]
  78. CarneiroM.F.H. MachadoA.R.T. AntunesL.M.G. SouzaT.E. FreitasV.A. OliveiraL.C.A. RodriguesJ.L. PereiraM.C. BarbosaF.Jr Gold-coated superparamagnetic iron oxide nanoparticles attenuate collagen-induced arthritis after magnetic targeting.Biol. Trace Elem. Res.2020194250251310.1007/s12011‑019‑01799‑z 31313244
    [Google Scholar]
  79. PatilS.B. InamdarS.Z. ReddyK.R. RaghuA.V. SoniS.K. KulkarniR.V. Novel biocompatible poly(acrylamide)-grafted-dextran hydrogels: Synthesis, characterization and biomedical applications.J. Microbiol. Methods201915920021010.1016/j.mimet.2019.03.009 30877016
    [Google Scholar]
  80. BirajdarR.P. PatilS.B. AlangeV.V. KulkarniR.V. Synthesis and characterization of electrically responsive poly(acrylamide)-grafted-chondroitin sulfate hydrogel for transdermal drug delivery application.Int. J. Polym. Mater.20196914815710.1080/0091403720181552859
    [Google Scholar]
  81. BirajdarR.P. PatilS.B. AlangeV.V. KulkarniR.V. Electro-responsive polyacrylamide-grafted-gum ghatti copolymer for transdermal drug delivery application.J. Macromolec. Sci. Part A201956430631510.1080/10601325.2019.1574539
    [Google Scholar]
  82. PatilS.B. InamdarS.Z. DasK.K. AkamanchiK.G. PatilA.V. InamadarA.C. ReddyK.R. RaghuA.V. KulkarniR.V. Tailor-made electrically-responsive poly(acrylamide)-graft-pullulan copolymer based transdermal drug delivery systems: Synthesis, characterization, in-vitro and ex-vivo evaluation.J. Drug Deliv. Sci. Technol.20205610152510.1016/j.jddst.2020.101525
    [Google Scholar]
  83. LeiT. YangZ. XiaX. ChenY. YangX. XieR. TongF. WangX. GaoH. A nanocleaner specifically penetrates the blood‒brain barrier at lesions to clean toxic proteins and regulate inflammation in Alzheimer’s disease.Acta Pharm. Sin. B202111124032404410.1016/j.apsb.2021.04.022 35024324
    [Google Scholar]
  84. YuanX. TangR. JiaZ. ChenY. LiuJ. LiuY. Zn2+-responsive palladium nanoclusters synergistically manage Alzheimer’s disease through neuroprotection and inhibition of oxidative stress.Chem. Eng. J.202346414267910.1016/j.cej.2023.142679
    [Google Scholar]
  85. ZhouH. GongY. LiuY. HuangA. ZhuX. LiuJ. YuanG. ZhangL. WeiJ. LiuJ. Intelligently thermoresponsive flower-like hollow nano-ruthenium system for sustained release of nerve growth factor to inhibit hyperphosphorylation of tau and neuronal damage for the treatment of Alzheimer’s disease.Biomaterials202023711982210.1016/j.biomaterials.2020.119822 32035322
    [Google Scholar]
  86. LinY.W. FangC.H. YangC.Y. LiangY.J. LinF.H. Investigating a curcumin-loaded PLGA-PEG-PLGA thermo-sensitive hydrogel for the prevention of alzheimer’s disease.Antioxidants202211472710.3390/antiox11040727 35453412
    [Google Scholar]
  87. SongY. JingH. VongL.B. WangJ. LiN. Recent advances in targeted stimuli-responsive nano-based drug delivery systems combating atherosclerosis.Chin. Chem. Lett.20223341705171710.1016/j.cclet.2021.10.055
    [Google Scholar]
  88. LeeJ.H. YeoY. Controlled drug release from pharmaceutical nanocarriers.Chem. Eng. Sci.2015125758410.1016/j.ces.2014.08.046 25684779
    [Google Scholar]
  89. BattyM. BennettM.R. YuE. The role of oxidative stress in atherosclerosis.Cells20221123384310.3390/cells11233843
    [Google Scholar]
  90. ZhouY. HouD. MarigoC.C. BonelliJ. RocasP. ChengF. YangX. RocasJ. HambergN.M. HanJ. Redox-responsive polyurethane-polyurea nanoparticles targeting to aortic endothelium and atherosclerosis.iScience2022251110539010.1016/j.isci.2022.105390 36345337
    [Google Scholar]
  91. ZhangR. LiuR. LiuC. PanL. QiY. ChengJ. GuoJ. JiaY. DingJ. ZhangJ. HuH. A pH/ROS dual-responsive and targeting nanotherapy for vascular inflammatory diseases.Biomaterials202023011960510.1016/j.biomaterials.2019.119605 31740099
    [Google Scholar]
  92. ZhaoR. NingX. WangM. WangH. XingG. WangL. LuC. YuA. WangY. A ROS-responsive simvastatin nano-prodrug and its fibronectin-targeted co-delivery system for atherosclerosis treatment.ACS Appl. Mater. Interfaces20221422250802509210.1021/acsami.2c02354 35618653
    [Google Scholar]
  93. LiJ. LiW. ZouD. KouF. HouY. YasinA. ZhangK. Comparison of conjugating chondroitin sulfate A and B on amine-rich surface: For deeper understanding on directing cardiovascular cells fate.Compos., Part B Eng.202222810943010.1016/j.compositesb.2021.109430
    [Google Scholar]
  94. GaoQ. LeeJ.S. KimB.S. GaoG. Three-dimensional printing of smart constructs using stimuli-responsive biomaterials: A future direction of precision medicine.Int.J. Bioprint.20229163810.18063/ijb.v9i1.638 36636137
    [Google Scholar]
  95. GoriM. GiannitelliS.M. TorreM. MozeticP. AbbruzzeseF. TrombettaM. TraversaE. MoroniL. RainerA. Biofabrication of hepatic constructs by 3D bioprinting of a cell‐laden thermogel: An effective tool to assess drug‐induced hepatotoxic response.Adv. Healthc. Mater.2020921200116310.1002/adhm.202001163 32940019
    [Google Scholar]
  96. XieM. SuJ. ZhouS. LiJ. ZhangK. Application of hydrogels as three-dimensional bioprinting ink for tissue engineering.Gels2023928810.3390/gels9020088
    [Google Scholar]
  97. HabibiM. ForoughiS. KaramzadehV. PackirisamyM. Direct sound printing.Nature Communications20221311110.1038/s41467‑022‑29395‑1
    [Google Scholar]
  98. GuoZ. DongL. XiaJ. MiS. SunW. 3D printing unique nanoclay‐incorporated double‐network hydrogels for construction of complex tissue engineering scaffolds.Adv. Healthc. Mater.20211011210003610.1002/adhm.202100036 33949152
    [Google Scholar]
  99. ManthaS. PillaiS. KhayambashiP. UpadhyayA. ZhangY. TaoO. PhamH.M. TranS.D. Smart hydrogels in tissue engineering and regenerative medicine.Materials20191220332310.3390/ma12203323 31614735
    [Google Scholar]
  100. WeiX. ChenS. XieT. ChenH. JinX. YangJ. SaharS. HuangH. ZhuS. LiuN. YuC. ZhuP. WangW. ZhangW. An MMP-degradable and conductive hydrogel to stabilize HIF-1α for recovering cardiac functions.Theranostics202212112714210.7150/thno.63481 34987638
    [Google Scholar]
  101. LiZ. ZhuD. HuiQ. BiJ. YuB. HuangZ. HuS. WangZ. CaranasosT. RossiJ. LiX. ChengK. WangX. Injection of ROS‐responsive hydrogel loaded with basic fibroblast growth factor into the pericardial cavity for heart repair.Adv. Funct. Mater.20213115200437710.1002/adfm.202004377
    [Google Scholar]
  102. GhumanH. MassensiniA.R. DonnellyJ. KimS.M. MedberryC.J. BadylakS.F. ModoM. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate.Biomaterials20169116618110.1016/j.biomaterials.2016.03.014 27031811
    [Google Scholar]
  103. NiX. XingX. DengY. LiZ. Applications of stimuli-responsive hydrogels in bone and cartilage regeneration.Pharmaceutics202315398210.3390/pharmaceutics15030982
    [Google Scholar]
  104. SaravananS. VimalrajS. AnuradhaD. Chitosan based thermoresponsive hydrogel containing graphene oxide for bone tissue repair.Biomed. Pharmacother.201810790891710.1016/j.biopha.2018.08.072 30257403
    [Google Scholar]
  105. YuanZ. MemarzadehK. StephenA.S. AllakerR.P. BrownR.A. HuangJ. Development of a 3D collagen model for the in vitro evaluation of magnetic-assisted osteogenesis.Sci. Rep.2018811627010.1038/s41598‑018‑33455‑2 30389949
    [Google Scholar]
  106. BordatA. BoissenotT. NicolasJ. TsapisN. Thermoresponsive polymer nanocarriers for biomedical applications.Adv. Drug Deliv. Rev.201913816719210.1016/j.addr.2018.10.005 30315832
    [Google Scholar]
  107. ShuX. A review of thermoresponsive drug delivery systems based on LCST/UCST polymer nanofibers.J. Phys. Conf. Ser.20232539101203210.1088/1742‑6596/2539/1/012032
    [Google Scholar]
  108. GangulyP. BreenA. PillaiS.C. Toxicity of Nanomaterials: Exposure, pathways, assessment, and recent advances.ACS Biomater. Sci. Eng.2018472237227510.1021/acsbiomaterials.8b00068 33435097
    [Google Scholar]
  109. SairamA.B. SanmugamA. PushparajA. Mahesh KumarG. SundarapandianN. BalajiS. Toxicity of polymeric nanodrugs as drug carriers.ACS Chem. Health Saf.202330523625010.1021/acs.chas.3c00008
    [Google Scholar]
  110. AzarnezhadA. SamadianH. JaymandM. SobhaniM. AhmadiA. Toxicological profile of lipid-based nanostructures: are they considered as completely safe nanocarriers?Crit. Rev. Toxicol.202050214817610.1080/10408444.2020.1719974 32053030
    [Google Scholar]
  111. DokkaS. ToledoD. ShiX. CastranovaV. RojanasakulY. Oxygen radical-mediated pulmonary toxicity induced by some cationic liposomes.Pharm. Res.200017552152510.1023/A:1007504613351 10888302
    [Google Scholar]
  112. KnudsenK.B. NorthevedH. KumarE.K.P. PerminA. GjettingT. AndresenT.L. LarsenS. WegenerK.M. LykkesfeldtJ. JantzenK. LoftS. MøllerP. RoursgaardM. In vivo toxicity of cationic micelles and liposomes.Nanomedicine201511246747710.1016/j.nano.2014.08.004 25168934
    [Google Scholar]
  113. ShahV. TaratulaO. GarbuzenkoO.B. PatilM.L. SavlaR. ZhangM. MinkoT. Genotoxicity of different nanocarriers: Possible modifications for the delivery of nucleic acids.Curr. Drug Discov. Technol.201310181510.2174/1570163811310010003 22564170
    [Google Scholar]
  114. MahmoudiM. SantS. WangB. LaurentS. SenT. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy.Adv. Drug Deliv. Rev.2011631-2244610.1016/j.addr.2010.05.006 20685224
    [Google Scholar]
  115. FengQ. LiuY. HuangJ. ChenK. HuangJ. XiaoK. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings.Sci. Rep.201881208210.1038/s41598‑018‑19628‑z
    [Google Scholar]
  116. AnkamwarB. LaiT.C. HuangJ.H. LiuR.S. HsiaoM. ChenC.H. HwuY.K. Biocompatibility of Fe 3 O 4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells.Nanotechnology201021707510210.1088/0957‑4484/21/7/075102 20090199
    [Google Scholar]
  117. VeranthJ.M. KaserE.G. VeranthM.M. KochM. YostG.S. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts.Part. Fibre Toxicol.200741210.1186/1743‑8977‑4‑2 17326846
    [Google Scholar]
  118. SinghN. JenkinsG.J.S. AsadiR. DoakS.H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION).Nano Rev.201011535810.3402/nano.v1i0.5358 22110864
    [Google Scholar]
  119. HaoX. HuX. ZhangC. ChenS. LiZ. YangX. LiuH. JiaG. LiuD. GeK. LiangX.J. ZhangJ. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite.ACS Nano20159109614962510.1021/nn507485j 26316321
    [Google Scholar]
  120. ShenD. YangJ. LiX. ZhouL. ZhangR. LiW. ChenL. WangR. ZhangF. ZhaoD. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres.Nano Lett.201414292393210.1021/nl404316v 24467566
    [Google Scholar]
  121. AhmadiS. RabieeN. BagherzadehM. ElmiF. FatahiY. FarjadianF. BaheiraeiN. NasseriB. RabieeM. DastjerdN.T. ValibeikA. KarimiM. HamblinM.R. Stimulus-responsive sequential release systems for drug and gene delivery.Nano Today20203410091410.1016/j.nantod.2020.100914 32788923
    [Google Scholar]
  122. Stimuli-responsive nanoparticles for biomedical applications.US20220226510A12022
  123. Bottlebrush copolymers and uses thereof.US20200362095A12021
  124. Metal organic structure capable of controlling guest releasestimulus-responsive polymer composite.JP6475700B22019
  125. Formulation of solid nano-sized particles in a gel-forming system.US10434192B22019
  126. Therapeutic uses of selected pyrrolopyrimidine compounds with anti-mer tyrosine kinase activity.US10004755B22018
  127. Temperature- and pH-responsive polymer compositions.US7718193B22010
  128. Smart Polymers Market Size USD 10.9 Million by 2030.Available from: https://www.vantagemarketresearch.com/industry-report/smart-polymers-market-1203#:~:text=Global%20Smart%20Poly-mers%20market%20is,the%20Smart%20Polymers%20market%20growth (Accessed on: June 14, 2023).
  129. Global Smart Polymer Market Size USD 10.08 Billion 2030.Available from: https://www.custommarketinsights.com/press-releases/smart-polymer-market-size/ (Accessed on: June 14, 2023).
  130. Smart Polymers Market Size Report, 2022-2027.Available from: https://www.industryarc.com/Research/Smart-Polymers-Market-Research-500233 (Accessed on: June 14, 2023).
  131. Biopolymers and Bioplastics Market Share, Growth, Scope, Trends and Future Opportunities 2032: SPER Market Research.Available from: https://www.sperresearch.com/report-store/biopolymer-and-bioplastics-market.aspx (Accessed on: June 14, 2023).
  132. 2030, Physical Stimuli Responsive Polymers Market by Top Players and Regions - MarketWatch.Available from: https://www.marketwatch.com/press-release/2030-physical-stimuli-responsive-polymers-market-by-top-players-and-regions-2023-06-04 (Accessed on: June 14, 2023).
  133. ALT-P7Available from: http://www.alteogen.com/en/pipeline_3_1/ (Accessed on: June 14, 2023).
  134. Our Science: Relay TherapeuticsAvailable from: https://relaytx.com/pipeline/ (Accessed on: June 14, 2023).
  135. A Study of RG-012 in subjects with alport syndrome.NCT033737862022
/content/journals/cdd/10.2174/0115672018278641231221051359
Loading
/content/journals/cdd/10.2174/0115672018278641231221051359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test