Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The biomedical field faces an ongoing challenge in developing more effective anti-cancer medication due to the significant burden that cancer poses on human health. Extensive research has been conducted on the utilization of natural polysaccharides in nanomedicine owing to their properties of biocompatibility, biodegradability, non-immunogenicity, and non-toxicity. These characteristics make them a potent drug delivery system for cancer therapy. The chitosan hyaluronic acid nanoparticle (CSHANp) system, consisting of chitosan and hyaluronic acid nanoparticles, has exhibited considerable potential as a nanocarrier for various cancer drugs, rendering it one of the most auspicious systems presently accessible. The CSHANps demonstrate remarkable drug loading capacity, precise control over drug release, and exceptional selectivity towards cancer cells. These properties enhance the therapeutic effectiveness against cancerous cells. This article aims to provide a comprehensive analysis of CSHANp, focusing on its characteristics, production techniques, applications, and future prospects.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018275983231207101222
2024-01-16
2024-12-27
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. Diaz-CanoS.J. Tumor heterogeneity: Mechanisms and bases for a reliable application of molecular marker design.Int. J. Mol. Sci.20121321951201110.3390/ijms13021951 22408433
    [Google Scholar]
  3. JacqueminV. AntoineM. DomG. DetoursV. MaenhautC. DumontJ.E. Dynamic cancer cell heterogeneity: Diagnostic and therapeutic implications.Cancers202214228010.3390/cancers14020280 35053446
    [Google Scholar]
  4. BenjaminD.J. The efficacy of surgical treatment of cancer-20years later.Med. Hypotheses201482441242010.1016/j.mehy.2014.01.004 24480434
    [Google Scholar]
  5. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  6. JhaS. SharmaP.K. MalviyaR. Hyperthermia: Role and risk factor for cancer treatment.Achievements in the Life Sciences201610216116710.1016/j.als.2016.11.004
    [Google Scholar]
  7. BaskarR. LeeK.A. YeoR. YeohK.W. Cancer and radiation therapy: Current advances and future directions.Int. J. Med. Sci.20129319319910.7150/ijms.3635 22408567
    [Google Scholar]
  8. HarbeckN. Penault-LlorcaF. CortesJ. GnantM. HoussamiN. PoortmansP. RuddyK. TsangJ. CardosoF. Breast cancer.Nat. Rev. Dis. Primers2019516610.1038/s41572‑019‑0111‑2 31548545
    [Google Scholar]
  9. FrancoP. MartiniS. Di MuzioJ. CavallinC. ArcadipaneF. RampinoM. OstellinoO. PecorariG. Garzino DemoP. FasolisM. AiroldiM. RicardiU. Prospective assessment of oral mucositis and its impact on quality of life and patient-reported outcomes during radiotherapy for head and neck cancer.Med. Oncol.20173458110.1007/s12032‑017‑0950‑1 28386836
    [Google Scholar]
  10. PearceA. HaasM. VineyR. PearsonS.A. HaywoodP. BrownC. WardR. Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study.PLoS One20171210e018436010.1371/journal.pone.0184360 29016607
    [Google Scholar]
  11. TohmeS. SimmonsR.L. TsungA. Surgery for cancer: A trigger for metastases.Cancer Res.20177771548155210.1158/0008‑5472.CAN‑16‑1536 28330928
    [Google Scholar]
  12. KifleZ.D. TadeleM. AlemuE. GedamuT. AyeleA.G. A recent development of new therapeutic agents and novel drug targets for cancer treatment.SAGE Open Med.2021910.1177/20503121211067083 34992782
    [Google Scholar]
  13. BaeY.H. Drug targeting and tumor heterogeneity.J. Control. Release200913312310.1016/j.jconrel.2008.09.074 18848589
    [Google Scholar]
  14. NavyaP.N. KaphleA. DaimaH.K. Nanomedicine in sensing, delivery, imaging and tissue engineering: advances, opportunities and challenges.Nanoscience201810.1039/9781788013871‑00030
    [Google Scholar]
  15. RasoolM. MalikA. WaquarS. AroojM. ZahidS. AsifM. ShaheenS. HussainA. UllahH. GanS.H. New challenges in the use of nanomedicine in cancer therapy.Bioengineered202213175977310.1080/21655979.2021.2012907 34856849
    [Google Scholar]
  16. BhatiaS.N. ChenX. DobrovolskaiaM.A. LammersT. Cancer nanomedicine.Nat. Rev. Cancer2022221055055610.1038/s41568‑022‑00496‑9 35941223
    [Google Scholar]
  17. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  18. Yousefi RiziH.A. ShinD.H. Yousefi RiziS. Polymeric nanoparticles in cancer chemotherapy: A narrative review.Iran. J. Public Health202251222623910.18502/ijph.v51i2.8677 35866132
    [Google Scholar]
  19. MasoodF. Polymeric nanoparticles for targeted drug delivery system for cancer therapy.Mater. Sci. Eng. C20166056957810.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  20. WongK.H. LuA. ChenX. YangZ. Natural ingredient-based polymeric nanoparticles for cancer treatment.Molecules20202516362010.3390/molecules25163620 32784890
    [Google Scholar]
  21. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.601626 33613290
    [Google Scholar]
  22. AshiqueS. SandhuN.K. ChawlaV. ChawlaP.A. Targeted drug delivery: Trends and perspectives.Curr. Drug Deliv.202118101435145510.2174/1567201818666210609161301 34151759
    [Google Scholar]
  23. AshiqueS. AlmohaywiB. HaiderN. YasminS. HussainA. Mishra, N siRNA-based nanocarriers for targeted drug delivery to control breast cancer.Adv. Cancer Biol. Metastasis20224100047
    [Google Scholar]
  24. AshiqueS. UpadhyayA. KumarN. ChauhanS. MishraN. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery-a review. Adv. Cancer Bio.-.Metastasis.20224100041
    [Google Scholar]
  25. AshiqueS. GargA. MishraN. RainaN. MingL.C. TulliH.S. BehlT. RaniR. GuptaM. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC).Naunyn Schmiedebergs Arch. Pharmacol.2023396112769279210.1007/s00210‑023‑02522‑5 37219615
    [Google Scholar]
  26. PatilM HussainA AltamimiMA AshiqueS HaiderN FarukA An insight of various vesicular systems, erythrosomes, and exosomes to control metastasis and cancer.Adv. Cancer Bio - Metastasis.2023710010310.1016/j.adcanc.2023.100103
    [Google Scholar]
  27. AshrafiH. AzadiA. Chitosan-based hydrogel nanoparticle amazing behaviors during transmission electron microscopy.Int. J. Biol. Macromol.201684313410.1016/j.ijbiomac.2015.11.089 26658231
    [Google Scholar]
  28. YuanY. ChesnuttB.M. HaggardW.O. BumgardnerJ.D. Deacetylation of chitosan: Material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures.Materials2011481399141610.3390/ma4081399 28824150
    [Google Scholar]
  29. KamathP.R. SunilD. Nano-chitosan particles in anticancer drug delivery: An up-to-date review.Mini Rev. Med. Chem.2017171514571487 28245780
    [Google Scholar]
  30. BoninM. SreekumarS. Cord-LandwehrS. MoerschbacherB.M. Preparation of defined chitosan oligosaccharides using chitin deacetylases.Int. J. Mol. Sci.20202121783510.3390/ijms21217835 33105791
    [Google Scholar]
  31. KouS.G. PetersL.M. MucaloM.R. Chitosan: A review of sources and preparation methods.Int. J. Biol. Macromol.2021169859410.1016/j.ijbiomac.2020.12.005 33279563
    [Google Scholar]
  32. DingF. FuJ. TaoC. YuY. HeX. GaoY. ZhangY. Recent advances of chitosan and its derivatives in biomedical applications.Curr. Med. Chem.202027183023304510.2174/0929867326666190405151538 30961477
    [Google Scholar]
  33. ZengZ. LiuY. WenQ. LiY. YuJ. XuQ. WanW. HeY. MaC. HuangY. YangH. JiangO. LiF. Experimental study on preparation and anti-tumor efficiency of nanoparticles targeting M2 macrophages.Drug Deliv.202128194395610.1080/10717544.2021.1921076 33988472
    [Google Scholar]
  34. HerdianaY. WathoniN. ShamsuddinS. JoniI.M. MuchtaridiM. Chitosan-based nanoparticles of targeted drug delivery system in breast cancer treatment.Polymers20211311171710.3390/polym13111717 34074020
    [Google Scholar]
  35. ShahbazU. Chitin, characteristic, sources, and biomedical application.Curr. Pharm. Biotechnol.202021141433144310.2174/1389201021666200605104939 32503407
    [Google Scholar]
  36. ZoeL.H. DavidS.R. RajabalayaR. Chitosan nanoparticle toxicity: A comprehensive literature review of in vivo and in vitro assessments for medical applications.Toxicol. Rep.2023118310610.1016/j.toxrep.2023.06.012
    [Google Scholar]
  37. NaqviS. MoerschbacherB.M. The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update.Crit. Rev. Biotechnol.2017371112510.3109/07388551.2015.1104289 26526199
    [Google Scholar]
  38. AryaG. GuptaN. NimeshS. 8 - Chitosan nanoparticles for therapeutic delivery of anticancer drugs.Polysaccharide Nanoparticles. VenkatesanJ. KimS-K. AnilS. Elsevier202220123010.1016/B978‑0‑12‑822351‑2.00018‑8
    [Google Scholar]
  39. BaharloueiP. RahmanA. Chitin and chitosan: Prospective biomedical applications in drug delivery, cancer treatment, and wound healing.Mar. Drugs202220746010.3390/md20070460 35877753
    [Google Scholar]
  40. AhsanA. FarooqM.A. ParveenA. Thermosensitive chitosan-based injectable hydrogel as an efficient anticancer drug carrier.ACS Omega2020532204502046010.1021/acsomega.0c02548 32832798
    [Google Scholar]
  41. HuangP. YangC. LiuJ. WangW. GuoS. LiJ. SunY. DongH. DengL. ZhangJ. LiuJ. DongA. Improving the oral delivery efficiency of anticancer drugs by chitosan coated polycaprolactone-grafted hyaluronic acid nanoparticles.J. Mater. Chem. B Mater. Biol. Med.20142254021403310.1039/C4TB00273C 32261653
    [Google Scholar]
  42. HadlerN.M. NapierM.A. Structure of hyaluronic acid in synovial fluid and its influence on the movement of solutes.Semin. Arthritis Rheum.19777214115210.1016/0049‑0172(77)90020‑8 929207
    [Google Scholar]
  43. BurdickJ.A. PrestwichG.D. Hyaluronic acid hydrogels for biomedical applications.Adv. Mater.20112312H41H5610.1002/adma.201003963 21394792
    [Google Scholar]
  44. GuptaR.C. LallR. SrivastavaA. SinhaA. Hyaluronic acid: Molecular mechanisms and therapeutic trajectory.Front. Vet. Sci.2019619210.3389/fvets.2019.00192 31294035
    [Google Scholar]
  45. TsujiR. OgataS. MochizukiS. Interaction between CD44 and highly condensed hyaluronic acid through crosslinking with proteins.Bioorg. Chem.202212110566610.1016/j.bioorg.2022.105666 35152139
    [Google Scholar]
  46. BhattacharyaD.S. SvechkarevD. SouchekJ.J. HillT.K. TaylorM.A. NatarajanA. MohsA.M. Impact of structurally modifying hyaluronic acid on CD44 interaction.J. Mater. Chem. B Mater. Biol. Med.20175418183819210.1039/C7TB01895A 29354263
    [Google Scholar]
  47. LuoY. WangQ. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery.Int. J. Biol. Macromol.20146435336710.1016/j.ijbiomac.2013.12.017 24360899
    [Google Scholar]
  48. WuD. ZhuL. LiY. ZhangX. XuS. YangG. DelairT. Chitosan-based colloidal polyelectrolyte complexes for drug delivery: A review.Carbohydr. Polym.202023811612610.1016/j.carbpol.2020.116126 32299572
    [Google Scholar]
  49. PornpitchanarongC. RojanarataT. OpanasopitP. NgawhirunpatT. PatrojanasophonP. Catechol-modified chitosan/hyaluronic acid nanoparticles as a new avenue for local delivery of doxorubicin to oral cancer cells.Colloids Surf. B Biointerfaces202019611127910.1016/j.colsurfb.2020.111279 32750605
    [Google Scholar]
  50. MarrasA.E. ViereggJ.R. TingJ.M. RubienJ.D. TirrellM.V. Polyelectrolyte complexation of oligonucleotides by charged hydrophobic—neutral hydrophilic block copolymers.Polymers20191118310.3390/polym11010083 30960067
    [Google Scholar]
  51. ZhaoL. SkwarczynskiM. TothI. Polyelectrolyte-based platforms for the delivery of peptides and proteins.ACS Biomater. Sci. Eng.20195104937495010.1021/acsbiomaterials.9b01135 33455241
    [Google Scholar]
  52. NastiA. ZakiN.M. de LeonardisP. UngphaiboonS. SansongsakP. RimoliM.G. TirelliN. Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation.Pharm. Res.20092681918193010.1007/s11095‑009‑9908‑0 19507009
    [Google Scholar]
  53. LuoY. ZhangB. ChengW.H. WangQ. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating.Carbohydr. Polym.201082394295110.1016/j.carbpol.2010.06.029
    [Google Scholar]
  54. ChiesaE. DoratiR. ContiB. ModenaT. CovaE. MeloniF. GentaI. Hyaluronic acid-decorated chitosan nanoparticles for CD44-targeted delivery of everolimus.Int. J. Mol. Sci.2018198231010.3390/ijms19082310 30087241
    [Google Scholar]
  55. SawtarieN. CaiY. LapitskyY. Preparation of chitosan/tripolyphosphate nanoparticles with highly tunable size and low polydispersity.Colloids Surf. B Biointerfaces201715711011710.1016/j.colsurfb.2017.05.055 28578269
    [Google Scholar]
  56. ChenR. ZhaiY.Y. SunL. WangZ. XiaX. YaoQ. KouL. Alantolactone-loaded chitosan/hyaluronic acid nanoparticles suppress psoriasis by deactivating STAT3 pathway and restricting immune cell recruitment.Asian Journal of Pharmaceutical Sciences202217226828310.1016/j.ajps.2022.02.003 35582636
    [Google Scholar]
  57. ZhangW. XuW. LanY. HeX. LiuK. LiangY. Antitumor effect of hyaluronic-acid-modified chitosan nanoparticles loaded with siRNA for targeted therapy for non-small cell lung cancer.Int. J. Nanomedicine2019145287530110.2147/IJN.S203113 31406460
    [Google Scholar]
  58. WangT. HouJ. SuC. ZhaoL. ShiY. Hyaluronic acid-coated chitosan nanoparticles induce ROS-mediated tumor cell apoptosis and enhance antitumor efficiency by targeted drug delivery via CD44.J. Nanobiotechnology2017151710.1186/s12951‑016‑0245‑2 28068992
    [Google Scholar]
  59. HenninkW.E. van NostrumC.F. Novel crosslinking methods to design hydrogels.Adv. Drug Deliv. Rev.2002541133610.1016/S0169‑409X(01)00240‑X 11755704
    [Google Scholar]
  60. XiaD. WangF. PanS. YuanS. LiuY. XuY. Redox/pH-responsive biodegradable thiol-hyaluronic acid/chitosan charge-reversal nanocarriers for triggered drug release.Polymers20211321378510.3390/polym13213785 34771342
    [Google Scholar]
  61. BergerJ. ReistM. MayerJ.M. FeltO. GurnyR. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications.Eur. J. Pharm. Biopharm.2004571355210.1016/S0939‑6411(03)00160‑7 14729079
    [Google Scholar]
  62. JóźwiakT. FilipkowskaU. SzymczykP. RodziewiczJ. MielcarekA. Effect of ionic and covalent crosslinking agents on properties of chitosan beads and sorption effectiveness of Reactive Black 5 dye.React. Funct. Polym.2017114587410.1016/j.reactfunctpolym.2017.03.007
    [Google Scholar]
  63. NathS.D. AbuevaC. KimB. LeeB.T. Chitosan–hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2.Carbohydr. Polym.201511516016910.1016/j.carbpol.2014.08.077 25439881
    [Google Scholar]
  64. FamS.Y. CheeC.F. YongC.Y. HoK.L. MariatulqabtiahA.R. TanW.S. Stealth coating of nanoparticles in drug-delivery systems.Nanomaterials202010478710.3390/nano10040787 32325941
    [Google Scholar]
  65. WangJ. AsgharS. YangL. GaoS. ChenZ. HuangL. ZongL. PingQ. XiaoY. Chitosan hydrochloride/hyaluronic acid nanoparticles coated by mPEG as long-circulating nanocarriers for systemic delivery of mitoxantrone.Int. J. Biol. Macromol.201811334535310.1016/j.ijbiomac.2018.02.128 29486258
    [Google Scholar]
  66. RaviñaM. CubilloE. OlmedaD. Novoa-CarballalR. Fernandez-MegiaE. RigueraR. SánchezA. CanoA. AlonsoM.J. Hyaluronic acid/chitosan-g-poly(ethylene glycol) nanoparticles for gene therapy: An application for pDNA and siRNA delivery.Pharm. Res.201027122544255510.1007/s11095‑010‑0263‑y 20857179
    [Google Scholar]
  67. WangH. AgarwalP. ZhaoS. XuR.X. YuJ. LuX. HeX. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.Biomaterials201572748910.1016/j.biomaterials.2015.08.048 26344365
    [Google Scholar]
  68. BonferoniM.C. SandriG. DelleraE. RossiS. FerrariF. MoriM. CaramellaC. Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid.Eur. J. Pharm. Biopharm.201487110110610.1016/j.ejpb.2013.12.018 24384070
    [Google Scholar]
  69. AranazI. HarrisR. HerasA. Chitosan amphiphilic derivatives: Chemistry and applications.Curr. Org. Chem.201014330833010.2174/138527210790231919
    [Google Scholar]
  70. SangM. HanL. LuoR. QuW. ZhengF. ZhangK. LiuF. XueJ. LiuW. FengF. CD44 targeted redox-triggered self-assembly with magnetic enhanced EPR effects for effective amplification of gambogic acid to treat triple-negative breast cancer.Biomater. Sci.20208121222310.1039/C9BM01171D 31674634
    [Google Scholar]
  71. KottaS. AldawsariH.M. Badr-EldinS.M. NairA.B. YtK. Progress in polymeric micelles for drug delivery applications.Pharmaceutics2022148163610.3390/pharmaceutics14081636 36015262
    [Google Scholar]
  72. RavalN. MaheshwariR. ShuklaH. KaliaK. TorchilinV.P. TekadeR.K. Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer.Mater. Sci. Eng. C202112611218610.1016/j.msec.2021.112186 34082985
    [Google Scholar]
  73. XuW. WangH. DongL. ZhangP. MuY. CuiX. ZhouJ. HuoM. YinT. Hyaluronic acid-decorated redox-sensitive chitosan micelles for tumor-specific intracellular delivery of gambogic acid.Int. J. Nanomedicine2019144649466610.2147/IJN.S201110 31303753
    [Google Scholar]
  74. AnirudhanT.S. VasanthaC.S. SasidharanA.V. Layer-by-layer assembly of hyaluronic acid/carboxymethylchitosan polyelectrolytes on the surface of aminated mesoporous silica for the oral delivery of 5-fluorouracil.Eur. Polym. J.20179357258910.1016/j.eurpolymj.2017.06.033
    [Google Scholar]
  75. RadwanR. AbdelkaderA. FathiH.A. ElsabahyM. FetihG. El-BadryM. Development and evaluation of letrozole-loaded hyaluronic acid/chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles.J. Pharm. Innov.202217257258310.1007/s12247‑021‑09538‑5
    [Google Scholar]
  76. GaoZ. LiZ. YanJ. WangP. Irinotecan and 5-fluorouracil-co-loaded, hyaluronic acid-modified layer-by-layer nanoparticles for targeted gastric carcinoma therapy.Drug Des. Devel. Ther.2017112595260410.2147/DDDT.S140797 28919710
    [Google Scholar]
  77. ChiesaE. RivaF. DoratiR. GrecoA. RicciS. PisaniS. PatriniM. ModenaT. ContiB. GentaI. On-chip synthesis of hyaluronic acid-based nanoparticles for selective inhibition of CD44+ human mesenchymal stem cell proliferation.Pharmaceutics202012326010.3390/pharmaceutics12030260 32183027
    [Google Scholar]
  78. ZhangX. NiuS. WilliamsG.R. WuJ. ChenX. ZhengH. ZhuL.M. Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy.Carbohydr. Polym.2019221849310.1016/j.carbpol.2019.05.081 31227170
    [Google Scholar]
  79. BelyaninaI. KolovskayaO. ZamayS. GargaunA. ZamayT. KichkailoA. Targeted magnetic nanotheranostics of cancer.Molecules201722697510.3390/molecules22060975 28604617
    [Google Scholar]
  80. WangJ. AsgharS. JinX. ChenZ. HuangL. PingQ. ZongL. XiaoY. Mitoxantrone-loaded chitosan/hyaluronate polyelectrolyte nanoparticles decorated with amphiphilic PEG derivates for long-circulating effect.Colloids Surf. B Biointerfaces201817146847710.1016/j.colsurfb.2018.07.060 30077147
    [Google Scholar]
  81. XuY. AsgharS. YangL. ChenZ. LiH. ShiW. LiY. ShiQ. PingQ. XiaoY. Nanoparticles based on chitosan hydrochloride/hyaluronic acid/PEG containing curcumin: In vitro evaluation and pharmacokinetics in rats.Int. J. Biol. Macromol.20171021083109110.1016/j.ijbiomac.2017.04.105 28472690
    [Google Scholar]
  82. SalimifardS. Karoon KianiF. Sadat EshaghiF. IzadiS. ShahdadnejadK. MasjediA. HeydariM. AhmadiA. Hojjat-FarsangiM. HassanniaH. MohammadiH. Boroumand-NoughabiS. KeramatiM.R. Jadidi-NiaraghF. Codelivery of BV6 and anti-IL6 siRNA by hyaluronate-conjugated PEG-chitosan-lactate nanoparticles inhibits tumor progression.Life Sci.202026011842310.1016/j.lfs.2020.118423 32941896
    [Google Scholar]
  83. KarpishehV. Fakkari AfjadiJ. Nabi AfjadiM. HaeriM.S. Abdpoor SoughT.S. Heydarzadeh AslS. EdalatiM. AtyabiF. MasjediA. HajizadehF. IzadiS. Mirzazadeh TekieF.S. HajiramezanaliM. SojoodiM. Jadidi-NiaraghF. Inhibition of HIF-1α/EP4 axis by hyaluronate-trimethyl chitosan-SPION nanoparticles markedly suppresses the growth and development of cancer cells.Int. J. Biol. Macromol.20211671006101910.1016/j.ijbiomac.2020.11.056 33227333
    [Google Scholar]
  84. Shabani RavariN. GoodarziN. AlvandifarF. AminiM. SouriE. KhoshayandM.R. Hadavand MirzaieZ. AtyabiF. DinarvandR. Fabrication and biological evaluation of chitosan coated hyaluronic acid-docetaxel conjugate nanoparticles in CD44+ cancer cells.Daru20162412110.1186/s40199‑016‑0160‑y 27473554
    [Google Scholar]
  85. YangL. GaoS. AsgharS. LiuG. SongJ. WangX. PingQ. ZhangC. XiaoY. Hyaluronic acid/chitosan nanoparticles for delivery of curcuminoid and its in vitro evaluation in glioma cells.Int. J. Biol. Macromol.2015721391140110.1016/j.ijbiomac.2014.10.039 25450553
    [Google Scholar]
  86. XuY. AsgharS. GaoS. ChenZ. HuangL. YinL. PingQ. XiaoY. Polysaccharide-based nanoparticles for co-loading mitoxantrone and verapamil to overcome multidrug resistance in breast tumor.Int. J. Nanomedicine2017127337735010.2147/IJN.S145620 29066886
    [Google Scholar]
  87. MesratiM.H. TajudinA.A. MasarudinM.J. AlamassiM.N. AbuhamadA.Y. SyahirA. Hyaluronic acid/chitosan-coated poly (lactic-co-glycolic acid) nanoparticles to deliver single and co-loaded paclitaxel and temozolomide for CD44+oral cancer cells.OpenNano20231210016610.1016/j.onano.2023.100166
    [Google Scholar]
  88. CannavàC. De GaetanoF. StancanelliR. VenutiV. PaladiniG. CaridiF. GhicaC. CrupiV. MajolinoD. FerlazzoG. TommasiniS. VenturaC.A. Chitosan-hyaluronan nanoparticles for vinblastine sulfate delivery: characterization and internalization studies on K-562 cells.Pharmaceutics202214594210.3390/pharmaceutics14050942 35631528
    [Google Scholar]
  89. SharifiF. JahangiriM. EbrahimnejadP. Synthesis of novel polymeric nanoparticles (methoxy-polyethylene glycol-chitosan/hyaluronic acid) containing 7-ethyl-10-hydroxycamptothecin for colon cancer therapy: in vitro, ex vivo and in vivo investigation.Artif. Cells Nanomed. Biotechnol.202149136738010.1080/21691401.2021.1907393 33851564
    [Google Scholar]
  90. DengX. CaoM. ZhangJ. HuK. YinZ. ZhouZ. XiaoX. YangY. ShengW. WuY. ZengY. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer.Biomaterials201435144333434410.1016/j.biomaterials.2014.02.006 24565525
    [Google Scholar]
  91. OmarH. FardousR. AlhindiY.M. AodahA.H. AlyamiM. AlsuabeylM.S. AlghamdiW.M. AlhasanA.H. AlmalikA. α1-Acid glycoprotein-decorated hyaluronic acid nanoparticles for suppressing metastasis and overcoming drug resistance breast cancer.Biomedicines202210241410.3390/biomedicines10020414 35203623
    [Google Scholar]
  92. LeeR. ChoiY.J. JeongM.S. ParkY.I. MotoyamaK. KimM.W. KwonS.H. ChoiJ.H. Hyaluronic acid-decorated glycol chitosan nanoparticles for pH-sensitive controlled release of doxorubicin and celecoxib in nonsmall cell lung cancer.Bioconjug. Chem.202031392393210.1021/acs.bioconjchem.0c00048 32027493
    [Google Scholar]
  93. GennariA. Rios de la RosaJ.M. HohnE. PellicciaM. LallanaE. DonnoR. TirellaA. TirelliN. The different ways to chitosan/hyaluronic acid nanoparticles: templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency.Beilstein J. Nanotechnol.2019102594260810.3762/bjnano.10.250 31976191
    [Google Scholar]
  94. HashadR.A. IshakR.A.H. GeneidiA.S. MansourS. Surface functionalization of methotrexate-loaded chitosan nanoparticles with hyaluronic acid/human serum albumin: Comparative characterization and in vitro cytotoxicity.Int. J. Pharm.20175221-212813610.1016/j.ijpharm.2017.03.008 28279742
    [Google Scholar]
  95. PelegrinoM.T. BaldiC. SouzaA.C.S. SeabraA.B. Cytotoxicity of hyaluronic acid coated chitosan nanoparticles containing nitric oxide donor against cancer cell lines.J. Phys. Conf. Ser.20191323101201910.1088/1742‑6596/1323/1/012019
    [Google Scholar]
  96. KousarK. NaseerF. AbduhM.S. KakarS. GulR. AnjumS. AhmadT. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of Cisplatin in cervical carcinoma.Front. Pharmacol.202313107300410.3389/fphar.2022.1073004 36712656
    [Google Scholar]
  97. NaseerF. AhmadT. KousarK. KakarS. GulR. AnjumS. ShareefU. Formulation for the targeted delivery of a vaccine strain of oncolytic measles virus (OMV) in hyaluronic acid coated thiolated chitosan as a green nanoformulation for the treatment of prostate cancer: A viro-immunotherapeutic approach.Int. J. Nanomedicine20231818520510.2147/IJN.S386560 36643861
    [Google Scholar]
  98. MeylinaL. MuchtaridiM. JoniI.M. ElaminK.M. WathoniN. Hyaluronic acid-coated chitosan nanoparticles as an active targeted carrier of alpha mangostin for breast cancer cells.Polymers2023154102510.3390/polym15041025 36850308
    [Google Scholar]
  99. LiangY. WangY. WangL. LiangZ. LiD. XuX. ChenY. YangX. ZhangH. NiuH. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer.Bioact. Mater.20216243344610.1016/j.bioactmat.2020.08.019 32995671
    [Google Scholar]
  100. Salehi KheshtA.M. KarpishehV. Sahami GilanP. MelnikovaL.A. Olegovna ZekiyA. MohammadiM. Hojjat-FarsangiM. Majidi ZolbaninN. MahmoodpoorA. HassanniaH. Aghebati-MalekiL. JafariR. Jadidi-NiaraghF. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo.Int. J. Biol. Macromol.202118684986310.1016/j.ijbiomac.2021.07.034 34245737
    [Google Scholar]
  101. Taghipour-SabzevarV. SharifiT. Bagheri-KhoulenjaniS. GoodarziV. KooshkiH. HalabianR. Moosazadeh MoghaddamM. Targeted delivery of a short antimicrobial peptide against CD44-overexpressing tumor cells using hyaluronic acid-coated chitosan nanoparticles: An in vitro study.J. Nanopart. Res.20202259910.1007/s11051‑020‑04838‑2
    [Google Scholar]
  102. DadashiF. EsmaeiliA. Optimization, in-vitro release and in-vivo evaluation of bismuth-hyaluronic acid-melittin-chitosan modified with oleic acid nanoparticles computed imaging-guided radiotherapy of cancer tumor in eye cells.Mater. Sci. Eng. B202127011519710.1016/j.mseb.2021.115197
    [Google Scholar]
  103. RezaeiS. KashanianS. BahramiY. CruzL.J. MotieiM. Redox-sensitive and hyaluronic acid-functionalized nanoparticles for improving breast cancer treatment by cytoplasmic 17α-mthyltestosterone delivery.Molecules2020255118110.3390/molecules25051181 32151062
    [Google Scholar]
  104. LiH. ZhuangS. YangY. ZhouF. RongJ. ZhaoJ. ATP/Hyals dually responsive core-shell hyaluronan/chitosan-based drug nanocarrier for potential application in breast cancer therapy.Int. J. Biol. Macromol.202118383985110.1016/j.ijbiomac.2021.05.020 33965490
    [Google Scholar]
  105. AlmutairiF.M. Abd-RabouA.A. MohamedM.S. Raloxifene-encapsulated hyaluronic acid-decorated chitosan nanoparticles selectively induce apoptosis in lung cancer cells.Bioorg. Med. Chem.20192781629163810.1016/j.bmc.2019.03.004 30879864
    [Google Scholar]
  106. ParasharP. RathorM. DwivediM. SarafS. Hyaluronic acid decorated naringenin nanoparticles: Appraisal of chemopreventive and curative potential for lung cancer.Pharmaceutics20181013310.3390/pharmaceutics10010033 29534519
    [Google Scholar]
  107. CamposJ. Varas-GodoyM. HaidarZ.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells.Nanomedicine201712547349010.2217/nnm‑2016‑0371 28181464
    [Google Scholar]
  108. WangY. QianJ. YangM. XuW. WangJ. HouG. JiL. SuoA. Doxorubicin/cisplatin co-loaded hyaluronic acid/chitosan-based nanoparticles for in vitro synergistic combination chemotherapy of breast cancer.Carbohydr. Polym.201922511520610.1016/j.carbpol.2019.115206 31521263
    [Google Scholar]
  109. ShahidiM. AbazariO. DayatiP. RezaJ.Z. ModarressiM.H. TofighiD. HaghiralsadatB.F. OroojalianF. Using chitosan-stabilized, hyaluronic acid-modified selenium nanoparticles to deliver CD44-targeted PLK1 siRNAs for treating bladder cancer.Nanomedicine202318325927710.2217/nnm‑2022‑0198 37125618
    [Google Scholar]
  110. AnirudhanT.S. MohanM. RajeevM.R. Modified chitosan-hyaluronic acid based hydrogel for the pH-responsive Co-delivery of cisplatin and doxorubicin.Int. J. Biol. Macromol.202220137838810.1016/j.ijbiomac.2022.01.022 35033527
    [Google Scholar]
  111. AshiqueS. GargA. HussainA. FaridA. KumarP. Taghizadeh-HesaryF. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers.Cancer Med.2023
    [Google Scholar]
  112. OzcanG. OzpolatB. ColemanR.L. SoodA.K. Lopez-BeresteinG. Preclinical and clinical development of siRNA-based therapeutics.Adv. Drug Deliv. Rev.20158710811910.1016/j.addr.2015.01.007 25666164
    [Google Scholar]
  113. AsaiT. OkuN. Systemic delivery of small RNA using lipid nanoparticles.Biol. Pharm. Bull.201437220120510.1248/bpb.13‑00744 24492716
    [Google Scholar]
  114. VaishyaR. KhuranaV. PatelS. MitraA.K. Long-term delivery of protein therapeutics.Expert Opin. Drug Deliv.201512341544010.1517/17425247.2015.961420 25251334
    [Google Scholar]
  115. HowardK.A. Delivery of RNA interference therapeutics using polycation-based nanoparticles.Adv. Drug Deliv. Rev.200961971072010.1016/j.addr.2009.04.001 19356738
    [Google Scholar]
  116. MerdanT. Kopec̆ekJ. KisselT. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer.Adv. Drug Deliv. Rev.200254571575810.1016/S0169‑409X(02)00046‑7 12204600
    [Google Scholar]
  117. ShajariN. MansooriB. DavudianS. MohammadiA. BaradaranB. Overcoming the challenges of siRNA delivery: Nanoparticle strategies.Curr. Drug Deliv.2017141364610.2174/1567201813666160816105408 27538460
    [Google Scholar]
  118. BastakiS. AravindhanS. Ahmadpour SahebN. Afsari KashaniM. Evgenievich DorofeevA. Karoon KianiF. JahandidehH. Beigi DarganiF. AksounM. NikkhooA. MasjediA. MahmoodpoorA. AhmadiM. DolatiS. Namvar AghdashS. Jadidi-NiaraghF. Codelivery of STAT3 and PD-L1 siRNA by hyaluronate-TAT trimethyl/thiolated chitosan nanoparticles suppresses cancer progression in tumor-bearing mice.Life Sci.202126611884710.1016/j.lfs.2020.118847 33309720
    [Google Scholar]
  119. VarlamovaE.G. TurovskyE.A. BlinovaE.V. Therapeutic potential and main methods of obtaining selenium nanoparticles.Int. J. Mol. Sci.202122191080810.3390/ijms221910808 34639150
    [Google Scholar]
  120. Jabbarzadeh KaboliP. SalimianF. AghapourS. XiangS. ZhaoQ. LiM. WuX. DuF. ZhaoY. ShenJ. ChoC.H. XiaoZ. Akt-targeted therapy as a promising strategy to overcome drug resistance in breast cancer-a comprehensive review from chemotherapy to immunotherapy.Pharmacol. Res.202015610480610.1016/j.phrs.2020.104806 32294525
    [Google Scholar]
  121. Caswell-JinJ.L. PlevritisS.K. TianL. CadhamC.J. XuC. StoutN.K. SledgeG.W. MandelblattJ.S. KurianA.W. Change in survival in metastatic breast cancer with treatment advances: meta-analysis and systematic review.JNCI Cancer Spectr.201824pky06210.1093/jncics/pky062 30627694
    [Google Scholar]
  122. LampisA. HahneJ.C. HedayatS. ValeriN. MicroRNAs as mediators of drug resistance mechanisms.Curr. Opin. Pharmacol.202054445010.1016/j.coph.2020.08.004 32898724
    [Google Scholar]
  123. ZengX. WangH.Y. BaiS.Y. PuK. WangY.P. ZhouY.N. The roles of microRNAs in multidrug-resistance mechanisms in gastric cancer.Curr. Mol. Med.202120966767410.2174/1566524020666200226124336 32209033
    [Google Scholar]
  124. YangX. ShangP. JiJ. MalicheweC. YaoZ. LiaoJ. DuD. SunC. WangL. TangY. GuoX. Hyaluronic acid-modified nanoparticles self-assembled from linoleic acid-conjugated chitosan for the codelivery of miR34a and doxorubicin in resistant breast cancer.Mol. Pharm.202219121710.1021/acs.molpharmaceut.1c00459 34910493
    [Google Scholar]
  125. RohM. WainwrightD.A. WuJ.D. WanY. ZhangB. Targeting CD73 to augment cancer immunotherapy.Curr. Opin. Pharmacol.202053667610.1016/j.coph.2020.07.001 32777746
    [Google Scholar]
  126. XuG. McLeodH.L. Strategies for enzyme/prodrug cancer therapy.Clin. Cancer Res.200171133143324 11705842
    [Google Scholar]
  127. SunI.C. YoonH.Y. LimD.K. KimK. Recent trends in in situ enzyme-activatable prodrugs for targeted cancer therapy.Bioconjug. Chem.20203141012102410.1021/acs.bioconjchem.0c00082 32163277
    [Google Scholar]
  128. HumerD. SpadiutO. Enzyme prodrug therapy: Cytotoxic potential of paracetamol turnover with recombinant horseradish peroxidase.Monatsh. Chem.2021152111389139710.1007/s00706‑021‑02848‑x 34759433
    [Google Scholar]
  129. MalekshahO.M. ChenX. NomaniA. SarkarS. HatefiA. Enzyme/prodrug systems for cancer gene therapy.Curr. Pharmacol. Rep.20162629930810.1007/s40495‑016‑0073‑y 28042530
    [Google Scholar]
  130. PereiraF.M. MeloM.N. SantosÁ.K.M. OliveiraK.V. DizF.M. LigabueR.A. MorroneF.B. SeverinoP. FricksA.T. Hyaluronic acid-coated chitosan nanoparticles as carrier for the enzyme/prodrug complex based on horseradish peroxidase/indole-3-acetic acid: Characterization and potential therapeutic for bladder cancer cells.Enzyme Microb. Technol.202115010988910.1016/j.enzmictec.2021.109889 34489042
    [Google Scholar]
  131. ManandharS. SjöholmE. BobackaJ. RosenholmJ.M. BansalK.K. Polymer-drug conjugates as nanotheranostic agents.J. Nanotheranostics2021216381
    [Google Scholar]
  132. HoskinD.W. RamamoorthyA. Studies on anticancer activities of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.20081778235737510.1016/j.bbamem.2007.11.008 18078805
    [Google Scholar]
  133. BakareO.O. GokulA. WuR. NiekerkL.A. KleinA. KeysterM. Biomedical relevance of novel anticancer peptides in the sensitive treatment of cancer.Biomolecules2021118112010.3390/biom11081120 34439786
    [Google Scholar]
  134. GasparD. VeigaA.S. CastanhoM.A.R.B. From antimicrobial to anticancer peptides. A review.Front. Microbiol.2013429410.3389/fmicb.2013.00294 24101917
    [Google Scholar]
  135. AmaniJ. BarjiniK. MoghaddamM. AsadiA. In vitro synergistic effect of the CM11 antimicrobial peptide in combination with common antibiotics against clinical isolates of six species of multidrug-resistant pathogenic bacteria.Protein Pept. Lett.2015221094095110.2174/0929866522666150728115439 26216264
    [Google Scholar]
  136. MoravejH. MoravejZ. YazdanparastM. HeiatM. MirhosseiniA. Moosazadeh MoghaddamM. MirnejadR. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria.Microb. Drug Resist.201824674776710.1089/mdr.2017.0392 29957118
    [Google Scholar]
  137. WangZ. JinA. YangZ. HuangW. Advanced nitric oxide generating nanomedicine for therapeutic applications.ACS Nano202317108935896510.1021/acsnano.3c02303 37126728
    [Google Scholar]
  138. de VeerS.J. KanM.W. CraikD.J. Cyclotides: From structure to function.Chem. Rev.201911924123751242110.1021/acs.chemrev.9b00402 31829013
    [Google Scholar]
  139. GouldA. CamareroJ.A. Cyclotides: overview and biotechnological applications.ChemBioChem201718141350136310.1002/cbic.201700153 28544675
    [Google Scholar]
  140. JacobB. VogelaarA. CadenasE. CamareroJ.A. Using the cyclotide scaffold for targeting biomolecular interactions in drug development.Molecules20222719643010.3390/molecules27196430 36234971
    [Google Scholar]
  141. HoT.N.T. PhamS.H. NguyenL.T.T. NguyenH.T. NguyenL.T. DangT.T. Insights into the synthesis strategies of plant-derived cyclotides.Amino Acids202355671372910.1007/s00726‑023‑03271‑8 37142771
    [Google Scholar]
  142. HoT.N.T. TurnerA. PhamS.H. NguyenH.T. NguyenL.T.T. NguyenL.T. DangT.T. Cysteine-rich peptides: From bioactivity to bioinsecticide applications.Toxicon202323010717310.1016/j.toxicon.2023.107173 37211058
    [Google Scholar]
  143. HandleyT.N.G. WangC.K. HarveyP.J. LawrenceN. CraikD.J. Cyclotide structures revealed by NMR, with a little help from X-ray crystallography.ChemBioChem202021243463347510.1002/cbic.202000315 32656966
    [Google Scholar]
  144. SaetherO. CraikD.J. CampbellI.D. SlettenK. JuulJ. NormanD.G. Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1.Biochemistry199534134147415810.1021/bi00013a002 7703226
    [Google Scholar]
  145. ColgraveM.L. CraikD.J. Thermal, chemical, and enzymatic stability of the cyclotide kalata B1: The importance of the cyclic cystine knot.Biochemistry200443205965597510.1021/bi049711q 15147180
    [Google Scholar]
  146. SenthilkumarB. RajasekaranR. Analysis of the structural stability among cyclotide members through cystine knot fold that underpins its potential use as a drug scaffold.Int. J. Pept. Res. Ther.201723111110.1007/s10989‑016‑9537‑5
    [Google Scholar]
  147. MehtaL. DhankharR. GulatiP. KapoorR.K. MohantyA. KumarS. Natural and grafted cyclotides in cancer therapy: An insight.J. Pept. Sci.2020264-5e324610.1002/psc.3246 32141199
    [Google Scholar]
  148. HeW. ChanL.Y. ZengG. DalyN.L. CraikD.J. TanN. Isolation and characterization of cytotoxic cyclotides from Viola philippica.Peptides20113281719172310.1016/j.peptides.2011.06.016 21723349
    [Google Scholar]
  149. TangJ. WangC.K. PanX. YanH. ZengG. XuW. HeW. DalyN.L. CraikD.J. TanN. Isolation and characterization of cytotoxic cyclotides from Viola tricolor.Peptides20103181434144010.1016/j.peptides.2010.05.004 20580652
    [Google Scholar]
  150. DuQ. ChanL.Y. GildingE.K. HenriquesS.T. CondonN.D. RavipatiA.S. KaasQ. HuangY.H. CraikD.J. Discovery and mechanistic studies of cytotoxic cyclotides from the medicinal herb Hybanthus enneaspermus.J. Biol. Chem.202029532109111092510.1074/jbc.RA120.012627 32414842
    [Google Scholar]
  151. DangT.T. ChanL.Y. HuangY.H. NguyenL.T.T. KaasQ. HuynhT. CraikD.J. Exploring the sequence diversity of cyclotides from Vietnamese Viola species.J. Nat. Prod.20208361817182810.1021/acs.jnatprod.9b01218 32437150
    [Google Scholar]
  152. DangT.T. ChanL.Y. TomblingB.J. HarveyP.J. GildingE.K. CraikD.J. In planta discovery and chemical synthesis of bracelet cystine knot peptides from Rinorea bengalensis.J. Nat. Prod.202184239540710.1021/acs.jnatprod.0c01065 33570395
    [Google Scholar]
  153. ChanL.Y. CraikD.J. DalyN.L. Dual-targeting anti-angiogenic cyclic peptides as potential drug leads for cancer therapy.Sci. Rep.2016613534710.1038/srep35347 27734947
    [Google Scholar]
  154. GunasekeraS. FoleyF.M. ClarkR.J. SandoL. FabriL.J. CraikD.J. DalyN.L. Engineering stabilized vascular endothelial growth factor-A antagonists: synthesis, structural characterization, and bioactivity of grafted analogues of cyclotides.J. Med. Chem.200851247697770410.1021/jm800704e 19053834
    [Google Scholar]
  155. GetzJ.A. ChenevalO. CraikD.J. DaughertyP.S. Design of a cyclotide antagonist of neuropilin-1 and -2 that potently inhibits endothelial cell migration.ACS Chem. Biol.2013861147115410.1021/cb4000585 23537207
    [Google Scholar]
  156. JiY. MajumderS. MillardM. BorraR. BiT. ElnagarA.Y. NeamatiN. ShekhtmanA. CamareroJ.A. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide.J. Am. Chem. Soc.201313531116231163310.1021/ja405108p 23848581
    [Google Scholar]
  157. RavipatiA.S. HenriquesS.T. PothA.G. KaasQ. WangC.K. ColgraveM.L. CraikD.J. Lysine-rich cyclotides: A new subclass of circular knotted proteins from Violaceae.ACS Chem. Biol.201510112491250010.1021/acschembio.5b00454 26322745
    [Google Scholar]
  158. Troeira HenriquesS. HuangY.H. ChaousisS. WangC.K. CraikD.J. Anticancer and toxic properties of cyclotides are dependent on phosphatidylethanolamine phospholipid targeting.ChemBioChem201415131956196510.1002/cbic.201402144 25099014
    [Google Scholar]
  159. HerrmannA. BurmanR. MylneJ.S. KarlssonG. GullboJ. CraikD.J. ClarkR.J. GöranssonU. The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity.Phytochemistry200869493995210.1016/j.phytochem.2007.10.023 18191970
    [Google Scholar]
  160. LindholmP. GöranssonU. JohanssonS. ClaesonP. GullboJ. LarssonR. BohlinL. BacklundA. Cyclotides: A novel type of cytotoxic agents.Mol. Cancer Ther.200216365369 12477048
    [Google Scholar]
  161. TangJ. WangC.K. PanX. YanH. ZengG. XuW. HeW. DalyN.L. CraikD.J. TanN. Isolation and characterization of bioactive cyclotides from Viola labridorica.Helv. Chim. Acta201093112287229510.1002/hlca.201000115
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018275983231207101222
Loading
/content/journals/cdd/10.2174/0115672018275983231207101222
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; Chitosan; cyclotide; hyaluronic acid; nanocarrier; nanoparticle
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test