Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Objective

Angiogenesis is the process of forming new blood vessels from pre-existing vessels and occurs during development, wound healing, and tumor growth. In this review, we aimed to present a comprehensive view of various factors contributing to angiogenesis during carcinogenesis. Anti-angiogenesis agents prevent or slow down cancer growth by interrupting the nutrients and blood supply to the tumor cells, and thus can prove beneficial for treatment.

Methods

The discovery of several novel angiogenic inhibitors has helped to reduce both morbidity and mortality from several life-threatening diseases, such as carcinomas. There is an urgent need for a new comprehensive treatment strategy combining novel anti-angiogenic agents for the control of cancer. The article contains details of various angiogenic inhibitors that have been adopted by scientists to formulate and optimize such systems in order to make them suitable for cancer.

Results

The results of several researches have been summarized in the article and all of the data support the claim that anti-angiogenic agent is beneficial for cancer treatment.

Conclusion

This review focuses on novel antiangiogenic agents that play a crucial role in controlling carcinogenesis.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018277869231217165048
2024-01-09
2025-01-16
Loading full text...

Full text loading...

References

  1. ChungA.S. LeeJ. FerraraN. Targeting the tumour vasculature: Insights from physiological angiogenesis.Nat. Rev. Cancer201010750551410.1038/nrc2868 20574450
    [Google Scholar]
  2. SultanaS. SultanaS. Smart Nanopreparations for Cancer.Smart Pharmaceutical Nanocarriers2015449
    [Google Scholar]
  3. ShibuyaM. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases.J. Biochem.20131531131910.1093/jb/mvs136 23172303
    [Google Scholar]
  4. KrockB.L. SkuliN. SimonM.C. Hypoxia-induced angiogenesis: Good and evil.Genes Cancer20112121117113310.1177/1947601911423654 22866203
    [Google Scholar]
  5. ChenQ JinM YangF ZhuJ XiaoQ ZhangL Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling.Mediators of inflammation2013201310.1155/2013/928315
    [Google Scholar]
  6. MuzB. de la PuenteP. AzabF. AzabA.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy.Hypoxia20153839210.2147/HP.S93413 27774485
    [Google Scholar]
  7. MatkarP. AriyagunarajahR. Leong-PoiH. SinghK. Friends turned foes: Angiogenic growth factors beyond angiogenesis.Biomolecules2017747410.3390/biom7040074 28974056
    [Google Scholar]
  8. LosordoD.W. IsnerJ.M. Estrogen and angiogenesis.Arterioscler. Thromb. Vasc. Biol.200121161210.1161/01.ATV.21.1.6 11145928
    [Google Scholar]
  9. JiangX. WangJ. DengX. XiongF. ZhangS. GongZ. LiX. CaoK. DengH. HeY. LiaoQ. XiangB. ZhouM. GuoC. ZengZ. LiG. LiX. XiongW. The role of microenvironment in tumor angiogenesis.J. Exp. Clin. Cancer Res.202039120410.1186/s13046‑020‑01709‑5 32993787
    [Google Scholar]
  10. LuganoR. RamachandranM. DimbergA. Tumor angiogenesis: Causes, consequences, challenges and opportunities.Cell. Mol. Life Sci.20207791745177010.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  11. LazaroviciP. MarcinkiewiczC. LelkesP. Cross talk between the cardiovascular and nervous systems: Neurotrophic effects of vascular endothelial growth factor (VEGF) and angiogenic effects of nerve growth factor (NGF)-implications in drug development.Curr. Pharm. Des.200612212609262210.2174/138161206777698738 16842161
    [Google Scholar]
  12. BertrandB. CasiniA. A golden future in medicinal inorganic chemistry: The promise of anticancer gold organometallic compounds.Dalton Trans.201443114209421910.1039/C3DT52524D 24225667
    [Google Scholar]
  13. AdulnirathA. ChungS.W. ParkJ. HwangS.R. KimJ.Y. YangV.C. KimS.Y. MoonH.T. ByunY. Cyclic RGDyk-conjugated LMWH-taurocholate derivative as a targeting angiogenesis inhibitor.J. Control. Release2012164181610.1016/j.jconrel.2012.10.001 23063549
    [Google Scholar]
  14. ElieB.T. Fernández-GallardoJ. CuradoN. CornejoM.A. RamosJ.W. ContelM. Bimetallic titanocene-gold phosphane complexes inhibit invasion, metastasis, and angiogenesis-associated signaling molecules in renal cancer.Eur. J. Med. Chem.201916131032210.1016/j.ejmech.2018.10.034 30368130
    [Google Scholar]
  15. Ganga ReddyV. Srinivasa ReddyT. PrivérS.H. BaiY. MishraS. WlodkowicD. MirzadehN. BhargavaS. Synthesis of gold (I) complexes containing cinnamide: In vitro evaluation of anticancer activity in 2D and 3D spheroidal models of melanoma and in vivo angiogenesis.Inorg. Chem.20195895988599910.1021/acs.inorgchem.9b00281 30985125
    [Google Scholar]
  16. PavicA. GlišićB.Đ. VojnovicS. WarżajtisB. SavićN.D. AntićM. RadenkovićS. JanjićG.V. Nikodinovic-RunicJ. RychlewskaU. DjuranM.I. Mononuclear gold(III) complexes with phenanthroline ligands as efficient inhibitors of angiogenesis: A comparative study with auranofin and sunitinib.J. Inorg. Biochem.201717415616810.1016/j.jinorgbio.2017.06.009 28675847
    [Google Scholar]
  17. DelasoieJ. PavicA. VoutierN. VojnovicS. CrochetA. Nikodinovic-RunicJ. ZobiF. Identification of novel potent and non-toxic anticancer, anti-angiogenic and antimetastatic rhenium complexes against colorectal carcinoma.Eur. J. Med. Chem.202020411258310.1016/j.ejmech.2020.112583 32731186
    [Google Scholar]
  18. FrezzaM. HindoS. ChenD. DavenportA. SchmittS. TomcoD. Ping DouQ. Novel metals and metal complexes as platforms for cancer therapy.Curr. Pharm. Des.201016161813182510.2174/138161210791209009 20337575
    [Google Scholar]
  19. LiuQ. LiuH. GriveauA. LiX. EyerJ. AribC. SpadavecchiaJ. NFL-TBS.40-63 peptide gold complex nanovector: A novel therapeutic approach to increase anticancer activity by breakdown of microtubules in pancreatic adenocarcinoma (PDAC).ACS Pharmacol. Transl. Sci.20225121267127810.1021/acsptsci.2c00159 36524008
    [Google Scholar]
  20. BrewerG. Copper lowering therapy with tetrathiomolybdate as an antiangiogenic strategy in cancer.Curr. Cancer Drug Targets20055319520210.2174/1568009053765807 15892619
    [Google Scholar]
  21. GrossJ. HertelD. HerblinW. NevilleM. BremS. Inhibition of basic fibroblast growth factor-induced angiogenesis and glioma tumor growth in vivo in copper depleted rats.Proc. Annu. Meet. Am. Assoc. Cancer Res.19911991338
    [Google Scholar]
  22. BremS. Angiogenesis and cancer control: From concept to therapeutic trial.Cancer Contr.19996511810.1177/107327489900600502 10758576
    [Google Scholar]
  23. VolpertO.V. WardW.F. LingenM.W. CheslerL. SoltD.B. JohnsonM.D. MolteniA. PolveriniP.J. BouckN.P. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats.J. Clin. Invest.199698367167910.1172/JCI118838 8698858
    [Google Scholar]
  24. MohamedS. CoombeD. Heparin mimetics: Their therapeutic potential.Pharmaceuticals (Basel)20171047810.3390/ph10040078 28974047
    [Google Scholar]
  25. HwangH.H. JeongH.J. YunS. ByunY. OkanoT. KimS.W. LeeD.Y. Anticancer effect of heparin–taurocholate conjugate on orthotopically induced exocrine and endocrine pancreatic cancer.Cancers (Basel)20211322577510.3390/cancers13225775 34830928
    [Google Scholar]
  26. BayatN. IzadpanahR. Ebrahimi-BaroughS. Norouzi JavidanA. AiA. Mokhtari ArdakanM.M. SaberiH. AiJ. The anti-angiogenic effect of atorvastatin in glioblastoma spheroids tumor cultured in fibrin gel: in 3D in vitro model. Asian Pacific journal of cancer prevention.APJCP201819925532560 30256055
    [Google Scholar]
  27. MokuG. VangalaS. YakatiV. GaliC.C. SahaS. MadamsettyV.S. VyasA. Novel suberoylanilide hydroxamic acid analogs inhibit angiogenesis and induce apoptosis in breast cancer cells.Anticancer. Agents in Medicinal Chemistry202222591492510.2174/1871520621666210901102425
    [Google Scholar]
  28. DakirE.L.H. PickardA. SrivastavaK. McCruddenC.M. GrossS.R. LloydS. ZhangS.D. MargaritiA. MorganR. RudlandP.S. El-TananiM. The anti-psychotic drug pimozide is a novel chemotherapeutic for breast cancer.Oncotarget2018979348893491010.18632/oncotarget.26175 30405882
    [Google Scholar]
  29. KwakT.W. ShinH.J. JeongY.I. HanM.E. OhS.O. KimH.J. KimD.H. KangD.H. Anticancer activity of streptochlorin, a novel antineoplastic agent, in cholangiocarcinoma.Drug Des. Devel. Ther.201592201221410.2147/DDDT.S80205 25931814
    [Google Scholar]
  30. RasmussenH.S. McCannP.P. Matrix metalloproteinase inhibition as a novel anticancer strategy: A review with special focus on batimastat and marimastat.Pharmacol. Ther.1997751697510.1016/S0163‑7258(97)00023‑5 9364582
    [Google Scholar]
  31. SagarS.M. YanceD. WongR.K. Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1.Curr. Oncol.2006131142610.3747/co.v13i1.77 17576437
    [Google Scholar]
  32. LiuJ.J. HuangT.S. ChengW.F. LuF.J. Baicalein and baicalin are potent inhibitors of angiogenesis: Inhibition of endothelial cell proliferation, migration and differentiation.Int. J. Cancer2003106455956510.1002/ijc.11267 12845652
    [Google Scholar]
  33. MajnooniM.B. FakhriS. SmeriglioA. TrombettaD. CroleyC.R. BhattacharyyaP. Sobarzo-SánchezE. FarzaeiM.H. BishayeeA. Antiangiogenic effects of coumarins against cancer: From chemistry to medicine.Molecules20192423427810.3390/molecules24234278 31771270
    [Google Scholar]
  34. PiaoX.M. GaoF. ZhuJ.X. WangL.J. ZhaoX. LiX. ShengM.M. ZhangY. Cucurbitacin B inhibits tumor angiogenesis by triggering the mitochondrial signaling pathway in endothelial cells.Int. J. Mol. Med.20184221018102510.3892/ijmm.2018.3647 29717773
    [Google Scholar]
  35. CaoY. FuZ.D. WangF. LiuH.Y. HanR. Anti-angiogenic activity of resveratrol, a natural compound from medicinal plants.J. Asian Nat. Prod. Res.20057320521310.1080/10286020410001690190 15621628
    [Google Scholar]
  36. LinM.T. YenM.L. LinC.Y. KuoM.L. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation.Mol. Pharmacol.20036451029103610.1124/mol.64.5.1029 14573751
    [Google Scholar]
  37. Meade-TollinL.C. WijeratneE.M.K. CooperD. GuildM. JonE. FritzA. ZhouG.X. WhitesellL. LiangJ. GunatilakaA.A.L. Ponicidin and oridonin are responsible for the antiangiogenic activity of Rabdosia rubescens, a constituent of the herbal supplement PC SPES.J. Nat. Prod.20046712410.1021/np0304114 14738375
    [Google Scholar]
  38. ZhouJ. JiangY.Y. WangX.X. WangH.P. ChenH. WuY.C. WangL. PuX. YueG.Z. ZhangL. Tanshinone IIA suppresses ovarian cancer growth through inhibiting malignant properties and angiogenesis.Ann. Transl. Med.2020820129510.21037/atm‑20‑5741 33209875
    [Google Scholar]
  39. AuyeungK.K.W. LawP.C. KoJ.K.S. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.Oncol. Rep.20122862188219410.3892/or.2012.2056 23023137
    [Google Scholar]
  40. RashidiB. MalekzadehM. GoodarziM. MasoudifarA. MirzaeiH. Green tea and its anti-angiogenesis effects.Biomed. Pharmacother.20178994995610.1016/j.biopha.2017.01.161 28292023
    [Google Scholar]
  41. SartippourM.R. ShaoZ.M. BeattyP. ZhangL. LiuC. BrooksM.N. HeberD. EllisL. LiuW. GoV.L. Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells.J. Nutr.200213282307231110.1093/jn/132.8.2307 12163680
    [Google Scholar]
  42. CaoY. CaoR. Angiogenesis inhibited by drinking tea.Nature1999398672638138110.1038/18793 10201368
    [Google Scholar]
  43. LeeJ.S. ShuklaS. KimJ.A. KimM. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential.PLoS One2015102e011855210.1371/journal.pone.0118552 25714482
    [Google Scholar]
  44. WanL. ZhangQ. WangS. GaoY. ChenX. ZhaoY. QianX. Gambogic acid impairs tumor angiogenesis by targeting YAP/STAT3 signaling axis.Phytother. Res.20193351579159110.1002/ptr.6350 31033039
    [Google Scholar]
  45. SinghR.P. SharmaG. DhanalakshmiS. AgarwalC. AgarwalR. Suppression of advanced human prostate tumor growth in athymic mice by silibinin feeding is associated with reduced cell proliferation, increased apoptosis, and inhibition of angiogenesis.Cancer Epidemiol. Biomarkers Prev.2003129933939 14504208
    [Google Scholar]
  46. SonH.J. LeeH.J. Yun-ChoiH.S. RyuJ.H. Inhibitors of nitric oxide synthesis and TNF-α expression from magnolia obovata in activated macrophages.Planta Med.200066546947110.1055/s‑2000‑8592 10909270
    [Google Scholar]
  47. HuynhH. NguyenT. ChanE. TranE. Inhibition of ErbB-2 and ErbB-3 expression by quercetin prevents transforming growth factor alpha (TGF-α)- and epidermal growth factor (EGF)-induced human PC-3 prostate cancer cell proliferation.Int. J. Oncol.200323382182910.3892/ijo.23.3.821 12888923
    [Google Scholar]
  48. TanW. LinL. LiM. ZhangY.X. TongY. XiaoD. DingJ. Quercetin, a dietary-derived flavonoid, possesses antiangiogenic potential.Eur. J. Pharmacol.20034592-325526210.1016/S0014‑2999(02)02848‑0 12524154
    [Google Scholar]
  49. BattinelliE.M. MarkensB.A. KulenthirarajanR.A. MachlusK.R. FlaumenhaftR. ItalianoJ.E.Jr Anticoagulation inhibits tumor cell–mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response.Blood2014123110111210.1182/blood‑2013‑02‑485011 24065244
    [Google Scholar]
  50. LeeE. KimY.S. BaeS.M. KimS.K. JinS. ChungS.W. LeeM. MoonH.T. JeonO.C. ParkR.W. KimI.S. ByunY. KimS.Y. Polyproline‐type helical‐structured low‐molecular weight heparin (LMWH)‐taurocholate conjugate as a new angiogenesis inhibitor.Int. J. Cancer2009124122755276510.1002/ijc.24239 19243020
    [Google Scholar]
  51. NadirY. Decreasing tumor growth and angiogenesis by inhibition of coagulation.Seminars in Thrombosis and Hemostasis: 2019Thieme Medical Publishers201962262810.1055/s‑0039‑1693473
    [Google Scholar]
  52. HuangD. LanH. LiuF. WangS. ChenX. JinK. MouX. Anti-angiogenesis or pro-angiogenesis for cancer treatment: Focus on drug distribution.Int. J. Clin. Exp. Med.20158683698376 26309490
    [Google Scholar]
  53. SolomonK.R. PeltonK. BoucherK. JooJ. TullyC. ZurakowskiD. SchaffnerC.P. KimJ. FreemanM.R. Ezetimibe is an inhibitor of tumor angiogenesis.Am. J. Pathol.200917431017102610.2353/ajpath.2009.080551 19179610
    [Google Scholar]
  54. DulakJ. JózkowiczA. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy.Curr. Cancer Drug Targets20055857959410.2174/156800905774932824 16375664
    [Google Scholar]
  55. WeisM. HeeschenC. GlassfordA.J. CookeJ.P. Statins have biphasic effects on angiogenesis.Circulation2002105673974510.1161/hc0602.103393 11839631
    [Google Scholar]
  56. MaC. WangQ. ManY. KemmnerW. Cardiovascular medications in angiogenesis—How to avoid the sting in the tail.Int. J. Cancer201213161249125910.1002/ijc.27576 22488125
    [Google Scholar]
  57. LyuJ. YangE.J. HeadS.A. AiN. ZhangB. WuC. LiR.J. LiuY. YangC. DangY. KwonH.J. GeW. LiuJ.O. ShimJ.S. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.Cancer Lett.20174099110310.1016/j.canlet.2017.09.009 28923401
    [Google Scholar]
  58. HuT. ShenH. HuangH. YangZ. ZhouY. ZhaoG. Cholesterol-lowering drug pitavastatin targets lung cancer and angiogenesis via suppressing prenylation-dependent Ras/Raf/MEK and PI3K/Akt/mTOR signaling.Anticancer Drugs202031437738410.1097/CAD.0000000000000885 32011362
    [Google Scholar]
  59. ZahedipourF. ButlerA.E. RizzoM. SahebkarA. Statins and angiogenesis in non-cardiovascular diseases.Drug Discov. Today2022271010332010.1016/j.drudis.2022.07.005 35850434
    [Google Scholar]
  60. RüeggC. ZaricJ. StuppR. Non steroidal anti‐inflammatory drugs and COX‐2 inhibitors as anti‐cancer therapeutics: hypes, hopes and reality.Ann. Med.200335747648710.1080/07853890310017053 14649330
    [Google Scholar]
  61. CuneoK.C. TuT. GengL. FuA. HallahanD.E. WilleyC.D. HIV protease inhibitors enhance the efficacy of irradiation.Cancer Res.200767104886489310.1158/0008‑5472.CAN‑06‑3684 17510418
    [Google Scholar]
  62. TosettiF. FerrariN. De FloraS. AlbiniA. ‘Angioprevention’: Angiogenesis is a common and key target for cancer chemopreventive agents.FASEB J.200216121410.1096/fj.01‑0300rev 11772931
    [Google Scholar]
  63. LiY. CaiB. ShenL. DongY. LuQ. SunS. LiuS. MaS. MaP.X. ChenJ. MiRNA-29b suppresses tumor growth through simultaneously inhibiting angiogenesis and tumorigenesis by targeting Akt3.Cancer Lett.201739711111910.1016/j.canlet.2017.03.032 28365400
    [Google Scholar]
  64. KimJ.H. KimJ.K. AhnE.K. KoH.J. ChoY.R. LeeC.H. KimY.K. BaeG.U. OhJ.S. SeoD.W. Marmesin is a novel angiogenesis inhibitor: Regulatory effect and molecular mechanism on endothelial cell fate and angiogenesis.Cancer Lett.2015369232333010.1016/j.canlet.2015.09.021 26455771
    [Google Scholar]
  65. CaoD. LiuY. YanW. WangC. BaiP. WangT. TangM. WangX. YangZ. MaB. MaL. LeiL. WangF. XuB. ZhouY. YangT. ChenL. Design, synthesis, and evaluation of in vitro and in vivo anticancer activity of 4-substituted coumarins: a novel class of potent tubulin polymerization inhibitors.J. Med. Chem.201659125721573910.1021/acs.jmedchem.6b00158 27213819
    [Google Scholar]
  66. CuiN. LinD.D. ShenY. ShiJ.G. WangB. ZhaoM.Z. ZhengL. ChenH. ShiJ.H. Triphenylethylene-Coumarin Hybrid TCH-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis.Anticancer. Agents Med. Chem.201919101253126110.2174/1871520619666190404155230 30947677
    [Google Scholar]
  67. PanR. DaiY. GaoX.H. LuD. XiaY.F. Inhibition of vascular endothelial growth factor-induced angiogenesis by scopoletin through interrupting the autophosphorylation of VEGF receptor 2 and its downstream signaling pathways.Vascul. Pharmacol.2011541-2182810.1016/j.vph.2010.11.001 21078410
    [Google Scholar]
  68. KimK.H. LeeH.J. JeongS.J. LeeH.J. LeeE.O. KimH.S. ZhangY. RyuS.Y. LeeM.H. LüJ. KimS.H. Galbanic acid isolated from ferula assafoetida exerts in vivo anti-tumor activity in association with anti-angiogenesis and anti-proliferation.Pharm. Res.201128359760910.1007/s11095‑010‑0311‑7 21063754
    [Google Scholar]
  69. Naderi AlizadehM. RashidiM. MuhammadnejadA. Moeini ZanjaniT. ZiaiS.A. Antitumor effects of umbelliprenin in a mouse model of colorectal cancer. Iranian journal of pharmaceutical research.Iran. J. Pharm. Res.2018173976985 30127820
    [Google Scholar]
  70. JamialahmadiK. SalariS. AlamolhodaeiN.S. AvanA. GholamiL. KarimiG. Auraptene inhibits migration and invasion of cervical and ovarian cancer cells by repression of matrix metalloproteinasas 2 and 9 activity.J. Pharmacopuncture201821317718410.3831/KPI.2018.21.021 30283705
    [Google Scholar]
  71. ParkS.L. WonS.Y. SongJ.H. LeeS.Y. KimW.J. MoonS.K. Esculetin inhibits VEGF-induced angiogenesis both in vitro and in vivo.Am. J. Chin. Med.2016441617610.1142/S0192415X1650004X 26916914
    [Google Scholar]
  72. WangK.S. LvY. WangZ. MaJ. MiC. LiX. XuG.H. PiaoL.X. ZhengS.Z. JinX. Imperatorin efficiently blocks TNF-α-mediated activation of ROS/PI3K/Akt/NF-κB pathway.Oncol. Rep.20173763397340410.3892/or.2017.5581 28440462
    [Google Scholar]
  73. LongW. WangM. LuoX. HuangG. ChenJ. Murrangatin suppresses angiogenesis induced by tumor cell–derived media and inhibits AKT activation in zebrafish and endothelial cells.Drug Des. Devel. Ther.2018123107311510.2147/DDDT.S145956 30288018
    [Google Scholar]
  74. KumarA. SunitaP. JhaS. PattanayakS.P. Daphnetin inhibits TNF ‐α and VEGF ‐induced angiogenesis through inhibition of the IKK s/IκBα/ NF ‐κB, Src/FAK/ERK 1/2 and Akt signalling pathways.Clin. Exp. Pharmacol. Physiol.2016431093995010.1111/1440‑1681.12608 27297262
    [Google Scholar]
  75. YaoF. ZhangL. JiangG. LiuM. LiangG. YuanQ. Osthole attenuates angiogenesis in an orthotopic mouse model of hepatocellular carcinoma via the downregulation of nuclear factor-κB and vascular endothelial growth factor.Oncol. Lett.20181644471447910.3892/ol.2018.9213 30214582
    [Google Scholar]
  76. KhalidZ. Mona HassanS. Sharif MughalS. Khurram HassanS. HassanH. A review on biological attributes of Momordica charantia.Adv. Biosci. Bioeng.20219181210.11648/j.abb.20210901.12
    [Google Scholar]
  77. SikanderM. HafeezB.B. MalikS. AlsayariA. HalaweishF.T. YallapuM.M. ChauhanS.C. JaggiM. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer.Sci. Rep.2016613659410.1038/srep36594 27824155
    [Google Scholar]
  78. LinT.H. HsiehC.L. Pharmacological effects of Salvia miltiorrhiza (Danshen) on cerebral infarction.Chin. Med.2010512210.1186/1749‑8546‑5‑22 20565944
    [Google Scholar]
  79. JiaoJ-W. WenF. Tanshinone IIA acts via p38 MAPK to induce apoptosis and the down-regulation of ERCC1 and lung-resistance protein in cisplatin-resistant ovarian cancer cells.Oncol. Rep.2011253781788 21165580
    [Google Scholar]
  80. ZhouL.H. HuQ. SuiH. CiS.J. WangY. LiuX. LiuN.N. YinP.H. QinJ.M. LiQ. Tanshinone II--a inhibits angiogenesis through down regulation of COX-2 in human colorectal cancer.Asian Pac. J. Cancer Prev.20121394453445810.7314/APJCP.2012.13.9.4453 23167360
    [Google Scholar]
  81. YangC.S. MaliakalP. MengX. Inhibition of carcinogenesis by tea.Annu. Rev. Pharmacol. Toxicol.2002421255410.1146/annurev.pharmtox.42.082101.154309 11807163
    [Google Scholar]
  82. LamyS. GingrasD. BéliveauR. Green tea catechins inhibit vascular endothelial growth factor receptor phosphorylation.Cancer Res.2002622381385 11809684
    [Google Scholar]
  83. LuZ. JinY. ChenC. LiJ. CaoQ. PanJ. Pristimerin induces apoptosis in imatinib-resistant chronic myelogenous leukemia cells harboring T315I mutation by blocking NF-κB signaling and depleting Bcr-Abl.Mol. Cancer20109111210.1186/1476‑4598‑9‑112
    [Google Scholar]
  84. LarsenH. MuzB. KhongT.L. FeldmannM. PaleologE.M. Differential effects of Th1 versus Th2 cytokines in combination with hypoxia on HIFs and angiogenesis in RA.Arthritis Res. Ther.2012144R18010.1186/ar3934 22866899
    [Google Scholar]
  85. YiL. SuQ. Molecular mechanisms for the anti-cancer effects of diallyl disulfide.Food Chem. Toxicol.20135736237010.1016/j.fct.2013.04.001 23583486
    [Google Scholar]
  86. MizushinaY. AkihisaT. UkiyaM. MurakamiC. KuriyamaI. XuX. YoshidaH. SakaguchiK. A novel DNA topoisomerase inhibitor: Dehydroebriconic acid, one of the lanostane-type triterpene acids from Poria cocos.Cancer Sci.200495435436010.1111/j.1349‑7006.2004.tb03215.x 15072595
    [Google Scholar]
  87. WangS. ZhengZ. WengY. YuY. ZhangD. FanW. DaiR. HuZ. Angiogenesis and anti-angiogenesis activity of chinese medicinal herbal extracts.Life Sci.200474202467247810.1016/j.lfs.2003.03.005 15010258
    [Google Scholar]
  88. SharmaS. GuruS.K. MandaS. KumarA. MintooM.J. PrasadV.D. SharmaP.R. MondheD.M. BharateS.B. BhushanS. A marine sponge alkaloid derivative 4-chloro fascaplysin inhibits tumor growth and VEGF mediated angiogenesis by disrupting PI3K/Akt/mTOR signaling cascade.Chem. Biol. Interact.2017275476010.1016/j.cbi.2017.07.017 28756150
    [Google Scholar]
  89. ZhangJ. ZhangY. ZhangS. WangS. HeL. Discovery of novel taspine derivatives as antiangiogenic agents.Bioorg. Med. Chem. Lett.201020271872110.1016/j.bmcl.2009.11.073 20006929
    [Google Scholar]
  90. PietersL. de BruyneT. ClaeysM. VlietinckA. CalommeM. vanden Berghe, D. Isolation of a dihydrobenzofuran lignan from South American dragon’s blood (Croton spp.) as an inhibitor of cell proliferation.J. Nat. Prod.199356689990610.1021/np50096a013 8350090
    [Google Scholar]
  91. ZhengL. HeX. MaW. DaiB. ZhanY. ZhangY. Ta1722, an anti-angiogenesis inhibitor targeted on VEGFR-2 against human hepatoma.Biomed. Pharmacother.201266749950510.1016/j.biopha.2012.05.002 22854322
    [Google Scholar]
  92. DoucetteC.D. HilchieA.L. LiwskiR. HoskinD.W. Piperine, a dietary phytochemical, inhibits angiogenesis.J. Nutr. Biochem.201324123123910.1016/j.jnutbio.2012.05.009 22902327
    [Google Scholar]
  93. SuW. HuangL. AoQ. ZhangQ. TianX. FangY. LuY. Noscapine sensitizes chemoresistant ovarian cancer cells to cisplatin through inhibition of HIF-1α.Cancer Lett.20113051949910.1016/j.canlet.2011.02.031 21421285
    [Google Scholar]
  94. TsangC.M. CheungK.C.P. CheungY.C. ManK. LuiV.W.Y. TsaoS.W. FengY. Berberine suppresses Id-1 expression and inhibits the growth and development of lung metastases in hepatocellular carcinoma.Biochim. Biophys. Acta Mol. Basis Dis.20151852354155110.1016/j.bbadis.2014.12.004 25496992
    [Google Scholar]
  95. SinghC.K. KaurS. GeorgeJ. NihalM. HahnM.C.P. ScarlettC.O. AhmadN. Molecular signatures of sanguinarine in human pancreatic cancer cells: A large scale label-free comparative proteomics approach.Oncotarget2015612103351034910.18632/oncotarget.3231 25929337
    [Google Scholar]
  96. XieT. RenH.Y. LinH.Q. MaoJ.P. ZhuT. WangS.D. YeZ.M. Sinomenine prevents metastasis of human osteosarcoma cells via S phase arrest and suppression of tumor-related neovascularization and osteolysis through the CXCR4-STAT3 pathway.Int. J. Oncol.20164852098211210.3892/ijo.2016.3416 26983669
    [Google Scholar]
  97. LuW. DaiB. MaW. ZhangY. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis.Oncol. Lett.2012451109111310.3892/ol.2012.855 23162661
    [Google Scholar]
  98. ChakrabortyS. AdhikaryA. MazumdarM. MukherjeeS. BhattacharjeeP. GuhaD. ChoudhuriT. ChattopadhyayS. SaG. SenA. DasT. Capsaicin-induced activation of p53-SMAR1 auto-regulatory loop down-regulates VEGF in non-small cell lung cancer to restrain angiogenesis.PLoS One201496e9974310.1371/journal.pone.0099743 24926985
    [Google Scholar]
  99. AssisP.A. De Figueiredo-PontesL.L. LimaA.S.G. LeãoV. CândidoL.A. PintãoC.T. GarciaA.B. SaggioroF.P. PanepucciR.A. ChahudF. NaglerA. FalcãoR.P. RegoE.M. Halofuginone inhibits phosphorylation of SMAD-2 reducing angiogenesis and leukemia burden in an acute promyelocytic leukemia mouse model.J. Exp. Clin. Cancer Res.20153416510.1186/s13046‑015‑0181‑2 26099922
    [Google Scholar]
  100. AlasvandM AssadollahiV AmbraR HedayatiE KootiW PelusoI Antiangiogenic effect of alkaloids.Oxidative medicine and cellular longevity2019201910.1155/2019/9475908
    [Google Scholar]
  101. RoscaE.V. KoskimakiJ.E. RiveraC.G. PandeyN.B. TamizA.P. PopelA.S. Anti-angiogenic peptides for cancer therapeutics.Curr. Pharm. Biotechnol.20111281101111610.2174/138920111796117300 21470139
    [Google Scholar]
  102. GerettiE. KlagsbrunM. Neuropilins.Cell Adhes. Migr.200712566110.4161/cam.1.2.4490 19329879
    [Google Scholar]
  103. Chisa Shukunami Yuji Hiraki, Chondromodulin-I and tenomodulin: The negative control of angiogenesis in connective tissue.Curr. Pharm. Des.200713202101211210.2174/138161207781039751 17627542
    [Google Scholar]
  104. JingY. WangG. GeY. XuM. GongZ. Synthesis, anti-tumor and anti-angiogenic activity evaluations of asiatic Acid amino Acid derivatives.Molecules20152047309732410.3390/molecules20047309 25905607
    [Google Scholar]
  105. MurataK. MoriyamaM. Isoleucine, an essential amino acid, prevents liver metastases of colon cancer by antiangiogenesis.Cancer Res.20076773263326810.1158/0008‑5472.CAN‑06‑3739 17409434
    [Google Scholar]
  106. MaeshimaY. YerramallaU.L. DhanabalM. HolthausK.A. BarbashovS. KharbandaS. ReimerC. ManfrediM. DickersonW.M. KalluriR. Extracellular matrix-derived peptide binds to α(v)β(3) integrin and inhibits angiogenesis.J. Biol. Chem.200127634319593196810.1074/jbc.M103024200 11399763
    [Google Scholar]
  107. ZhaoC. SuY. ZhangJ. FengQ. QuL. WangL. LiuC. JiangB. MengL. ShouC. Fibrinogen‐derived fibrinostatin inhibits tumor growth through anti‐angiogenesis.Cancer Sci.2015106111596160610.1111/cas.12797 26300396
    [Google Scholar]
  108. BaigueraS. ConconiM. GuidolinD. MazzocchiG. MalendowiczL. ParnigottoP. SpinazziR. NussdorferG. Ghrelin inhibits in vitro angiogenic activity of rat brain microvascular endothelial cells.Int. J. Mol. Med.200414584985410.3892/ijmm.14.5.849 15492855
    [Google Scholar]
  109. KojimaM. HosodaH. DateY. NakazatoM. MatsuoH. KangawaK. Ghrelin is a growth-hormone-releasing acylated peptide from stomach.Nature1999402676265666010.1038/45230 10604470
    [Google Scholar]
  110. ZangM. HuL. ZhangB. ZhuZ. LiJ. ZhuZ. YanM. LiuB. Luteolin suppresses angiogenesis and vasculogenic mimicry formation through inhibiting Notch1-VEGF signaling in gastric cancer.Biochem. Biophys. Res. Commun.2017490391391910.1016/j.bbrc.2017.06.140 28655612
    [Google Scholar]
  111. Dalasanur NagaprashanthaL. AdhikariR. SinghalJ. ChikaraS. AwasthiS. HorneD. SinghalS.S. Translational opportunities for broad‐spectrum natural phytochemicals and targeted agent combinations in breast cancer.Int. J. Cancer2018142465867010.1002/ijc.31085 28975625
    [Google Scholar]
  112. KhanM. KarimaG. KhanM. ShinJ. KimJ. Therapeutic effects of saponins for the prevention and treatment of cancer by ameliorating inflammation and angiogenesis and inducing antioxidant and apoptotic effects in human cells.Int. J. Mol. Sci.202223181066510.3390/ijms231810665 36142578
    [Google Scholar]
  113. XuX.H. LiT. FongC. ChenX. ChenX.J. WangY.T. HuangM.Q. LuJ.J. Saponins from Chinese medicines as anticancer agents.Molecules20162110132610.3390/molecules21101326 27782048
    [Google Scholar]
  114. LuD. XiaY. TongB. ZhangC. PanR. XuH. YangX. DaiY. In vitro anti-angiogenesis effects and active constituents of the saponin fraction from Gleditsia sinensis.Integr. Cancer Ther.201413544645710.1177/1534735412442377 22505594
    [Google Scholar]
  115. TongQ. ZhaoQ. QingY. HuX. JiangL. WuX. Deltonin inhibits angiogenesis by regulating VEGFR2 and subsequent signaling pathways in endothelial cells.Steroids201596303610.1016/j.steroids.2014.12.019 25554580
    [Google Scholar]
  116. TongQ.Y. QingY. ShuD. HeY. ZhaoY.L. LiY. WangZ.L. ZhangS.Y. XingZ. XuC. WeiY.Q. HuangW. WuX.H. Deltonin, a steroidal saponin, inhibits colon cancer cell growth in vitro and tumor growth in vivo via induction of apoptosis and antiangiogenesis.Cell. Physiol. Biochem.2011273-423324210.1159/000327949 21471712
    [Google Scholar]
  117. LouC. ZhuZ. XuX. ZhuR. ShengY. ZhaoH. Picroside II, an iridoid glycoside from Picrorhiza kurroa, suppresses tumor migration, invasion, and angiogenesis in vitro and in vivo.Biomed. Pharmacother.201912010949410.1016/j.biopha.2019.109494 31606622
    [Google Scholar]
  118. ChengC. WangJ. ChenJ. KuoK.T. TangJ. GaoH. ChenL. ChenZ. MengZ. New therapeutic aspects of steroidal cardiac glycosides: The anticancer properties of Huachansu and its main active constituent Bufalin.Cancer Cell Int.20191919210.1186/s12935‑019‑0806‑1 31011289
    [Google Scholar]
  119. ZhuP. WuY. YangA. FuX. MaoM. LiuZ. Catalpol suppressed proliferation, growth and invasion of CT26 colon cancer by inhibiting inflammation and tumor angiogenesis.Biomed. Pharmacother.201795687610.1016/j.biopha.2017.08.049 28826099
    [Google Scholar]
  120. ArakawaM. SomenoT. KawadaM. IkedaD. A new terrein glucoside, a novel inhibitor of angiogenin secretion in tumor angiogenesis.J. Antibiot.200861744244810.1038/ja.2008.60 18776656
    [Google Scholar]
  121. ZhangJ.W. WeiY.H. RETRACTED ARTICLE: Anti-cancer effects of grailsine-al-glycoside isolated from Rhizoma Sparganii.BMC Complement. Altern. Med.20141418210.1186/1472‑6882‑14‑82
    [Google Scholar]
  122. MiuraT. YuanL. SunB. FujiiH. YoshidaM. WakameK. KosunaK. Isoflavone aglycon produced by culture of soybean extracts with basidiomycetes and its anti-angiogenic activity.Biosci. Biotechnol. Biochem.200266122626263110.1271/bbb.66.2626 12596858
    [Google Scholar]
  123. AmininD. MenchinskayaE. PisliaginE. SilchenkoA. AvilovS. KalininV. Anticancer activity of sea cucumber triterpene glycosides.Mar. Drugs20151331202122310.3390/md13031202 25756523
    [Google Scholar]
  124. GongG. ZhengY. KongX. WenZ. Anti-angiogenesis function of ononin via suppressing the MEK/Erk signaling pathway.J. Nat. Prod.20218461755176210.1021/acs.jnatprod.1c00008 34029083
    [Google Scholar]
  125. Delgado-HernándezR. Hernández-BalmasedaI. Rodeiro-GuerraI. GonzalezJ.C.R. De WeverO. LogieE. DeclerckK. Pérez-NovoC. BergheW.V. Anti-angiogenic effects of Mangiferin in metastatic melanoma. A fair tale of two worlds.Cuban Scientist20201256
    [Google Scholar]
  126. LeeC.H. YingT.H. ChiouH.L. HsiehS.C. WenS.H. ChouR.H. HsiehY.H. Alpha-mangostin induces apoptosis through activation of reactive oxygen species and ASK1/p38 signaling pathway in cervical cancer cells.Oncotarget2017829474254743910.18632/oncotarget.17659 28537893
    [Google Scholar]
  127. SaghiriM.A. AsatourianA. ErshadifarS. MoghadamM.M. SheibaniN. Vitamins and regulation of angiogenesis.J. Funct. Foods20173818019610.1016/j.jff.2017.09.005
    [Google Scholar]
  128. KrishnanA.V. FeldmanD. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D.Annu. Rev. Pharmacol. Toxicol.201151131133610.1146/annurev‑pharmtox‑010510‑100611 20936945
    [Google Scholar]
  129. KayashimaT. MoriM. MizutaniR. NishioK. KuramochiK. TsubakiK. YoshidaH. MizushinaY. MatsubaraK. Synthesis and biological evaluation of vitamin K derivatives as angiogenesis inhibitor.Bioorg. Med. Chem.201018176305630910.1016/j.bmc.2010.07.022 20688522
    [Google Scholar]
  130. MalafaM.P. FokumF.D. SmithL. LouisA. Inhibition of angiogenesis and promotion of melanoma dormancy by vitamin E succinate.Ann. Surg. Oncol.20029101023103210.1007/BF02574523 12464597
    [Google Scholar]
  131. MousaA.S. MousaS.A. Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: Role of nitric oxide and p53.Nutr. Cancer200553110411010.1207/s15327914nc5301_12 16351512
    [Google Scholar]
  132. PathuriG. ThorpeJ.E. DischB.C. Bailey-DownsL.C. IhnatM.A. GaliH. Solid phase synthesis and biological evaluation of probestin as an angiogenesis inhibitor.Bioorg. Med. Chem. Lett.201323123561356410.1016/j.bmcl.2013.04.031 23664876
    [Google Scholar]
  133. SchreiberCL SmithBD Molecular imaging of aminopeptidase N in cancer and angiogenesis.,Contrast media & molecular imaging2018201810.1155/2018/5315172
    [Google Scholar]
  134. SuL. CaoJ. JiaY. ZhangX. FangH. XuW. Development of synthetic aminopeptidase N/CD13 inhibitors to overcome cancer metastasis and angiogenesis.ACS Med. Chem. Lett.201231295996410.1021/ml3000758 24900417
    [Google Scholar]
  135. InagakiY. TangW. ZhangL. DuG. XuW. KokudoN. Novel aminopeptidase N (APN/CD13) inhibitor 24F can suppress invasion of hepatocellular carcinoma cells as well as angiogenesis.Biosci. Trends2010425660 20448342
    [Google Scholar]
  136. GullettN.P. AminA.R. BayraktarS. PezzutoJ.M. ShinD.M. KhuriF.R. AggarwalB.B. SurhY-J. KucukO. Cancer prevention with natural compounds.Seminars in oncology: 2010Elsevier2010258281
    [Google Scholar]
  137. YuJ. ZhangY. LeungL.H. LiuL. YangF. YaoX. Efficacy and safety of angiogenesis inhibitors in advanced gastric cancer: A systematic review and meta-analysis.J. Hematol. Oncol.20169111110.1186/s13045‑016‑0340‑8 27756337
    [Google Scholar]
  138. GotinkK.J. VerheulH.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action?Angiogenesis201013111410.1007/s10456‑009‑9160‑6 20012482
    [Google Scholar]
  139. EnoM.S. BrubakerJ.D. CampbellJ.E. De SaviC. GuziT.J. WilliamsB.D. WilsonD. WilsonK. BrooijmansN. KimJ. ÖzenA. PerolaE. HsiehJ. BrownV. FetalveroK. GarnerA. ZhangZ. StevisonF. WoessnerR. SinghJ. TimsitY. KinkemaC. MedendorpC. LeeC. AlbayyaF. ZalutskayaA. SchalmS. DineenT.A. Discovery of BLU-945, a reversible, potent, and wild-type-sparing next-generation EGFR mutant inhibitor for treatment-resistant non-small-cell lung cancer.J. Med. Chem.202265149662967710.1021/acs.jmedchem.2c00704 35838760
    [Google Scholar]
  140. Available from: https://ir.blueprintmedicines.com/news-releases/news-release-details/blueprintmedicines-announces-blu-945-proof-concept-data
  141. Available from: https://www.prnewswire.com/news-releases/next-generation-egfr-tki-h002-from-redcloud-bio-completes-first-dose-in-non-small-cell-lung-cancer-301613619.html
  142. YonemoriK. MasudaN. TakahashiS. KogawaT. NakayamaT. YamamotoY. TakahashiM. ToyamaT. SaekiT. IwataH. Single agent activity of U3-1402, a HER3-targeting antibody-drug conjugate, in HER3-overexpressing metastatic breast cancer: Updated results from a phase I/II trial.Ann. Oncol.201930iii4810.1093/annonc/mdz100.002
    [Google Scholar]
  143. Available from: https://www.pharmaceutical-technology.com/uncategorized/tqb-3804-chia-tai-tianqing-pharmaceutical-group-non-small-cell-lung-cancer-likelihood-of-approval/?cf-view
  144. Available from: https://ir.blueprintmedicines.com/news-releases/news-release-details/blueprint-medicines-announces-blu-945-proof-concept-data
  145. Available from: https://ir.blueprintmedicines.com/news-releases/news-release-details/blueprint-medicines-
  146. Available from: https://www.pharmaceutical-technology.com/uncategorized/tqb-3804-chia-tai-tianqing-pharmaceutical-group-non-small-cell-lung-cancer-likelihood-of-approval/?cf-view
  147. Available from: https://www.prnewswire.com/news-releases/next-generation-egfr-tki-h002-from-redcloud-bio-completes-first-dose-in-non-small-cell-lung-cancer-301613619.html
  148. EliceF. RodeghieroF. Side effects of anti-angiogenic drugs.Thromb. Res.2012129Suppl. 1S50S5310.1016/S0049‑3848(12)70016‑6 22682133
    [Google Scholar]
  149. XuH. ZhaoG. YangJ. WenX. Advances in toxicity risk analysis and effective treatments for targeted antiangiogenic drugs.Int. J. Clin. Exp. Med.201912101202012027
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018277869231217165048
Loading
/content/journals/cdd/10.2174/0115672018277869231217165048
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Angiogenesis; antiangiogenic agents; cancer; carcinogenesis; COX; CRC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test