Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Rheumatoid arthritis (RA) is a T-cell-mediated chronic inflammatory disorder affecting 0.5-1% of the global population. The disease with unknown etiology causes slow destruction of joints, advancing to significant deterioration of an individual’s quality of life. The present treatment strategy comprises the use of disease-modifying anti-rheumatic drugs (DMARDs) coupled with or without nonsteroidal anti-inflammatory drugs or glucocorticoids. Additionally, involves co-therapy of injectable biological DMARDs in case of persistent or recurrent arthritis. The availability of biological DMARDs and the implementation of the treat-to-target approach have significantly improved the outcomes for patients suffering from RA. Nevertheless, RA requires continuous attention due to inadequate response of patients, development of tolerance and severe side effects associated with long-term use of available treatment regimens. An estimated 60-90% of patients use alternative methods of treatment, such as herbal therapies, for the management of RA symptoms. Over the past few decades, researchers have exploring natural phytochemicals to alleviate RA and associated symptoms. Enormous plant-origin phytochemicals such as alkaloids, flavonoids, steroids, terpenoids and polyphenols have shown anti-inflammatory and immunomodulatory activity against RA. However, phytochemicals have certain limitations, such as high molecular weight, poor water solubility, poor permeability, poor stability and extensive first-pass metabolism, limiting absorption and bioavailability. The use of nanotechnology has aided to extensively improve the pharmacokinetic profile and stability of encapsulated drugs. The current review provides detailed information on the therapeutic potential of phytochemicals. Furthermore, the review focuses on developed phytochemical formulations for RA, with emphasis on clinical trials, regulatory aspects, present challenges, and future prospects.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018270434240105110330
2024-01-30
2024-12-26
Loading full text...

Full text loading...

References

  1. RaniR. RainaN. SharmaA. KumarP. TulliH.S. GuptaM. Advancement in nanotechnology for treatment of rheumatoid arthritis: Scope and potential applications.Naunyn Schmiedebergs Arch. Pharmacol.2023396102287231010.1007/s00210‑023‑02514‑5 37166463
    [Google Scholar]
  2. MoghadamS. AzariB. DarroudiM. ZarrinfarH. SabouriZ. MohammedS.S. Comparison of antifungal activities of zinc, copper, cerium oxide, silver, gold, and selenium nanoparticles against clinical isolates of Aspergillus.Nanomed. J.2023103227233
    [Google Scholar]
  3. KesharwaniD. PaliwalR. SatapathyT. PaulS.D. Rheumatiod arthritis: An updated overview of latest therapy and drug delivery.J. Pharmacopuncture201922421022410.3831/KPI.2019.22.029 31970018
    [Google Scholar]
  4. MadavY. BarveK. PrabhakarB. Current trends in theranostics for rheumatoid arthritis.Eur. J. Pharm. Sci.202014510524010.1016/j.ejps.2020.105240 31987984
    [Google Scholar]
  5. ThakurS. RiyazB. PatilA. KaurA. KapoorB. MishraV. Novel drug delivery systems for NSAIDs in management of rheumatoid arthritis: An overview.Biomed. Pharmacother.20181061011102310.1016/j.biopha.2018.07.027 30119166
    [Google Scholar]
  6. ZhengM. JiaH. WangH. LiuL. HeZ. ZhangZ. YangW. GaoL. GaoX. GaoF. Application of nanomaterials in the treatment of rheumatoid arthritis.RSC Advances202111137129713710.1039/D1RA00328C 35423287
    [Google Scholar]
  7. MohantyS. PandaS. BhanjaA. PalA. ChandraS.S. Novel Drug Delivery Systems for Rheumatoid Arthritis: An Approach to Better Patient Compliance.Biomed. Pharmacol. J.201912115717010.13005/bpj/1624
    [Google Scholar]
  8. Musculoskeletal healthAvailable from: https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions
  9. GlobalR.A. About Arthritis and RA.Available from: https://globalranetwork.org/project/disease-info/
  10. GautamR.K. RoyK. ThapaG. AroraD. ParasharS. DebB.G. Perspective of plant medicine in therapy of rheumatoid arthritis.Indian J. Pharm. Sci.2020825741765
    [Google Scholar]
  11. WangT. ZengF. LiX. WeiY. WangD. ZhangW. XieH. WeiL. XiongS. LiuC. LiS. WuJ. Identification of key genes and pathways associated with sex differences in rheumatoid arthritis based on bioinformatics analysis.Clin. Rheumatol.202342239940610.1007/s10067‑022‑06387‑6 36173499
    [Google Scholar]
  12. SafiriS. KolahiA.A. HoyD. SmithE. BettampadiD. MansourniaM.A. Almasi-HashianiA. Ashrafi-AsgarabadA. Moradi-LakehM. QorbaniM. CollinsG. WoolfA.D. MarchL. CrossM. Global, regional and national burden of rheumatoid arthritis 1990–2017: A systematic analysis of the Global Burden of Disease study 2017.Ann. Rheum. Dis.201978111463147110.1136/annrheumdis‑2019‑215920 31511227
    [Google Scholar]
  13. LiT.P. ZhangA.H. MiaoJ.H. SunH. YanG.L. FangW.F. Applications and potential mechanisms of herbal medicines for rheumatoid arthritis treatment: A systematic review.RSC Adv.20199452638126392
    [Google Scholar]
  14. ClarkeT.C. BlackL.I. StussmanB.J. BarnesP.M. NahinR.L. Trends in the use of complementary health approaches among adults: United States, 2002-2012.Natl. Health Stat. Rep.201579116 25671660
    [Google Scholar]
  15. DudicsS. LanganD. MekaR. VenkateshaS. BermanB. CheC.T. MoudgilK. Natural products for the treatment of autoimmune arthritis: Their mechanisms of action, targeted delivery, and interplay with the host microbiome.Int. J. Mol. Sci.2018199250810.3390/ijms19092508 30149545
    [Google Scholar]
  16. SantiagoL.Â.M. NetoR.N.M. Santos AtaídeA.C. FonsecaD.C.S.C. SoaresE.F.A. de Sá SousaJ.C. Mondego-OliveiraR. RibeiroR.M. de Sousa CartágenesM.S. Lima-NetoL.G. CarvalhoR.C. de SousaE.M. Flavonoids, alkaloids and saponins: Are these plant-derived compounds an alternative to the treatment of rheumatoid arthritis? A literature review.Clinical Phytoscience2021715810.1186/s40816‑021‑00291‑3
    [Google Scholar]
  17. KourG. HaqS.A. BajajB.K. GuptaP.N. AhmedZ. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends.Pharmacol. Res.202116910561810.1016/j.phrs.2021.105618 33878447
    [Google Scholar]
  18. PhamC.T.N. Nanotherapeutic approaches for the treatment of rheumatoid arthritis.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20113660761910.1002/wnan.157 21837725
    [Google Scholar]
  19. ZhaoJ. ChenX. HoK.H. CaiC. LiC.W. YangM. YiC. Nanotechnology for diagnosis and therapy of rheumatoid arthritis: Evolution towards theranostic approaches.Chin. Chem. Lett.2021321668610.1016/j.cclet.2020.11.048
    [Google Scholar]
  20. MakkarR. SehgalA. SinghS. SharmaN. RawatR. RashidS. Vargas-De-La-CruzC. YadavS. BungauS.G. BehlT. Current trends in epigenetic, cellular and molecular pathways in management of rheumatoid arthritis.Inflammopharmacology20233141577158810.1007/s10787‑023‑01262‑5 37335368
    [Google Scholar]
  21. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/000493390 30173215
    [Google Scholar]
  22. FraenkelL. BathonJ.M. EnglandB.R. St ClairE.W. ArayssiT. CarandangK. DeaneK.D. GenoveseM. HustonK.K. KerrG. KremerJ. NakamuraM.C. RussellL.A. SinghJ.A. SmithB.J. SparksJ.A. VenkatachalamS. WeinblattM.E. Al-GibbawiM. BakerJ.F. BarbourK.E. BartonJ.L. CappelliL. ChamseddineF. GeorgeM. JohnsonS.R. KahaleL. KaramB.S. KhamisA.M. Navarro-MillánI. MirzaR. SchwabP. SinghN. TurgunbaevM. TurnerA.S. YaacoubS. AklE.A. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis.Arthritis Rheumatol.20217371108112310.1002/art.41752 34101376
    [Google Scholar]
  23. SmolenJ.S. LandewéR.B.M. BijlsmaJ.W.J. BurmesterG.R. DougadosM. KerschbaumerA. McInnesI.B. SeprianoA. van VollenhovenR.F. de WitM. AletahaD. AringerM. AsklingJ. BalsaA. BoersM. den BroederA.A. BuchM.H. ButtgereitF. CaporaliR. CardielM.H. De CockD. CodreanuC. CutoloM. EdwardsC.J. van Eijk-HustingsY. EmeryP. FinckhA. GossecL. GottenbergJ.E. HetlandM.L. HuizingaT.W.J. KoloumasM. LiZ. MarietteX. Müller-LadnerU. MyslerE.F. da SilvaJ.A.P. PoórG. PopeJ.E. Rubbert-RothA. Ruyssen-WitrandA. SaagK.G. StrangfeldA. TakeuchiT. VoshaarM. WesthovensR. van der HeijdeD. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update.Ann. Rheum. Dis.202079668569910.1136/annrheumdis‑2019‑216655 31969328
    [Google Scholar]
  24. SmolenJ.S. Rheumatoid arthritis Primer - behind the scenes.Nat. Rev. Dis. Primers2020613210.1038/s41572‑020‑0168‑y 31907359
    [Google Scholar]
  25. Patient education: Rheumatoid arthritis treatment (Beyond the Basics)Available from: https://www.uptodate.com/contents/rheumatoid-arthritis-treatment-beyond-the-basics
  26. LittlejohnE.A. MonradS.U. Early diagnosis and treatment of rheumatoid arthritis.Prim. Care201845223725510.1016/j.pop.2018.02.010 29759122
    [Google Scholar]
  27. SparksJ.A. Rheumatoid arthritis.Ann. Intern. Med.20191701ITC1ITC1610.7326/AITC201901010 30596879
    [Google Scholar]
  28. GuptaR Advancement in the management of rheumatoid arthritis.RPSPPR202321rqad005
    [Google Scholar]
  29. AletahaD. SmolenJ.S. Diagnosis and management of rheumatoid arthritis.JAMA2018320131360137210.1001/jama.2018.13103 30285183
    [Google Scholar]
  30. ChatzidionysiouK. SfikakisP.P. Low rates of remission with methotrexate monotherapy in rheumatoid arthritis: Review of randomised controlled trials could point towards a paradigm shift.RMD Open201952e00099310.1136/rmdopen‑2019‑000993 31413870
    [Google Scholar]
  31. BurmesterG.R. PopeJ.E. Novel treatment strategies in rheumatoid arthritis.Lancet2017389100862338234810.1016/S0140‑6736(17)31491‑5 28612748
    [Google Scholar]
  32. Md YusofM.Y. EmeryP. Targeting interleukin-6 in rheumatoid arthritis.Drugs201373434135610.1007/s40265‑013‑0018‑2 23456676
    [Google Scholar]
  33. Biosimilar Product Information2021Available from: https://www.fda.gov/drugs/biosimilars/biosimilar-product-information
  34. KapoorB. SinghS.K. GulatiM. GuptaR. VaidyaY. Application of liposomes in treatment of rheumatoid arthritis: quo vadis.Sci. World J.2014201497835110.1155/2014/978351
    [Google Scholar]
  35. JanakiramanK. KrishnaswamiV. RajendranV. NatesanS. KandasamyR. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights.Mater. Today Commun.20181720021310.1016/j.mtcomm.2018.09.011 32289062
    [Google Scholar]
  36. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  37. Novel Drug Approvals for 20192019Available from: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2019
  38. FosterO. BrownN. MalikN. AkhtarZ. ThakurM. A comprehensive review on surgical implications of rheumatoid arthritis.Gen Surg Open A Open J.2020112834
    [Google Scholar]
  39. YanoK. IkariK. Outcomes of joint-preserving surgery for rheumatoid forefoot deformity: An editorial.Int. J. Environ. Res. Public Health20221942038
    [Google Scholar]
  40. WangW. ZhouH. LiuL. Side effects of methotrexate therapy for rheumatoid arthritis: A systematic review.Eur. J. Med. Chem.201815850251610.1016/j.ejmech.2018.09.027 30243154
    [Google Scholar]
  41. de CamargoM.C. BarrosB.C.A. FuloneI. SilvaM.T. SilveiraM.S.N. CamargoI.A. Barberato-FilhoS. Del FiolF.S. LopesL.C. Adverse events in patients with rheumatoid arthritis and psoriatic arthritis receiving long-term biological agents in a real-life setting.Front. Pharmacol.20191096510.3389/fphar.2019.00965 31572173
    [Google Scholar]
  42. GorantlaS. SinghviG. RapalliV.K. WaghuleT. DubeyS.K. SahaR.N. Targeted drug-delivery systems in the treatment of rheumatoid arthritis: recent advancement and clinical status.Ther. Deliv.202011426928410.4155/tde‑2020‑0029 32434463
    [Google Scholar]
  43. Menchaca-TapiaV.M. RodríguezE.M. Contreras-YáñezI. Iglesias-MoralesM. Pascual-RamosV. Adverse outcomes following hand surgery in patients with rheumatoid arthritis.Plast. Surg.2016242677210.1177/229255031602400201 27441187
    [Google Scholar]
  44. SharmaA. GoelA. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products.Mol. Biol. Rep.20235054687470610.1007/s11033‑023‑08406‑4 37022525
    [Google Scholar]
  45. MendozaN. SilvaE.M.E. Introduction to phytochemicals: Secondary metabolites from plants with active principles for pharmacological importance.Phytochemicals - Source of Antioxidants and Role in Disease PreventionIntechOpen201810.5772/intechopen.78226
    [Google Scholar]
  46. ForniC. FacchianoF. BartoliM. PierettiS. FacchianoA. D’ArcangeloD. NorelliS. ValleG. NisiniR. BeninatiS. TabolacciC. JadejaR.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases.BioMed Res. Int.2019201911610.1155/2019/8748253 31080832
    [Google Scholar]
  47. HughesS.D. KetheesanN. HaleagraharaN. The therapeutic potential of plant flavonoids on rheumatoid arthritis.Crit. Rev. Food Sci. Nutr.201757173601361310.1080/10408398.2016.1246413 27874281
    [Google Scholar]
  48. RengasamyK.R.R. KhanH. GowrishankarS. LagoaR.J.L. MahomoodallyF.M. KhanZ. SuroowanS. TewariD. ZenginG. HassanS.T.S. PandianS.K. The role of flavonoids in autoimmune diseases: Therapeutic updates.Pharmacol. Ther.201919410713110.1016/j.pharmthera.2018.09.009 30268770
    [Google Scholar]
  49. BarzegarM. AhmadvandD. SabouriZ. DarroudiM. Phytoextract-mediated synthesis of magnesium oxide nanoparticles using Caccinia macranthera extract and examination of their photocatalytic and anticancer effects.Mater. Res. Bull.202416911251410.1016/j.materresbull.2023.112514
    [Google Scholar]
  50. DaiY. ChenS.R. ChaiL. ZhaoJ. WangY. WangY. Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide.Crit. Rev. Food Sci. Nutr.201959S1S17S2910.1080/10408398.2018.1501657
    [Google Scholar]
  51. LiZ. TanJ. WangL. LiQ. Andrographolide benefits rheumatoid arthritis via inhibiting MAPK pathways.Inflammation20174051599160510.1007/s10753‑017‑0600‑y 28584977
    [Google Scholar]
  52. BurgosR.A. AlarcónP. QuirogaJ. ManosalvaC. HanckeJ. Andrographolide, an anti-inflammatory multitarget drug: All roads lead to cellular metabolism.Molecules2020261510.3390/molecules26010005 33374961
    [Google Scholar]
  53. GuptaS. MishraK.P. KumarB. SinghS.B. GanjuL. Andrographolide attenuates complete freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines.J. Ethnopharmacol.202026111302210.1016/j.jep.2020.113022 32569719
    [Google Scholar]
  54. LiX. YuanK. ZhuQ. LuQ. JiangH. ZhuM. HuangG. XuA. Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis–netosis balance of neutrophils.Int. J. Mol. Sci.20192020503510.3390/ijms20205035 31614480
    [Google Scholar]
  55. ZhangY. MaJ. ZhangW. Berberine for bone regeneration: Therapeutic potential and molecular mechanisms.J. Ethnopharmacol.202127711424910.1016/j.jep.2021.114249 34058315
    [Google Scholar]
  56. YueM. XiaY. ShiC. GuanC. LiY. LiuR. WeiZ. DaiY. Berberine ameliorates collagen‐induced arthritis in rats by suppressing Th17 cell responses via inducing cortistatin in the gut.FEBS J.2017284172786280110.1111/febs.14147 28636167
    [Google Scholar]
  57. JeongH.W. HsuK.C. LeeJ.W. HamM. HuhJ.Y. ShinH.J. KimW.S. KimJ.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages.Am. J. Physiol. Endocrinol. Metab.20092964E955E96410.1152/ajpendo.90599.2008 19208854
    [Google Scholar]
  58. VitaA.A. AljobailyH. LyonsD.O. PullenN.A. Berberine delays onset of collagen-induced arthritis through t cell suppression.Int. J. Mol. Sci.2021227352210.3390/ijms22073522 33805383
    [Google Scholar]
  59. VarillaC. MarconeM. PaivaL. BaptistaJ. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. A Summary.Foods20211010224910.3390/foods10102249 34681298
    [Google Scholar]
  60. VirenderK. BhartiM. ShamamaJ. WaquarA. PankajK. Vandana, Garga; Harish, D. Bromelain: A review of its mechanisms, pharmacological effects and potential applications.Food Funct.20231481018128
    [Google Scholar]
  61. JainN. MohanS.C. In-vitro anti-inflammatory, anti-arthritic and anti-oxidant activity of bromelain supplement.Int. J. Adv. Sci. Res.2021121
    [Google Scholar]
  62. KargutkarS. BrijeshS. Anti-rheumatic activity of Ananas comosus fruit peel extract in a complete Freund’s adjuvant rat model.Pharm. Biol.201654112616262210.3109/13880209.2016.1173066 27181794
    [Google Scholar]
  63. PothacharoenP. ChaiwongsaR. ChanmeeT. InsuanO. WongwichaiT. JanchaiP. VaithanomsatP. Bromelain extract exerts antiarthritic effects via chondroprotection and the suppression of TNF-α–induced NF-κB and MAPK signaling.Plants20211011227310.3390/plants10112273 34834636
    [Google Scholar]
  64. KumariK. GuptaD. BhatiaJ.K. SharmaM. GuptaS. AroraI. Nutraceuticals & human health: A comprehensive review.World J. Pharm. Res.20231214478496
    [Google Scholar]
  65. BagherniyaM. DarandM. AskariG. GuestP.C. SathyapalanT. SahebkarA. The clinical use of curcumin for the treatment of rheumatoid arthritis: A systematic review of clinical trials.Adv. Exp. Med. Biol.2021129125126310.1007/978‑3‑030‑56153‑6_15
    [Google Scholar]
  66. DaiQ. ZhouD. XuL. SongX. Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats.Drug Des. Devel. Ther.2018124095410510.2147/DDDT.S175763 30584274
    [Google Scholar]
  67. WangQ. YeC. SunS. LiR. ShiX. WangS. ZengX. KuangN. LiuY. ShiQ. LiuR. Curcumin attenuates collagen-induced rat arthritis via anti-inflammatory and apoptotic effects.Int. Immunopharmacol.20197229230010.1016/j.intimp.2019.04.027 31005039
    [Google Scholar]
  68. ZhengZ. SunY. LiuZ. ZhangM. LiC. CaiH. The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats.Drug Des. Devel. Ther.2015949314942 26345159
    [Google Scholar]
  69. TejadaS. PinyaS. MartorellM. CapóX. TurJ.A. PonsA. SuredaA. Potential anti-inflammatory effects of hesperidin from the genus citrus.Curr. Med. Chem.201925374929494510.2174/0929867324666170718104412 28721824
    [Google Scholar]
  70. QiW. LinC. FanK. ChenZ. LiuL. FengX. ZhangH. ShaoY. FangH. ZhaoC. ZhangR. CaiD. Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund’s adjuvant-induced arthritis in mice.Chem. Biol. Interact.2019306192810.1016/j.cbi.2019.04.002 30954464
    [Google Scholar]
  71. LiR. CaiL. XieX. YangF. LiJ. Hesperidin suppresses adjuvant arthritis in rats by inhibiting synoviocyte activity.Phytother. Res.201024S1S71S7610.1002/ptr.2906 19585485
    [Google Scholar]
  72. FuZ. ChenZ. XieQ. LeiH. XiangS. Hesperidin protects against IL 1β induced inflammation in human osteoarthritis chondrocytes.Exp. Ther. Med.20181643721372710.3892/etm.2018.6616 30233731
    [Google Scholar]
  73. RenJ. LuY. QianY. ChenB. WuT. JiG. Recent progress regarding kaempferol for the treatment of various diseases (Review).Exp. Ther. Med.20191842759277610.3892/etm.2019.7886 31572524
    [Google Scholar]
  74. JadimurthyR. JagadishS. NayakS.C. KumarS. MohanC.D. RangappaK.S. Phytochemicals as invaluable sources of potent antimicrobial agents to combat antibiotic resistance.Life202313494810.3390/life13040948 37109477
    [Google Scholar]
  75. PanD. LiN. LiuY. XuQ. LiuQ. YouY. WeiZ. JiangY. LiuM. GuoT. CaiX. LiuX. WangQ. LiuM. LeiX. ZhangM. ZhaoX. LinC. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway.Int. Immunopharmacol.20185517418210.1016/j.intimp.2017.12.011 29268189
    [Google Scholar]
  76. Li-xiangA. FeiF. QiQ. Run-binS. Sheng-huaG. Zi-zhenD. Ji-yeA. Guang-jiW. Chang-xiaoL. Rebalancing of the gut flora and microbial metabolism is responsible for the anti-arthritis effect of kaempferol.Acta Pharmacol. Sin.2020417381
    [Google Scholar]
  77. LiuX. TaoT. YaoH. ZhengH. WangF. GaoY. Mechanism of action of quercetin in rheumatoid arthritis models: meta-analysis and systematic review of animal studies.Inflammopharmacology20233141629164510.1007/s10787‑023‑01196‑y 37150762
    [Google Scholar]
  78. DavidsonR.K. GreenJ. GardnerS. BaoY. CassidyA. ClarkI.M. Identifying chondroprotective diet-derived bioactives and investigating their synergism.Sci. Rep.2018811717310.1038/s41598‑018‑35455‑8 30464238
    [Google Scholar]
  79. HannanA. AkhtarB. SharifA. AnjumF. PashaI. KhanA. AkhtarM.F. SaleemA. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines.Inflammopharmacology202331128730010.1007/s10787‑022‑01118‑4 36542211
    [Google Scholar]
  80. GuanF. WangQ. BaoY. ChaoY. Anti-rheumatic effect of quercetin and recent developments in nano formulation.RSC Advances202111137280729310.1039/D0RA08817J 35423269
    [Google Scholar]
  81. PaulA.T. GohilV.M. BhutaniK.K. Modulating TNF-α signaling with natural products.Drug Discov. Today20061115-1672573210.1016/j.drudis.2006.06.002 16846800
    [Google Scholar]
  82. CessakG. KuzawińskaO. BurdaA. LisK. WojnarM. Mirowska-GuzelD. Bałkowiec-IskraE. TNF inhibitors – Mechanisms of action, approved and off-label indications.Pharmacol. Rep.201466583684410.1016/j.pharep.2014.05.004 25149988
    [Google Scholar]
  83. YuanK. ZhuQ. LuQ. JiangH. ZhuM. LiX. HuangG. XuA. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities.J. Nutr. Biochem.20208410845410.1016/j.jnutbio.2020.108454 32679549
    [Google Scholar]
  84. ElmaliN. BaysalO. HarmaA. EsenkayaI. MizrakB. Effects of resveratrol in inflammatory arthritis.Inflammation2007301-21610.1007/s10753‑006‑9012‑0 17115116
    [Google Scholar]
  85. MalaguarneraL. Influence of resveratrol on the immune response.Nutrients201911594610.3390/nu11050946 31035454
    [Google Scholar]
  86. YangG. ChangC.C. YangY. YuanL. XuL. HoC.T. LiS. Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis.J. Agric. Food Chem.20186649129531296010.1021/acs.jafc.8b05047 30511573
    [Google Scholar]
  87. ZhangY. WangG. WangT. CaoW. ZhangL. ChenX. Nrf2–Keap1 pathway–mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide–treated rheumatoid arthritis fibroblast‐like synoviocytes.Ann. N. Y. Acad. Sci.20191457116617810.1111/nyas.14196 31475364
    [Google Scholar]
  88. YangC.M. ChenY.W. ChiP.L. LinC.C. HsiaoL.D. Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-κB in human rheumatoid arthritis synovial fibroblasts.Biochem. Pharmacol.2017132779110.1016/j.bcp.2017.03.003 28288820
    [Google Scholar]
  89. OzB. YildirimA. YolbasS. CelikZ.B. EtemE.O. DenizG. AkinM. AkarZ.A. KaratasA. KocaS.S. Resveratrol inhibits Src tyrosine kinase, STAT3, and Wnt signaling pathway in collagen induced arthritis model.Biofactors2019451697410.1002/biof.1463 30496633
    [Google Scholar]
  90. GandhiY. KumarR. GrewalJ. RawatH. MishraS.K. KumarV. Advances in anti-inflammatory medicinal plants and phytochemicals in the management of arthritis: A comprehensive review.Food Chem. Adv.20221100085
    [Google Scholar]
  91. HussainZ. ThuH.E. KhanS. SohailM. SarfrazR.M. MahmoodA. AbourehabM.A.S. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy.J. Drug Deliv. Sci. Technol.20227710389510.1016/j.jddst.2022.103895
    [Google Scholar]
  92. BhattacharyyaS. SandhuK. ChockalingamS. Nanotechnology-based healthcare engineering products and recent patents—an update.Emerging Nanotechnologies for Medical Applications.Elsevier2023273296
    [Google Scholar]
  93. ManickamV. SundarV. PanchangamR.L. AmitiS.K.A. TamizhselviR. Nanotechnology in delivery and targeting of phytochemicals.Nanopharmaceuticals: Principles and ApplicationsSpringer2021221126410.1007/978‑3‑030‑44921‑6_6
    [Google Scholar]
  94. RabieiM. KashanianS. SamavatiS.S. DerakhshankhahH. JamasbS. McInnesS.J.P. Nanotechnology application in drug delivery to osteoarthritis (OA), rheumatoid arthritis (RA), and osteoporosis (OSP).J. Drug Deliv. Sci. Technol.20216110201110.1016/j.jddst.2020.102011
    [Google Scholar]
  95. RahimizadehP. RezaieyazdiZ. BehzadiF. HajizadeA. LimS.I. Nanotechnology as a promising platform for rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring.Int. J. Pharm.202160912113710.1016/j.ijpharm.2021.121137 34592396
    [Google Scholar]
  96. SubramanianA.P. JaganathanS.K. ManikandanA. PandiarajK.N. N, G.; Supriyanto, E. Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy.RSC Advances2016654482944831410.1039/C6RA07802H
    [Google Scholar]
  97. MirzaeiS.M. OskueeR.K. SadriK. SabouriZ. FarB.F. AbdulabbasH.S. DarroudiM. Development of a novel sulfur quantum dots: Synthesis, 99mTc radiolabeling, and biodistribution.Appl. Biochem. Biotechnol.202310.1007/s12010‑023‑04703‑7 37650949
    [Google Scholar]
  98. SabouriZ. Kazemi OskueeR. SabouriS. Tabrizi Hafez MoghaddasS.S. SamarghandianS. Sajid AbdulabbasH. DarroudiM. Phytoextract-mediated synthesis of Ag-doped ZnO–MgO–CaO nanocomposite using Ocimum Basilicum L seeds extract as a highly efficient photocatalyst and evaluation of their biological effects.Ceram. Int.20234912209892099710.1016/j.ceramint.2023.03.234
    [Google Scholar]
  99. SainiR. SainiS. SharmaS. Nanotechnology: The future medicine.J. Cutan. Aesthet. Surg.201031323310.4103/0974‑2077.63301 20606992
    [Google Scholar]
  100. AhmadR. SrivastavaS. GhoshS. KhareS.K. Phytochemical delivery through nanocarriers: A review.Colloids Surf. B Biointerfaces202119711138910.1016/j.colsurfb.2020.111389 33075659
    [Google Scholar]
  101. RizwanullahM. AminS. MirS.R. FakhriK.U. RizviM.M.A. Phytochemical based nanomedicines against cancer: Current status and future prospects.J. Drug Target.201826973175210.1080/1061186X.2017.1408115 29157022
    [Google Scholar]
  102. VinardellM.P. MitjansM. Nanocarriers for delivery of antioxidants on the skin.Cosmetics20152434235410.3390/cosmetics2040342
    [Google Scholar]
  103. GuglevaV. IvanovaN. SotirovaY. AndonovaV. Dermal drug delivery of phytochemicals with phenolic structure via lipid-based nanotechnologies.Pharmaceuticals202114983710.3390/ph14090837 34577536
    [Google Scholar]
  104. MohapatraS. RanjanS. DasguptaN. KumarR. ThomasS. Nanocarriers for Drug Delivery: Nanoscience and Nanotechnology in Drug Delivery.Elsevier2018
    [Google Scholar]
  105. ZhangR.X. AhmedT. LiL.Y. LiJ. AbbasiA.Z. WuX.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks.Nanoscale2017941334135510.1039/C6NR08486A 27973629
    [Google Scholar]
  106. BarbaA. LambertiG. SardoC. DapasB. AbramiM. GrassiM. FarraR. TononF. ForteG. MusianiF. LicciardiM. PozzatoG. ZanconatiF. ScaggianteB. GrassiG. CavallaroG. Novel lipid and polymeric materials as delivery systems for nucleic acid based drugs.Curr. Drug Metab.201516642745210.2174/1389200216666150812142557 26264345
    [Google Scholar]
  107. DymekM. SikoraE. Liposomes as biocompatible and smart delivery systems - the current state.Adv. Colloid Interface Sci.202230910275710.1016/j.cis.2022.102757 36152374
    [Google Scholar]
  108. SharmaA. SharmaU.S. Liposomes in drug delivery: Progress and limitations.Int. J. Pharm.1997154212314010.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  109. SunZ. WeiT. ZhouX. Liposomes encapsulated dimethyl curcumin regulates dipeptidyl peptidase I activity, gelatinase release and cell cycle of spleen lymphocytes in-vivo to attenuate collagen induced arthritis in rats.Int. Immunopharmacol.20186551152110.1016/j.intimp.2018.10.039 30408628
    [Google Scholar]
  110. MancaM.L. LattuadaD. ValentiD. MarelliO. CorradiniC. Fernàndez-BusquetsX. ZaruM. MaccioniA.M. FaddaA.M. ManconiM. Potential therapeutic effect of curcumin loaded hyalurosomes against inflammatory and oxidative processes involved in the pathogenesis of rheumatoid arthritis: The use of fibroblast-like synovial cells cultured in synovial fluid.Eur. J. Pharm. Biopharm.2019136849210.1016/j.ejpb.2019.01.012 30659893
    [Google Scholar]
  111. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  112. SujithaS. DineshP. RasoolM. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation.Eur. J. Pharm. Biopharm.202014917019110.1016/j.ejpb.2020.02.007 32068029
    [Google Scholar]
  113. SujithaS. RasoolM. Berberine coated mannosylated liposomes curtail RANKL stimulated osteoclastogenesis through the modulation of GSK3β pathway via upregulating miR-23a.Int. Immunopharmacol.20197410570310.1016/j.intimp.2019.105703 31261037
    [Google Scholar]
  114. RocesC.B. LouG. JainN. AbrahamS. ThomasA. HalbertG.W. PerrieY. Manufacturing considerations for the development of lipid nanoparticles using microfluidics.Pharmaceutics20201211109510.3390/pharmaceutics12111095 33203082
    [Google Scholar]
  115. DimaC. AssadpourE. DimaS. JafariS.M. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems.Compr. Rev. Food Sci. Food Saf.202019395499410.1111/1541‑4337.12547 33331687
    [Google Scholar]
  116. ChauhanI. SinghL. A comprehensive literature review of lipids used in the formulation of lipid nanoparticles.Curr. Nanomater.20238212615210.2174/2405461507666220606164446
    [Google Scholar]
  117. MishraV. BansalK. VermaA. YadavN. ThakurS. SudhakarK. RosenholmJ. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  118. Mohammadi-SamaniS. GhasemiyehP. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages.Res. Pharm. Sci.201813428830310.4103/1735‑5362.235156 30065762
    [Google Scholar]
  119. MehnertW. MäderK. Solid lipid nanoparticles.Adv. Drug Deliv. Rev.2012648310110.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  120. MartinsS. SarmentoB. FerreiraD.C. SoutoE.B. Lipid-based colloidal carriers for peptide and protein delivery--liposomes versus lipid nanoparticles.Int. J. Nanomedicine200724595607 18203427
    [Google Scholar]
  121. SoutoE.B. FangueiroJ.F. FernandesA.R. CanoA. Sanchez-LopezE. GarciaM.L. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery.Heliyon202282e0893810.1016/j.heliyon.2022.e08938
    [Google Scholar]
  122. SabirF. QindeelM. RehmanA. AhmadN.M. KhanG.M. CsokaI. AhmedN. An efficient approach for development and optimisation of curcumin-loaded solid lipid nanoparticles’ patch for transdermal delivery.J. Microencapsul.202138423324810.1080/02652048.2021.1899321 33689550
    [Google Scholar]
  123. SharmaM. ChaudharyD. Exploration of bromelain laden nanostructured lipid carriers: An oral platform for bromelain delivery in rheumatoid arthritis management.Int. J. Pharm.202159412017610.1016/j.ijpharm.2020.120176 33326825
    [Google Scholar]
  124. MunirA. MuhammadF. ZaheerY. AliM.A. IqbalM. RehmanM. MunirM.U. AkhtarB. WebsterT.J. SharifA. IhsanA. Synthesis of naringenin loaded lipid based nanocarriers and their in-vivo therapeutic potential in a rheumatoid arthritis model.J. Drug Deliv. Sci. Technol.20216610285410.1016/j.jddst.2021.102854
    [Google Scholar]
  125. FaizullahK. WaseemI. WaqasA. MuhammadW. ShaikhM.R. ShaikhM.R. HaroonK. Phytonutrients and technological development in formulations.J. Pharm. Sci. Res.2022613866
    [Google Scholar]
  126. TorchilinT.M. VladimirP. Advances in polymeric and lipid-core micelles as drug delivery systems.Polymeric Biomaterials.3rd edCRC Press2013
    [Google Scholar]
  127. TrivediR. KompellaU.B. Nanomicellar formulations for sustained drug delivery: strategies and underlying principles.Nanomedicine20105348550510.2217/nnm.10.10 20394539
    [Google Scholar]
  128. FanZ. LiJ. LiuJ. JiaoH. LiuB. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy.ACS Appl. Mater. Interfaces20181028235952360410.1021/acsami.8b06236 29920067
    [Google Scholar]
  129. KhayyalM.T. El-HazekR.M. El-SabbaghW.A. FrankJ. BehnamD. Abdel-TawabM. Micellar solubilisation enhances the antiinflammatory activities of curcumin and boswellic acids in rats with adjuvant-induced arthritis.Nutrition20185418919610.1016/j.nut.2018.03.055 30048884
    [Google Scholar]
  130. ChoradiyaB.R. PatilS.B. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system.J. Mol. Liq.202133911675110.1016/j.molliq.2021.116751
    [Google Scholar]
  131. NastitiC. PontoT. AbdE. GriceJ. BensonH. RobertsM. Topical nano and microemulsions for skin delivery.Pharmaceutics2017943710.3390/pharmaceutics9040037 28934172
    [Google Scholar]
  132. AswathanarayanJ.B. VittalR.R. Nanoemulsions and their potential applications in food industry.Front. Sustain. Food Syst.201939510.3389/fsufs.2019.00095
    [Google Scholar]
  133. Ugur KaplanA.B. CetinM. OrgulD. TaghizadehghalehjoughiA. HacımuftuogluA. HekimogluS. Formulation and in vitro evaluation of topical nanoemulsion and nanoemulsion-based gels containing daidzein.J. Drug Deliv. Sci. Technol.20195218920310.1016/j.jddst.2019.04.027
    [Google Scholar]
  134. GokhaleJ.P. MahajanH.S. SuranaS.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies.Biomed. Pharmacother.201911210862210.1016/j.biopha.2019.108622 30797146
    [Google Scholar]
  135. PooniaN. LatherV. KaurB. KirthanashriS.V. PanditaD. Optimization and development of methotrexate- and resveratrol-loaded nanoemulsion formulation using box–behnken design for rheumatoid arthritis.Assay Drug Dev. Technol.202018835636810.1089/adt.2020.989 33052698
    [Google Scholar]
  136. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  137. GeorgeA. ShahP.A. ShrivastavP.S. Natural biodegradable polymers based nano-formulations for drug delivery: A review.Int. J. Pharm.201956124426410.1016/j.ijpharm.2019.03.011 30851391
    [Google Scholar]
  138. VendittiI. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review.J. King Saud Univ. Sci.201931339841110.1016/j.jksus.2017.10.004
    [Google Scholar]
  139. WangJ. AyanoE. MaitaniY. KanazawaH. Tunable surface properties of temperature-responsive polymer-modified liposomes induce faster cellular uptake.ACS Omega20172131632510.1021/acsomega.6b00342 31457232
    [Google Scholar]
  140. IgeP. PardeshiS. SonawaneR. Development of ph-dependent nanospheres for nebulisation- in vitro diffusion, aerodynamic and cytotoxicity studies.Drug Res.2018681268068610.1055/a‑0595‑7678 29665591
    [Google Scholar]
  141. NavyaP.N. KaphleA. SrinivasS.P. BhargavaS.K. RotelloV.M. DaimaH.K. Current trends and challenges in cancer management and therapy using designer nanomaterials.Nano Converg.2019612310.1186/s40580‑019‑0193‑2 31304563
    [Google Scholar]
  142. NaikJ.B. PardeshiS.R. PatilR.P. PatilP.B. MujumdarA. Mucoadhesive micro-/nano carriers in ophthalmic drug delivery: An overview.Bionanoscience202010356458210.1007/s12668‑020‑00752‑y
    [Google Scholar]
  143. GieszingerP. Stefania CsabaN. Garcia-FuentesM. PrasannaM. GáspárR. Sztojkov-IvanovA. DuczaE. MárkiÁ. JanákyT. KecskemétiG. KatonaG. Szabó-RévészP. AmbrusR. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration.Eur. J. Pharm. Biopharm.202015317718610.1016/j.ejpb.2020.06.003 32531424
    [Google Scholar]
  144. WaniT.U. RazaS.N. KhanN.A. Nanoparticle opsonization: Forces involved and protection by long chain polymers.Polym. Bull.20207773865388910.1007/s00289‑019‑02924‑7
    [Google Scholar]
  145. YanF. LiH. ZhongZ. ZhouM. LinY. TangC. LiC. Co-delivery of prednisolone and curcumin in human serum albumin nanoparticles for effective treatment of rheumatoid arthritis.Int. J. Nanomedicine2019149113912510.2147/IJN.S219413 31819422
    [Google Scholar]
  146. SahaS. KunduJ. VermaR.J. ChowdhuryP.K. Albumin coated polymer nanoparticles loaded with plant extract derived quercetin for modulation of inflammation.Materialia2020910060510.1016/j.mtla.2020.100605
    [Google Scholar]
  147. KulsiriratT. SathirakulK. KameiN. Takeda-MorishitaM. The in vitro and in vivo study of novel formulation of andrographolide PLGA nanoparticle embedded into gelatin-based hydrogel to prolong delivery and extend residence time in joint.Int. J. Pharm.202160212061810.1016/j.ijpharm.2021.120618 33887393
    [Google Scholar]
  148. YangW. XieD. LiangY. ChenN. XiaoB. DuanL. Multi-responsive fibroin-based nanoparticles enhance anti-inflammatory activity of kaempferol.J. Drug Deliv. Sci. Technol.202168103025
    [Google Scholar]
  149. NagaseK. HasegawaM. AyanoE. MaitaniY. KanazawaH. Effect of polymer phase transition behavior on temperature-responsive polymer-modified liposomes for siRNA transfection.Int. J. Mol. Sci.201920243010.3390/ijms20020430 30669495
    [Google Scholar]
  150. MaQ. BaiJ. XuJ. DaiH. FanQ. FeiZ. ChuJ. YaoC. ShiH. ZhouX. BoL. WangC. Reshaping the inflammatory environment in rheumatoid arthritis joints by targeting delivery of berberine with platelet‐derived extracellular vesicles.Adv. NanoBiomed Res.2021111210007110.1002/anbr.202100071
    [Google Scholar]
  151. RochaB.A. FranciscoC.R.L. AlmeidaM. AmesF.Q. BonaE. LeimannF.V. GonçalvesO.H. Bersani-AmadoC.A. Antiinflammatory activity of carnauba wax microparticles containing curcumin.J. Drug Deliv. Sci. Technol.20205910191810.1016/j.jddst.2020.101918
    [Google Scholar]
  152. DasM.K. AhmedA.B. SahaD. Microsphere a drug delivery system–a review.Int. J. Curr. Pharm. Res.2019114344110.22159/ijcpr.2019v11i4.34941
    [Google Scholar]
  153. GuptaS. ParvezN. BhandariA. SharmaP. Microspheres based on herbal actives: The less-explored ways of disease treatment.Egypt. Pharm. J.201514314810.4103/1687‑4315.172852
    [Google Scholar]
  154. JiangY. WangF. XuH. LiuH. MengQ. LiuW. Development of andrographolide loaded PLGA microspheres: Optimization, characterization and in vitro–in vivo correlation.Int. J. Pharm.20144751-247548410.1016/j.ijpharm.2014.09.016 25219858
    [Google Scholar]
  155. El SayedM.M. Production of polymer hydrogel composites and their applications.J. Polym. Environ.20233172855287910.1007/s10924‑023‑02796‑z
    [Google Scholar]
  156. GodiyaC.B. MartinsR.L.A. CaiW. Functional biobased hydrogels for the removal of aqueous hazardous pollutants: Current status, challenges, and future perspectives.J. Mater. Chem. A Mater. Energy Sustain.2020841215852161210.1039/D0TA07028A
    [Google Scholar]
  157. Bustamante-TorresM. Romero-FierroD. Arcentales-VeraB. PalominoK. MagañaH. BucioE. Hydrogels classification according to the physical or chemical interactions and as stimuli-sensitive materials.Gels20217418210.3390/gels7040182 34842654
    [Google Scholar]
  158. New insights of scaffolds based on hydrogels in tissue engineering.Polymers2022144799
    [Google Scholar]
  159. AhsanA. TianW.X. FarooqM.A. KhanD.H. An overview of hydrogels and their role in transdermal drug delivery.Int. J. Polym. Mater.202170857458410.1080/00914037.2020.1740989
    [Google Scholar]
  160. YuW. ZhuY. LiH. HeY. Injectable quercetin-loaded hydrogel with cartilage-protection and immunomodulatory properties for articular cartilage repair.ACS Appl. Bio Mater.20203276177110.1021/acsabm.9b00673 35019280
    [Google Scholar]
  161. DeyM. GhoshB. GiriT.K. Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels.Colloids Surf. B Biointerfaces202019611134110.1016/j.colsurfb.2020.111341 32916438
    [Google Scholar]
  162. GongJ. ChenM. ZhengY. WangS. WangY. Polymeric micelles drug delivery system in oncology.J. Control. Release2012159331232310.1016/j.jconrel.2011.12.012 22285551
    [Google Scholar]
  163. AgrawalR. ChauhanC.S. GargA. Snapshot on polymeric micelles as a carrier for drug delivery.Curr. Nanomed.2023131273810.2174/2468187313666230320115153
    [Google Scholar]
  164. BussemerT. OttoI. BodmeierR. Pulsatile drug-delivery systems.Crit. Rev. Ther. Drug Carrier Syst.200118543345810.1615/CritRevTherDrugCarrierSyst.v18.i5.10
    [Google Scholar]
  165. MovassaghianS. MerkelO.M. TorchilinV.P. Applications of polymer micelles for imaging and drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157569170710.1002/wnan.1332 25683687
    [Google Scholar]
  166. FanX.X. XuM.Z. LeungE.L.H. JunC. YuanZ. Liu, L ROS-responsive berberine polymeric micelles effectively suppressed the inflammation of rheumatoid arthritis by targeting mitochondria.Nano-Micro Lett.2020121114
    [Google Scholar]
  167. KamelR. AbbasH. ShaffieN.M. Development and evaluation of PLA-coated co-micellar nanosystem of Resveratrol for the intra-articular treatment of arthritis.Int. J. Pharm.201956911856010.1016/j.ijpharm.2019.118560 31351180
    [Google Scholar]
  168. Dietary supplements: FDA should take further actions to improve oversight and consumer understanding.Available from: https://www.gao.gov/products/gao-09-250
  169. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules20191014710.3390/biom10010047 31892257
    [Google Scholar]
  170. WHO traditional medicine strategy: 2014-2023Available from: https://www.who.int/publications-detail-redirect/9789241506096
  171. Botanical Drug Development; Guidance for Industry2016Available from: https://www.federalregister.gov/documents/2016/12/29/2016-31627/botanical-drug-development-guidance-for-industryavailability
  172. New DrugsAvailable from: https://cdsco.gov.in/opencms/opencms/en/Drugs/New-Drugs/
  173. NarayanaD.B.A. KatiyarC.K. Draft amendment to drugs and cosmetics rules to license science based botanicals, Phytopharmaceuticals as drugs in India.J. Ayurveda Integr. Med.20134424524610.4103/0975‑9476.123726 24459393
    [Google Scholar]
  174. Study OverviewPatent NCT007521542010
  175. Efficacy Study of FANG(30) for Active Rheumatoid Arthritis in Adult Patients (FANG30-RA).Patent NCT007496452016
  176. FunkJ.L. Curcuma longa L in rheumatoid arthritis (CLaRA).Patent NCT025439312016
  177. JavadiF. AhmadzadehA. EghtesadiS. AryaeianN. ZabihiyeganehM. RahimiF.A. JazayeriS. The effect of quercetin on inflammatory factors and clinical symptoms in women with rheumatoid arthritis: A double-blind, randomized controlled trial.J. Am. Coll. Nutr.201736191510.1080/07315724.2016.1140093 27710596
    [Google Scholar]
  178. JiangQ. Tripterygium wilfordii hook F and methotrexate for postmenopausal women with rheumatoid arthritis.Patent NCT041362622022
  179. LuoY. HouX. XiA. LuoM. WangK. XuZ. Tripterygium wilfordii Hook F combination therapy with methotrexate for rheumatoid arthritis: An updated meta-analysis.J. Ethnopharmacol.202330711621110.1016/j.jep.2023.116211 36706936
    [Google Scholar]
  180. LiuW. ZhangY. ZhuW. MaC. RuanJ. LongH. WangY. Sinomenine inhibits the progression of rheumatoid arthritis by regulating the secretion of inflammatory cytokines and monocyte/macrophage subsets.Front. Immunol.20189222810.3389/fimmu.2018.02228 30319663
    [Google Scholar]
  181. ChenZ. LiuQ. LiuJ. JiangX. XueY. Observation on the effect of total glucosides of paeony combined with methotrexate in the treatment of refractory rheumatoid arthritis. Chin. J Pract.Diag. Treatmen.2017317700702
    [Google Scholar]
  182. WangM. HuangJ. FanH. HeD. ZhaoS. ShuY. LiH. LiuL. LuS. XiaoC. LiuY. Treatment of rheumatoid arthritis using combination of methotrexate and tripterygium glycosides tablets—a quantitative plasma pharmacochemical and pseudotargeted metabolomic approach.Front. Pharmacol.20189105110.3389/fphar.2018.01051 30356765
    [Google Scholar]
  183. Hydroxytriptolide in active rheumatoid arthritis patients with an inadequate response to methotrexate (T8).Patent NCT022023952017
  184. ZhuZ. QiX. ChaoC. TingL. DingJ. ZhangJ. Aza spiro ring and polycyclic andrographolide compound, preparation method thereof, pharmaceutical composition and application thereof.CN Patent 112645937A2021
  185. MinG. HuangT. Application of andrographolide in inhibiting formation and activation of osteoclasts.WO Patent 2020192232A12020
  186. ShouJ. Codrug that disintegrates in intestine, preparation therefor, and use thereof.WO Patent 2022012693A12022
  187. Obermueller-JevicU. RuedenauerS. Composition for the treatment of inflammation and/or associated morbidities thereto.WO Patent 2021123377A12021
  188. WuZ. LiangS. YanL. MiaoZ. LiuJ. LiZ. Accurate medicated diet food therapy product for rheumatoid arthritis and preparation method thereof.CN Patent 113181305A2021
  189. KaiZ. XiZ. HuangZ. WangH. ZhangL. LiC. Pharmaceutical composition for inhibiting lipopolysaccharide-induced macrophage inflammation and application thereof.CN Patent 112043689A2020
  190. BlagdenN. New curcumin co-crystals and uses.WO Patent 2022013565A12022
  191. Therapeutic herbal compositions for improving joint health.WO Patent 2022006572A12022
  192. RameyG.J. AyyaduraiV.A.S. DeonikarP. Compositions for improving joint health.US Patent 20210060048A12021
  193. BurovSV Hesperidine conjugate and method for preparation thereof.RU Patent 2742030C12021
  194. QiuL. BaoH. QiM. CaiW. A Chinese medicinal ointment with antiinflammatory effect, and its preparation method.CN Patent 113577125A2021
  195. XieB. ChenS. HeR. DingS. Application of kaempferitrin in relieving side effects of glucocorticoid.CN Patent 112675187A2021
  196. NakanishiA. TanjaM. Collagenase activity inhibitor.WO Patent2021193498A12021
    [Google Scholar]
  197. SmithM. Quercetin enhancement formulation.WO Patent 2021189109A12021
  198. BeiQ. KuanY. Resveratrol analogue containing long conjugated structure and preparation method and application thereof.CN Patent 111943817A2020
/content/journals/cdd/10.2174/0115672018270434240105110330
Loading
/content/journals/cdd/10.2174/0115672018270434240105110330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test