Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

A feasible nano transdermal delivery system generally intends to have specific ideal and distinct characteristics primarily for safety, clinical efficacy, and boosted therapeutic index. The delivery of drugs, particularly macromolecules, across the skin is one of the most strenuous obstacles in front of pharmaceutical scientists. Technology advancement has provided some opportunities to overcome this difficulty by utilising microneedle arrays, ablation, laser methods . However, associated uneasiness, painful sensation, and higher cost of therapies limit their day-to-day use. Therefore, researchers have focused on developing alternate carriers like ultra-deformable liposomes, also termed transfersomes. Transfersomes are composed of a lipid bilayer containing phospholipids and an edge activator to facilitate drug delivery transdermal route to deeper layers of skin and for higher systemic bioavailability. The bilayer structure of transfersomes allows ease of encapsulation of both hydrophilic and lipophilic drugs with higher permeability than typical liposomes. Therefore, among various vesicular systems, transfersomes have developed much interest in targeted and sustained drug delivery. The current review primarily emphasizes critical aspects of transfersomes, including their applications, clinical trial studies, and patents found in various literature sources.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018295038240209055444
2024-02-21
2025-01-17
Loading full text...

Full text loading...

References

  1. AlqahtaniM.S. KaziM. AlsenaidyM.A. AhmadM.Z. Advances in oral drug delivery.Front. Pharmacol.20211261841110.3389/fphar.2021.61841133679401
    [Google Scholar]
  2. JainS. JainV. MahajanS.C. Lipid-based vesicular drug delivery systems.Adv. Pharmaceut.2014201411210.1155/2014/574673
    [Google Scholar]
  3. SchäferkortingM. MehnertW. KortingH. Lipid nanoparticles for improved topical application of drugs for skin diseases.Adv. Drug Deliv. Rev.200759642744310.1016/j.addr.2007.04.00617544165
    [Google Scholar]
  4. El MaghrabyG.M. BarryB.W. WilliamsA.C. Liposomes and skin: From drug delivery to model membranes.Eur. J. Pharm. Sci.2008344-520322210.1016/j.ejps.2008.05.00218572392
    [Google Scholar]
  5. SachanR. ParasharT. SinghV. SinghG. TyagiS. PatelC. GuptaA. Drug carrier transfersomes: A novel tool for transdermal drug delivery system.Int. J. Res. Developm. Pharma. Life Sci.201322309316
    [Google Scholar]
  6. PunasiyaR. JoshiA. GuptaS. PunasiyaJ. Transfersomes-a novel carrier for transdermal drug delivery.Res. J. Pharm. Dos. Forms Technol.201022133138
    [Google Scholar]
  7. AnushaV. Transfersomes-a novel vesicular system.Res. J. Pharm. Dos. Forms Technol.201464286291
    [Google Scholar]
  8. KodiS.R. ReddyM.S. Transferosomes: A novel topical approach.J. Drug Deliv. Ther.202313212613110.22270/jddt.v13i2.5952
    [Google Scholar]
  9. PawarA.Y. Transfersome: A novel technique which improves transdermal permeability.Asian J. Pharm.20161004[AJP].
    [Google Scholar]
  10. ModiC.D. BharadiaP.D. Transfersomes: New dominants for transdermal drug delivery.Am. J. Pharm. Tech. Res.2012237191
    [Google Scholar]
  11. PrajapatiS.T. PatelC.G. PatelC.N. Transfersomes: A vesicular carrier system for transdermal drug delivery.Asian J. Biochem. Pharmaceut. Res.201121507524
    [Google Scholar]
  12. SharmaU. VermaP. JainN.K. A review on novel vesicular drug delivery system: Transfersomes.Int. J. Pharma. Life Sci.2020117
    [Google Scholar]
  13. WalveJ. R. BakliwalS. R. RaneB. R. PawarS. P. Transfersomes: A surrogated carrier for transdermal drug delivery system.IJABPT201121110
    [Google Scholar]
  14. LeeE.H. KimA. OhY.K. KimC.K. Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes.Biomaterials200526220521010.1016/j.biomaterials.2004.02.02015207467
    [Google Scholar]
  15. Honeywell-NguyenP.L. BouwstraJ.A. Vesicles as a tool for transdermal and dermal delivery.Drug Discov. Today. Technol.200521677410.1016/j.ddtec.2005.05.00324981757
    [Google Scholar]
  16. RajanR. VasudevanD.T. Biju MukundV.P. JoseS. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation.J. Adv. Pharm. Technol. Res.20112313814310.4103/2231‑4040.8552422171309
    [Google Scholar]
  17. CevcG. Lipid vesicles and other colloids as drug carriers on the skin.Adv. Drug Deliv. Rev.200456567571110.1016/j.addr.2003.10.02815019752
    [Google Scholar]
  18. HasC. PanS. Vesicle formation mechanisms: An overview.J. Liposome Res.20213119011110.1080/08982104.2020.173040132066297
    [Google Scholar]
  19. AkramM.W. JamshaidH. RehmanF.U. ZaeemM. KhanJ. ZebA. Transfersomes: A Revolutionary nanosystem for efficient transdermal drug delivery.AAPS PharmSciTech2021231710.1208/s12249‑021‑02166‑934853906
    [Google Scholar]
  20. ChaurasiyaP. GanjuE. UpmanyuN. RayS.K. JainP. Transfersomes: A novel technique for transdermal drug delivery.J. Drug Deliv. Ther.20199127928510.22270/jddt.v9i1.2198
    [Google Scholar]
  21. CevcG. Transdermal drug delivery of insulin with ultradeformable carriers.Clin. Pharmacokinet.200342546147410.2165/00003088‑200342050‑0000412739984
    [Google Scholar]
  22. CevcG. BlumeG. SchätzleinA. GebauerD. PaulA. The skin: A pathway for systemic treatment with patches and lipid-based agent carriers.Adv. Drug Deliv. Rev.199618334937810.1016/0169‑409X(95)00091‑K
    [Google Scholar]
  23. MahmoodS. TaherM. MandalU.K. Experimental design and optimization of raloxifene hydrochloride loaded nanotransfersomes for transdermal application.Int. J. Nanomedicine201494331434625246789
    [Google Scholar]
  24. CevcG. SchätzleinA. RichardsenH. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements.Biochim. Biophys. Acta Biomembr.200215641213010.1016/S0005‑2736(02)00401‑712100992
    [Google Scholar]
  25. ChenR.P. ChavdaV.P. PatelA.B. ChenZ.S. Phytochemical delivery through transferosome (phytosome): An advanced transdermal drug delivery for complementary medicines.Front. Pharmacol.20221385086210.3389/fphar.2022.85086235281927
    [Google Scholar]
  26. OpathaS.A.T. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012985510.3390/pharmaceutics1209085532916782
    [Google Scholar]
  27. LiJ. WangX. ZhangT. WangC. HuangZ. LuoX. DengY. A review on phospholipids and their main applications in drug delivery systems.Asian J. Pharmaceut. Sci.20151028198
    [Google Scholar]
  28. KhanI. NeedhamR. YousafS. HouacineC. IslamY. BnyanR. SadozaiS.K. ElrayessM.A. ElhissiA. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery.J. Drug Deliv. Sci. Technol.20216610282210.1016/j.jddst.2021.102822
    [Google Scholar]
  29. RajkumarJ. Sree LakshmiR.K. VineeshaS. A new approach to transdermal drug delivery using transfersomes-based nanoencapsulation: A research update.Asian J. Pharmaceut. Res. Develop.2022101647010.22270/ajprd.v10i1.1082
    [Google Scholar]
  30. AhmedA. GhourabM. GadS. QushawyM. The application of Plackett-Burman design and response surface methodology for optimization of formulation variables to produce Piroxicam niosomes.Int. J. Drug Dev. Res201352121130
    [Google Scholar]
  31. EstupiñánÓ. RenduelesC. SuárezP. ReyV. MurilloD. MorísF. GutiérrezG. Blanco-LópezM.C. MatosM. RodríguezR. Nano-encapsulation of mithramycin in transfersomes and polymeric micelles for the treatment of sarcomas.J. Clin. Med.2021107135810.3390/jcm1007135833806182
    [Google Scholar]
  32. GuptaR. KumarA. Transfersomes: The ultra-deformable carrier system for non-invasive delivery of drug.Curr. Drug Deliv.202118440842010.2174/156720181766620080410541632753015
    [Google Scholar]
  33. JongA. A. Transfersomes: A peculiar and promising technique for transdermal drug delivery.Int. J. Pharmaceut. Sci. Med.202164678210.47760/ijpsm.2021.v06i04.006
    [Google Scholar]
  34. IzquierdoM.C. LilloC.R. BucciP. GómezG.E. MartínezL. AlonsoS.V. CalienniM.N. MontanariJ. Comparative skin penetration profiles of formulations including ultradeformable liposomes as potential nanocosmeceutical carriers.J. Cosmet. Dermatol.202019113127313710.1111/jocd.1341032281258
    [Google Scholar]
  35. PodiliC. FirozS. A review on transfersomes for transdermal drug delivery.J. Glob. Trends Pharm. Sci.20145421182127
    [Google Scholar]
  36. AnggrainiW. SagitaE. IskandarsyahI. Effect of hydrophilicity surfactants toward characterization and in vitro transfersomes penetration in gels using franz diffusion test.Int. J. Appl. Pharmaceut.2017911211510.22159/ijap.2017.v9s1.67_74
    [Google Scholar]
  37. NayakD. TippavajhalaV.K. A comprehensive review on preparation, evaluation and applications of deformable liposomes.Iran. J. Pharm. Res.202120118620534400952
    [Google Scholar]
  38. KhatoonK. RizwanullahM. AminS. MirS.R. AkhterS. Cilnidipine loaded transfersomes for transdermal application: Formulation optimization, in-vitro and in-vivo study.J. Drug Deliv. Sci. Technol.20195410130310.1016/j.jddst.2019.101303
    [Google Scholar]
  39. SudhakarK. FuloriaS. SubramaniyanV. SathasivamK.V. AzadA.K. SwainS.S. SekarM. KarupiahS. PorwalO. SahooA. MeenakshiD.U. SharmaV.K. JainS. CharyuluR.N. FuloriaN.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system.Nanomaterials20211110255710.3390/nano1110255734685005
    [Google Scholar]
  40. BnyanR. KhanI. EhtezaziT. SaleemI. GordonS. O’NeillF. RobertsM. Surfactant effects on lipid-based vesicles properties.J. Pharm. Sci.201810751237124610.1016/j.xphs.2018.01.00529336980
    [Google Scholar]
  41. MoawadF.A. AliA.A. SalemH.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: Preparation, in vitro and in vivo performance.Drug Deliv.201724125226010.1080/10717544.2016.124536928156169
    [Google Scholar]
  42. MadhumithaV. SangeethaS. Transfersomes: A novel vesicular drug delivery system for enhanced permeation through skin.Res. J. Pharma. Technol.20201352493250110.5958/0974‑360X.2020.00445.X
    [Google Scholar]
  43. SivannarayanaP. RaniA. P. SaikishoreV. Transfersomes: Ultra deformable vesicular carrier systems in transdermal drug delivery system.Res. J. Pharm. Dos. Forms Technol.201245243255
    [Google Scholar]
  44. YadavD. SandeepK. PandeyD. DuttaR.K. Liposomes for drug delivery.J. Biotechnol. Biomater.20177410.4172/2155‑952X.1000276
    [Google Scholar]
  45. van HoogevestP. WendelA. The use of natural and synthetic phospholipids as pharmaceutical excipients.Eur. J. Lipid Sci. Technol.201411691088110710.1002/ejlt.20140021925400504
    [Google Scholar]
  46. MirafzaliZ. ThompsonC.S. TalluaK. Application of liposomes in the food industry.Microencapsulation in the food industry.Academic Press202319520710.1016/B978‑0‑12‑821683‑5.00028‑5
    [Google Scholar]
  47. PiumitaliB. NeerajU. JyotivardhanJ. Transfersomes—a nanoscience in transdermal drug delivery and its clinical advancements.Int. J. Nanosci.2020194195003310.1142/S0219581X19500339
    [Google Scholar]
  48. ChenG. LiD. JinY. ZhangW. TengL. BuntC. WenJ. Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin.Drug Dev. Ind. Pharm.201440226026510.3109/03639045.2012.75651223356860
    [Google Scholar]
  49. SzokaF.Jr PapahadjopoulosD. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci.19787594194419810.1073/pnas.75.9.4194279908
    [Google Scholar]
  50. BalataG.F. FaisalM.M. ElghamryH.A. SabryS.A. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery.J. Drug Deliv. Sci. Technol.20206010192110.1016/j.jddst.2020.101921
    [Google Scholar]
  51. GargV. SinghH. BimbrawhS. SinghS.K. GulatiM. VaidyaY. KaurP. Ethosomes and transfersomes: Principles, perspectives and practices.Curr. Drug Deliv.201714561363327199229
    [Google Scholar]
  52. HasibiF. NasirpourA. VarshosazJ. García-ManriqueP. Blanco-LópezM.C. GutiérrezG. MatosM. Formulation and characterization of Taxifolin‐loaded lipid nanovesicles (Liposomes, Niosomes, and Transfersomes) for beverage fortification.Eur. J. Lipid Sci. Technol.20201222190010510.1002/ejlt.201900105
    [Google Scholar]
  53. YangY. OuR. GuanS. YeX. HuB. ZhangY. LuS. ZhouY. YuanZ. ZhangJ. LiQ. A novel drug delivery gel of terbinafine hydrochloride with high penetration for external use.Drug Deliv.20152281086109310.3109/10717544.2013.87885624447130
    [Google Scholar]
  54. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.132570830410704
    [Google Scholar]
  55. KaduS.D.P. Transfersomes-A boon for transdermal delivery.Indo Am. J. Pharm. Sci2017429082919
    [Google Scholar]
  56. KumarA. PathakK. BaliV. Ultra-adaptable nanovesicular systems: A carrier for systemic delivery of therapeutic agents.Drug Discov. Today20121721-221233124110.1016/j.drudis.2012.06.01322766375
    [Google Scholar]
  57. MalakarJ. SenS.O. NayakA.K. SenK.K. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery.Saudi Pharm. J.201220435536310.1016/j.jsps.2012.02.00123960810
    [Google Scholar]
  58. CevcG. BlumeG. SchätzleinA. Transfersomes-mediated transepidermal delivery improves the regio-specificity and biological activity of corticosteroids in vivo 1Dedicated to the late Dr. Henri Ernest Bodde.1.J. Control. Release199745321122610.1016/S0168‑3659(96)01566‑0
    [Google Scholar]
  59. CevcG. BlumeG. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes®.Biochim. Biophys. Acta Biomembr.20031614215616410.1016/S0005‑2736(03)00172‑X12896808
    [Google Scholar]
  60. CevcG. BlumeG. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage.Biochim. Biophys. Acta Biomembr.200416631-2617310.1016/j.bbamem.2004.01.00615157608
    [Google Scholar]
  61. GilletA. GrammenosA. CompèreP. EvrardB. PielG. Development of a new topical system: Drug-in-cyclodextrin-in-deformable liposome.Int. J. Pharm.20093801-217418010.1016/j.ijpharm.2009.06.02719576972
    [Google Scholar]
  62. KhanM.I. YaqoobS. MadniA. AkhtarM.F. SohailM.F. SaleemA. TahirN. KhanK.R. QureshiO.S. Development and in vitro /ex vivo evaluation of lecithin-based deformable transfersomes and transfersome-based gels for combined dermal delivery of meloxicam and dexamethasone.BioMed Res. Int.2022202211610.1155/2022/817031836483631
    [Google Scholar]
  63. KumarL. VermaS. SinghM. ChalotraT. UtrejaP. Advanced drug delivery systems for transdermal delivery of non-steroidal anti-inflammatory drugs: A review.Curr. Drug Deliv.20181581087109910.2174/156720181566618060511413129875000
    [Google Scholar]
  64. ShajiJ.E.S.S.Y. LalM.A.R.I.A. Preparation, optimization and evaluation of transferosomal formulation for enhanced transdermal delivery of a COX-2 inhibitor.Int. J. Pharm. Pharm. Sci.201461467477
    [Google Scholar]
  65. DuangjitS. OpanasopitP. RojanarataT. NgawhirunpatT. Characterization and in vitro skin permeation of meloxicam-loaded liposomes versus transfersomes.J. Drug Deliv.201120111910.1155/2011/41831621490750
    [Google Scholar]
  66. DarusmanF. RaisyaR. PrianiS.E. Development, characterization, and performance evaluation of transfersome gel of ibuprofen as a transdermal drug delivery system using nanovesicular carrier.Drug Invent. Today20191037503755
    [Google Scholar]
  67. TawfeekH.M. AbdellatifA.A.H. Abdel-AleemJ.A. HassanY.A. FathallaD. Transfersomal gel nanocarriers for enhancement the permeation of lornoxicam.J. Drug Deliv. Sci. Technol.20205610154010.1016/j.jddst.2020.101540
    [Google Scholar]
  68. YuanM. NiuJ. XiaoQ. YaH. ZhangY. FanY. LiL. LiX. Hyaluronan-modified transfersomes based hydrogel for enhanced transdermal delivery of indomethacin.Drug Deliv.20222911232124210.1080/10717544.2022.205376135403516
    [Google Scholar]
  69. ZubaydahW. O. S. AndrianiR. SuryaniS. IndalifianiA. JannahS. R. N. HidayatiD. Optimization of soya phosphatidylcholine and tween 80 as A preparation of diclofenac sodium transfersome vesicles using design-expert.J. Farmasi Galenik.20239186102
    [Google Scholar]
  70. SingodiaD. GuptaG.K. VermaA. SinghV. ShuklaP. MisraP. SundarS. DubeA. MishraP.R. Development and performance evaluation of amphotericin B transfersomes against resistant and sensitive clinical isolates of visceral leishmaniasis.J. Biomed. Nanotechnol.20106329330210.1166/jbn.2010.112121179947
    [Google Scholar]
  71. BavarsadN. Fazly BazzazB.S. KhamesipourA. JaafariM.R. Colloidal, in vitro and in vivo anti-leishmanial properties of transfersomes containing paromomycin sulfate in susceptible BALB/c mice.Acta Trop.20121241334110.1016/j.actatropica.2012.06.00422750480
    [Google Scholar]
  72. DarM.J. McElroyC.A. KhanM.I. SatoskarA.R. KhanG.M. Development and evaluation of novel miltefosine-polyphenol co-loaded second generation nano-transfersomes for the topical treatment of cutaneous leishmaniasis.Expert Opin. Drug Deliv.20201719711010.1080/17425247.2020.170022731786952
    [Google Scholar]
  73. SalimM.W. ShabbirK. ud-DinF. YousafA.M. ChoiH-G. KhanG.M. Preparation, in-vitro and in-vivo evaluation of Rifampicin and Vancomycin Co-loaded transfersomal gel for the treatment of cutaneous leishmaniasis.J. Drug Deliv. Sci. Technol.20206010199610.1016/j.jddst.2020.101996
    [Google Scholar]
  74. ZahidF. BatoolS. ud-DinF. AliZ. NabiM. KhanS. SalmanO. KhanG.M. Antileishmanial agents co-loaded in transfersomes with enhanced macrophage uptake and reduced toxicity.AAPS PharmSciTech202223622610.1208/s12249‑022‑02384‑935970966
    [Google Scholar]
  75. HussainA. SinghS. SharmaD. WebsterT. ShafaatK. FarukA. Elastic liposomes as novel carriers: Recent advances in drug delivery.Int. J. Nanomedicine2017125087510810.2147/IJN.S13826728761343
    [Google Scholar]
  76. JiangT. WangT. LiT. MaY. ShenS. HeB. MoR. Enhanced transdermal drug delivery by transfersome-embedded oligopeptide hydrogel for topical chemotherapy of melanoma.ACS Nano201812109693970110.1021/acsnano.8b0380030183253
    [Google Scholar]
  77. ChenM. ShamimM.A. ShahidA. YeungS. AndresenB.T. WangJ. NekkantiV. MeyskensF.L.Jr KellyK.M. HuangY. Topical delivery of carvedilol loaded nano-transfersomes for skin cancer chemoprevention.Pharmaceutics20201212115110.3390/pharmaceutics1212115133260886
    [Google Scholar]
  78. DemartisS. RassuG. MurgiaS. CasulaL. GiunchediP. GaviniE. Improving dermal delivery of rose bengal by deformable lipid nanovesicles for topical treatment of melanoma.Mol. Pharm.202118114046405710.1021/acs.molpharmaceut.1c0046834554752
    [Google Scholar]
  79. GadagS. NarayanR. SabhahitJ.N. HariG. NayakY. PaiK.S.R. GargS. NayakU.Y. Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer.Biomater. Adv.202214021308510.1016/j.bioadv.2022.21308536037762
    [Google Scholar]
  80. SundralingamU. ChakravarthiS. RadhakrishnanA.K. MuniyandyS. PalanisamyU.D. Efficacy of emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer.Pharmaceutics202012980710.3390/pharmaceutics1209080732854385
    [Google Scholar]
  81. BollareddyS.R. KrishnaV. RoyG. DasariD. DharA. VenugantiV.V.K. Transfersome hydrogel containing 5-fluorouracil and etodolac combination for synergistic oral cancer treatment.AAPS PharmSciTech20222327010.1208/s12249‑022‑02221‑z35132496
    [Google Scholar]
  82. ShamimM.A. ShahidA. SardarP.K. YeungS. ReyesJ. KimJ. ParsaC. OrlandoR. WangJ. KellyK.M. MeyskensF.L.Jr AndresenB.T. HuangY. Transfersome encapsulated with the r-carvedilol enantiomer for skin cancer chemoprevention.Nanomaterials202313592910.3390/nano1305092936903807
    [Google Scholar]
  83. KumarL. UtrejaP. Transcending the cutaneous barrier through nanocarrier exploration for passive delivery of anti-hypertensive drugs: A critical review.Recent Pat. Nanotechnol.202014319320910.2174/187221051466620051907173432427090
    [Google Scholar]
  84. ItaK. AshongS. Percutaneous delivery of antihypertensive agents: Advances and challenges.AAPS PharmSciTech20202125610.1208/s12249‑019‑1583‑931909450
    [Google Scholar]
  85. AhadA. Al-SalehA.A. Al-MohizeaA.M. Al-JenoobiF.I. RaishM. YassinA.E.B. AlamM.A. Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate.Pharm. Dev. Technol.201823878779310.1080/10837450.2017.133034528504046
    [Google Scholar]
  86. KhanR. JainP.K. KhareB. JainM. ThakurB.S. JainA. JainA.P. Formulation and characterization of novel transfersomes gel for enhance TDDS of losartan potassium.J. Drug Deliv. Ther.2022124-S9610010.22270/jddt.v12i4‑S.5525
    [Google Scholar]
  87. VasanthS. DubeyA. G SR. LewisS.A. GhateV.M. El-ZahabyS.A. HebbarS. Development and investigation of vitamin C-enriched adapalene-loaded transfersome gel: A collegial approach for the treatment of acne vulgaris.AAPS PharmSciTech20202126110.1208/s12249‑019‑1518‑531915948
    [Google Scholar]
  88. WuP.S. LiY.S. KuoY.C. TsaiS.J. LinC.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol.Molecules201924360010.3390/molecules2403060030743989
    [Google Scholar]
  89. HarmitaH. IskandarsyahI. AfifahS. F. Effect of transfersome formulation on the stability and antioxidant activity of N-acetylcysteine in anti-aging cream.Int. J. Appl. Pharmaceut.2020156162
    [Google Scholar]
  90. SarafS. JeswaniG. KaurC.D. SarafS. Development of novel herbal cosmetic cream with Curcuma longa extract loaded transfersomes for antiwrinkle effect.Afr. J. Pharm. Pharmacol.20115810541062
    [Google Scholar]
  91. De Marco AlmeidaF. SilvaC.N. de Araujo LopesS.C. SantosD.M. TorresF.S. CardosoF.L. MartinelliP.M. da SilvaE.R. de LimaM.E. MirandaL.A.F. OliveiraM.C. Physicochemical characterization and skin permeation of cationic transfersomes containing the synthetic peptide PnPP-19.Curr. Drug Deliv.20181571064107110.2174/156720181566618010817020629318970
    [Google Scholar]
  92. KaurC.D. SarafS. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin.J. Cosmet. Dermatol.201110426026510.1111/j.1473‑2165.2011.00586.x22151933
    [Google Scholar]
  93. BerminghamN.A BettencourtB.R. Methods for the treatment of nucleotide repeat expansion disorders associated with MSH3 activity.A.U. Patent 2022291644A12023.
  94. JosephJ. Topical formulations containing erythritol and methods of treating skin conditions.W.O. Patent 2023009829A12023.
  95. KeneddyJ.P. Compositions for treating obesity.A.U. Patent 2023200284A12023.
  96. KeneddyJ.P. Compositions for treating dermatological diseases.A.U. Patent 2023200286A12023.
  97. WoottenS. Biologic preserving composition and methods of use.U.S. Patent 20230018930A12023.
  98. AngeloN.D WeissM. Composition for stimulating facial hair growth and methods of manufacturing a composition for stimulating facial hair growth.U.S. Patent 20230000746A12023.
  99. GuptaD.S. A system to produce acyclovir using transfersomes and to overcome the barrier function of the skin.D.E. Patent 202021106867U12022.
  100. System for developing a neem oil-loaded transethosomal gel and its composition.D.E. Patent 202022104296U12022.
  101. CharisseK KuchimanchiS MaierM ManoharanM RajeevK.G ZimmermannT. RNAi agents, compositions, and methods of use thereof for treating transthyretin (ttr) associated diseases.A.U. Patent 2022231749A12022.
  102. KasperkovitzP GollobJ Dosages and methods for delivering lipid formulated nucleic acid molecules.U.S. Patent 20210388355A12022.
  103. SeibergM. Compositions containing natural extracts and use thereof for skin and hair.A.U. Patent 2022204824A12022.
  104. LademannJ MeinkeM KleinA.L BuschL KeckC PelikhO. Composition for particle-mediated transport of a dissolved active agent into hair follicles.W.O. Patent 2022268971A12022.
  105. MancaM.L ManconiM FaddaA.M. Phospholipid three-dimensional vesicular aggregates scattered in alcoholic mixtures with no or low water content, their preparation and use in formulations for topical application.E.P. Patent 3381517B12022.
  106. VerbeckG MckinleyR.S. Products of manufacture and methods for transdermal delivery of pharmaceuticals, electrolytes, and nutraceuticals.U.S. Patent 20220211638A12022.
  107. GarrawayR.W HenryW. Vesicles.U.S. Patent 20220031615A12022.
  108. El-SayK.M Al-HejailiO.D AlamoudiA.A AhmedO.A.A. Transfersome-containing transdermal film formulations and methods of use.U.S. Patent 11185513B12021.
  109. Topical cetirizine 1% vs minoxidil 5% gel in treatment of androgenetic alopeciaNCT042938222020
  110. Ketoprofen in transfersome compared to oral celecoxib and placebo for pain associated with osteoarthritis of the kneeNCT003177332009
  111. Study of Epicutaneously Applied Ketoprofen Transfersome® Gel With or Without Combination With Oral Celecoxib for the Treatment of Muscle Pain Induced by Eccentric ExerciseNCT010202792010
  112. Study of Safety and Efficacy of Diractin® for the Treatment of Osteoarthritis (OA) of the KneeNCT007228522009
  113. Safety and Efficacy of Two Dosages of Diractin® in Osteoarthritis (OA)NCT007165472009
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018295038240209055444
Loading
/content/journals/cdd/10.2174/0115672018295038240209055444
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test