Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Cancer is the deadliest and most serious health problem. The mortality rate of cancer patients has increased significantly worldwide in recent years. There are several treatments available, but these treatments have many limitations, such as non-specific targeting, toxicity, bioavailability, solubility, permeability problems, serious side effects, and a higher dose. Many people prefer phytomedicine because it has fewer side effects. However, amygdalin is a naturally occurring phytoconstituent. It has many harmful effects due to the cyanide group present in the chemical structure. Many scientists and researchers have given their thoughts associated with amygdalin and its toxicities. However, there is a need for a more advanced, effective, and newer delivery system with reduced toxicity effects of amygdalin. Nanotechnology has become a more refined and emerging medical approach, offering innovative research areas to treat cancer. This review focuses on the use of amygdaline as herbal medicine encapsulating into several nanoparticulate delivery systems such as silver nanoparticles, graphene oxide nanoparticles, gold nanoparticles, nanofibers, nanocomposites, niosomes, and magnetic nanoparticles in the treatment of cancer. In addition, this article provides information on amygdalin structure and physical properties, pharmacokinetics, toxicity, and challenges with amygdalin.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018280381231119150732
2023-11-27
2024-12-26
Loading full text...

Full text loading...

References

  1. Fathi-karkanS. ArshadR. RahdarA. RamezaniA. BehzadmehrR. GhotekarS. PandeyS. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: A comprehensive review.Eur. J. Med. Chem.202325911567610.1016/j.ejmech.2023.115676 37499287
    [Google Scholar]
  2. HassanF. El-HitiG.A. Abd-AllateefM. YousifE. Cytotoxicity anticancer activities of anastrozole against breast, liver hepatocellular, and prostate cancer cells.Saudi Med. J.201738435936510.15537/smj.2017.4.17061 28397941
    [Google Scholar]
  3. ZhangL. TianL. DaiX. YuH. WangJ. LeiA. ZhuM. XuJ. ZhaoW. ZhuY. SunZ. ZhangH. HuY. WangY. XuY. ChurchG.M. HuangH. WengQ. ZhangJ. Pluripotent stem cell-derived CAR-macrophage cells with antigen-dependent anti-cancer cell functions.J. Hematol. Oncol.202013115310.1186/s13045‑020‑00983‑2 33176869
    [Google Scholar]
  4. AnandP. KunnumakaraA.B. SundaramC. HarikumarK.B. TharakanS.T. LaiO.S. SungB. AggarwalB.B. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑9 18626751
    [Google Scholar]
  5. HulvatM.C. Cancer incidence and trends.Surg. Clin. North Am.2020100346948110.1016/j.suc.2020.01.002 32402294
    [Google Scholar]
  6. SchillerJ.T. LowyD.R. An introduction to virus infections and human cancer.Recent Results Cancer Res.202121711110.1007/978‑3‑030‑57362‑1_1 33200359
    [Google Scholar]
  7. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/20503121211034366 34408877
    [Google Scholar]
  8. SafarzadehE. Sandoghchian ShotorbaniS. BaradaranB. Herbal medicine as inducers of apoptosis in cancer treatment.Adv. Pharm. Bull.20144S1421427 25364657
    [Google Scholar]
  9. ShiJ. ChenQ. XuM. XiaQ. ZhengT. TengJ. LiM. FanL. Recent updates and future perspectives about amygdalin as a potential anticancer agent: A review.Cancer Med.2019863004301110.1002/cam4.2197 31066207
    [Google Scholar]
  10. MurtiY. AgrawalK.K. SemwalB.C. GuptaJ. GuptaR. A review on novel herbal drug delivery system and its application.Curr. Tradit. Med.202392e28042220415410.2174/2215083808666220428092638
    [Google Scholar]
  11. GuptaJ. AhujaA. GuptaR. Green approaches for cancers management: An effective tool for health care.Anticancer. Agents Med. Chem.202122110111410.2174/1871520621666210119091826 33463475
    [Google Scholar]
  12. El-DesoukyM.A. FahmiA.A. AbdelkaderI.Y. NasraldinK.M. Anticancer effect of amygdalin (Vitamin B-17) on hepatocellular carcinoma cell line (HepG2) in the presence and absence of zinc.Anticancer. Agents Med. Chem.202020448649410.2174/1871520620666200120095525 31958042
    [Google Scholar]
  13. AlwanA.M. RokayaD. KathayatG. AfshariJ.T. Onco-immunity and therapeutic application of amygdalin: A review.J. Oral Biol. Craniofac. Res.202313215516310.1016/j.jobcr.2022.12.010 36618007
    [Google Scholar]
  14. RamachandranV. Rapindra HosalliK. VijayakumarI. ManiL. TiwariR. TiwariG. A review on antitumor action of amygdalin on various types of cancers.Res J Pharm Technol202215115373538010.52711/0974‑360X.2022.00906
    [Google Scholar]
  15. WahabM.F. BreitbachZ.S. ArmstrongD.W. StrattanR. BerthodA. Problems and Pitfalls in the Analysis of Amygdalin and Its Epimer.J. Agric. Food Chem.201563408966897310.1021/acs.jafc.5b03120 26431391
    [Google Scholar]
  16. ZhangT. YangS. ZhangB. YangD. LuY. DuG. Insights into the properties of amygdalin solvatomorphs: X-ray structures, intermolecular interactions, and transformations.ACS Omega20227108906891810.1021/acsomega.1c07314 35309495
    [Google Scholar]
  17. LiangN. SangY. LiuW. YuW. WangX. Anti-inflammatory effects of gingerol on lipopolysaccharide-stimulated RAW 264.7 cells by inhibiting NF-κB signaling pathway.Inflammation201841383584510.1007/s10753‑018‑0737‑3 29508185
    [Google Scholar]
  18. LvJ. DengJ. Research progress in pharmacological effects of amygdalin.Drugs Clinic2012275530535
    [Google Scholar]
  19. JiagangD. LiC. WangH. HaoE. DuZ. BaoC. LvJ. WangY. Amygdalin mediates relieved atherosclerosis in apolipoprotein E deficient mice through the induction of regulatory T cells.Biochem. Biophys. Res. Commun.2011411352352910.1016/j.bbrc.2011.06.162 21756879
    [Google Scholar]
  20. CaiY. LiY.M. ZhongL. Effect of amygdalin on gastric ulcer in experimental models.Zhongguo Yaoke Daxue Xuebao200334254256
    [Google Scholar]
  21. BaroniA. PaolettiI. GrecoR. SatrianoR.A. RuoccoE. TufanoM.A. PerezJ.J. Immunomodulatory effects of a set of amygdalin analogues on human keratinocyte cells.Exp. Dermatol.2005141185485910.1111/j.1600‑0625.2005.00368.x 16232308
    [Google Scholar]
  22. ZhangX. HuJ. ZhuoY. CuiL. LiC. CuiN. ZhangS. Amygdalin improves microcirculatory disturbance and attenuates pancreatic fibrosis by regulating the expression of endothelin-1 and calcitonin gene-related peptide in rats.J. Chin. Med. Assoc.201881543744310.1016/j.jcma.2017.09.005 29129515
    [Google Scholar]
  23. BarakatH. AljutailyT. AlmujaydilM.S. AlgheshairyR.M. AlhomaidR.M. AlmutairiA.S. AlshimaliS.I. AbdellatifA.A.H. Amygdalin: A review on its characteristics, antioxidant potential, gastrointestinal microbiota intervention, anticancer therapeutic and mechanisms, toxicity, and encapsulation.Biomolecules20221210151410.3390/biom12101514 36291723
    [Google Scholar]
  24. El DesoukyA.M. Ali FahmiA. The postulated mechanism of action of amygdalin (vitamin B17) on cancer cells.Anticancer. Agents Med. Chem.2022238894899
    [Google Scholar]
  25. ErfanA. YousifE. AlshanonA.N. AhmedD.S. BufarooshaM. Organotin(IV) complexes as promising potential drug candidates in the field of cancer chemotherapy: A narrative review.AJMS202354856
    [Google Scholar]
  26. ZakiN.H. Cytotoxic potential of amygdaline zinc nano particles on PC3 and MCF7 cell lines.Biosci. Biotechnol. Res. Commun.202114723523910.21786/bbrc/14.7.53
    [Google Scholar]
  27. LiczbińskiP. BukowskaB. Molecular mechanism of amygdalin action in vitro: review of the latest research.Immunopharmacol. Immunotoxicol.201840321221810.1080/08923973.2018.1441301 29486614
    [Google Scholar]
  28. BlahetaR.A. NelsonK. HaferkampA. JuengelE. Amygdalin, quackery or cure?Phytomedicine201623436737610.1016/j.phymed.2016.02.004 27002407
    [Google Scholar]
  29. Jaszczak-WilkeE. PolkowskaŻ. KoprowskiM. OwsianikK. MitchellA.E. BałczewskiP. Amygdalin: Toxicity, anticancer activity and analytical procedures for its determination in plant seeds.Molecules2021268225310.3390/molecules26082253 33924691
    [Google Scholar]
  30. SalamaR.H. RamadanA.E.R.G. AlsanoryT.A. HerdanM.O. FathallahO.M. AlsanoryA.A. Experimental and therapeutic trials of amygdalin.Int. J. Biochem. Phar.201911212610.18689/ijbp‑1000105
    [Google Scholar]
  31. OmelkaR. KovacovaV. MondockovaV. GrosskopfB. KolesarovaA. MartiniakovaM. Cyanogenic glycoside amygdalin influences functions of human osteoblasts in vitro. J. Environ. Sci. Health B202156210911610.1080/03601234.2020.1852054 33504261
    [Google Scholar]
  32. ShalayelM.H.F. Beyond laetrile (Vitamin B-17) controversy-antitumor illusion or revolution.Br. Biomed. Bull.2013
    [Google Scholar]
  33. ChangJ. ZhangY. Catalytic degradation of amygdalin by extracellular enzymes from Aspergillus niger.Process Biochem.201247219520010.1016/j.procbio.2011.10.030
    [Google Scholar]
  34. LiX. ShiF. GuP. LiuL. HeH. DingL. A sensitive LC–MS/MS method for simultaneous determination of amygdalin and paeoniflorin in human plasma and its application.J. Pharm. Biomed. Anal.20149216016410.1016/j.jpba.2014.01.020 24525563
    [Google Scholar]
  35. LiX. ShiF. ZhangR. SunC. GongC. JianL. DingL. Pharmacokinetics, safety, and tolerability of amygdalin and paeoniflorin after single and multiple intravenous infusions of huoxue-tongluo lyophilized powder for injection in healthy chinese volunteers.Clin. Ther.201638232733710.1016/j.clinthera.2015.12.005 26749220
    [Google Scholar]
  36. BajpaiM. ShafiH. Nanoparticles: Importance and need for regulations.Nanoformulations in Human Health: Challenges and Approaches. TalegaonkarS. RaiM. ChamSpringer International Publishing20209310710.1007/978‑3‑030‑41858‑8_5
    [Google Scholar]
  37. KenchegowdaM. RahamathullaM. HaniU. BegumM.Y. GuruswamyS. OsmaniR.A.M. GowravM.P. AlshehriS. GhoneimM.M. AlshlowiA. GowdaD.V. Smart nanocarriers as an emerging platform for cancer therapy: A review.Molecules202127114610.3390/molecules27010146 35011376
    [Google Scholar]
  38. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S289443 33628022
    [Google Scholar]
  39. KaushikN. BorkarS.B. NandanwarS.K. PandaP.K. ChoiE.H. KaushikN.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms.J. Nanobiotechnology202220115210.1186/s12951‑022‑01364‑2 35331246
    [Google Scholar]
  40. HarwanshR.K. DeshmukhR. Breast cancer: An insight into its inflammatory, molecular, pathological and targeted facets with update on investigational drugs.Crit. Rev. Oncol. Hematol.202015410307010.1016/j.critrevonc.2020.103070 32871325
    [Google Scholar]
  41. AskarM.A. El-SayyadG.S. GuidaM.S. KhalifaE. ShabanaE.S. AbdelrahmanI.Y. Amygdalin-folic acid-nanoparticles inhibit the proliferation of breast cancer and enhance the effect of radiotherapy through the modulation of tumor-promoting factors/immunosuppressive modulators in vitro. BMC Complement. Med. Ther.202323116210.1186/s12906‑023‑03986‑x 37210478
    [Google Scholar]
  42. SeyhanS.A. AlkayaD.B. CesurS. SahinA. Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers.Int. J. Biol. Macromol.202323912420110.1016/j.ijbiomac.2023.124201 37001771
    [Google Scholar]
  43. ThabetN.M. Abdel-RafeiM.K. El-SayyadG.S. ElkodousM.A. ShaabanA. DuY.C. RashedL.A. AskarM.A. Multifunctional nanocomposites DDMplusAF inhibit the proliferation and enhance the radiotherapy of breast cancer cells via modulating tumor-promoting factors and metabolic reprogramming.Cancer Nanotechnol.20221311610.1186/s12645‑022‑00122‑1
    [Google Scholar]
  44. MosayyebiB. ImaniM. MohammadiL. AkbarzadehA. ZarghamiN. AlizadehE. RahmatiM. Comparison between β-cyclodextrin-amygdalin nanoparticle and amygdalin effects on migration and apoptosis of MCF-7 breast cancer cell line.J. Cluster Sci.202233393594710.1007/s10876‑021‑02019‑2
    [Google Scholar]
  45. PandeyA. Sauraj; Ali, A.; Negi, Y. Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapy.Mater. Today Proc.2021433744374810.1016/j.matpr.2020.10.988
    [Google Scholar]
  46. HuD. ShilatifardA. Epigenetics of hematopoiesis and hematological malignancies.Genes Dev.201630182021204110.1101/gad.284109.116 27798847
    [Google Scholar]
  47. ElderderyA.Y. AlzahraniB. HamzaS.M.A. Mostafa-HedeabG. MokP.L. SubbiahS.K. Synthesis of Zinc Oxide (ZnO)-Titanium Dioxide (TiO2)-chitosan-farnesol nanocomposites and assessment of their anticancer potential in human leukemic MOLT-4 cell line.Bioinorg. Chem. Appl.2022202211110.1155/2022/5949086 36212987
    [Google Scholar]
  48. ElderderyA.Y. AlzahraniB. AlanaziF. HamzaS.M.A. ElkhalifaA.M.E. AlhamidiA.H. AlabdulsalamA.A. MohamedainA. KumarS.S. MokP.L. Amelioration of human acute lymphoblastic leukemia (ALL) cells by ZnO-TiO2-Chitosan-Amygdalin nanocomposites.Arab. J. Chem.202215810399910.1016/j.arabjc.2022.103999
    [Google Scholar]
  49. SekhoachaM. RietK. MotloungP. GumenkuL. AdegokeA. MasheleS. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches.Molecules20222717573010.3390/molecules27175730 36080493
    [Google Scholar]
  50. ZhouJ. HouJ. RaoJ. ZhouC. LiuY. GaoW. Magnetically directed enzyme/prodrug prostate cancer therapy based on β-glucosidase/amygdalin.Int. J. Nanomedicine2020154639465710.2147/IJN.S242359 32636623
    [Google Scholar]
  51. SaleemH.M. RamaiahP. GuptaJ. JalilA.T. KadhimN.A. AlsaikhanF. Ramírez-CoronelA.A. TayyibN.A. GuoQ. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis.Environ. Res.202323211594210.1016/j.envres.2023.115942 37080268
    [Google Scholar]
  52. DeshmukhR. PrajapatiM. HarwanshR.K. A review on emerging targeted therapies for the management of metastatic colorectal cancers.Med. Oncol.202340615910.1007/s12032‑023‑02020‑x 37097307
    [Google Scholar]
  53. SohailR. AbbasS.R. Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy.Int. J. Biol. Macromol.2020153364510.1016/j.ijbiomac.2020.02.191 32097740
    [Google Scholar]
  54. El-ElaF.I.A. GamalA. ElbannaH.A. ElBannaA.H. SalemH.F. TulbahA.S. In vitro and in vivo evaluation of the effectiveness and safety of amygdalin as a cancer therapy.Pharmaceuticals20221511130610.3390/ph15111306 36355478
    [Google Scholar]
  55. ElderderyA.Y. AlzahraniB. HamzaS.M.A. Mostafa-HedeabG. MokP.L. SubbiahS.K. Synthesis, characterization, and antiproliferative effect of CuO-TiO2-chitosan-amygdalin nanocomposites in human leukemic MOLT4 cells.Bioinorg. Chem. Appl.2022202211310.1155/2022/1473922 36199748
    [Google Scholar]
  56. SaleemM. AsifJ. AsifM. SaleemU. Amygdalin from apricot kernels induces apoptosis and causes cell cycle arrest in cancer cells: An updated review.Anticancer. Agents Med. Chem.201918121650165510.2174/1871520618666180105161136 29308747
    [Google Scholar]
  57. KolesarovaA. BaldovskaS. RoychoudhuryS. The multiple actions of amygdalin on cellular processes with an emphasis on female reproduction.Pharmaceuticals202114988110.3390/ph14090881 34577581
    [Google Scholar]
  58. HeX.Y. WuL.J. WangW.X. XieP.J. ChenY.H. WangF. Amygdalin - A pharmacological and toxicological review.J. Ethnopharmacol.202025411271710.1016/j.jep.2020.112717 32114166
    [Google Scholar]
  59. GoM.R. KimH.J. YuJ. ChoiS.J. Toxicity and toxicokinetics of amygdalin in maesil (Prunus mume) syrup: Protective effect of maesil against amygdalin toxicity.J. Agric. Food Chem.20186643114321144010.1021/acs.jafc.8b03686 30284447
    [Google Scholar]
  60. ShimS.M. KwonH. Metabolites of amygdalin under simulated human digestive fluids.Int. J. Food Sci. Nutr.201061877077910.3109/09637481003796314 20528582
    [Google Scholar]
  61. MakarevićJ. TsaurI. JuengelE. BorgmannH. NelsonK. ThomasC. BartschG. HaferkampA. BlahetaR.A. Amygdalin delays cell cycle progression and blocks growth of prostate cancer cells in vitro. Life Sci.201614713714210.1016/j.lfs.2016.01.039 26827990
    [Google Scholar]
  62. SauerH. WollnyC. OsterI. TutdibiE. GortnerL. GottschlingS. MeyerS. Severe cyanide poisoning from an alternative medicine treatment with amygdalin and apricot kernels in a 4-year-old child.Wien. Med. Wochenschr.20151659-1018518810.1007/s10354‑014‑0340‑7 25605411
    [Google Scholar]
  63. FigurováD. TokárováK. GreifováH. KnížatováN. KolesárováA. LukáčN. Inflammation, it’s regulation and antiphlogistic effect of the cyanogenic glycoside amygdalin.Molecules20212619597210.3390/molecules26195972 34641516
    [Google Scholar]
  64. BolarinwaI.F. OrfilaC. MorganM.R.A. Determination of amygdalin in apple seeds, fresh apples and processed apple juices.Food Chem.201517043744210.1016/j.foodchem.2014.08.083 25306368
    [Google Scholar]
  65. SahinS. KırelB. CarmanK. Fatal cyanide poisoning in a child, caused by eating apricot seeds.Am. J. Case Rep.201112707210.12659/AJCR.881827
    [Google Scholar]
  66. DrankowskaJ. KosM. KościukA. TchórzM. Cyanide poisoning from an alternative medicine treatment with apricot kernels in a 80-year-old female.J. Educ. Health Sport20188121926
    [Google Scholar]
  67. TatliM. EyüpoğluG. HocagilH. Acute cyanide poisoning due to apricot kernel ingestion.J. Acute Dis.201762878810.12980/jad.6.2017JADWEB‑2016‑0075
    [Google Scholar]
  68. KapoorS. Safety of studies analysing clinical benefit of amygdalin.Immunopharmacol. Immunotoxicol.20143618710.3109/08923973.2013.861846 24397550
    [Google Scholar]
  69. ChanT.Y.K. A probable case of amygdalin-induced peripheral neuropathy in a vegetarian with vitamin B12 deficiency.Ther. Drug Monit.200628114014110.1097/01.ftd.0000179419.40584.15 16418710
    [Google Scholar]
  70. ZhouC. QianL. MaH. YuX. ZhangY. QuW. ZhangX. XiaW. Enhancement of amygdalin activated with β-d-glucosidase on HepG2 cells proliferation and apoptosis.Carbohydr. Polym.201290151652310.1016/j.carbpol.2012.05.073 24751072
    [Google Scholar]
  71. JaswalV. PalaniveluJ. C, R. Effects of the Gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity.Biochem. Biophys. Rep.20181412513210.1016/j.bbrep.2018.04.008 29872744
    [Google Scholar]
  72. O’BrienB. QuiggC. LeongT. Severe cyanide toxicity from ‘vitamin supplements’.Eur. J. Emerg. Med.2005125257258 16175068
    [Google Scholar]
  73. CigoliniD. RicciG. ZannoniM. CodogniR. De LucaM. PerfettiP. RoccaG. Hydroxocobalamin treatment of acute cyanide poisoning from apricot kernels.Emerg. Med. J.201128980480510.1136/emj.03.2011.3932rep 21856998
    [Google Scholar]
  74. KonstantatosA. Shiv KumarM. BurrellA. An unusual presentation of chronic cyanide toxicity from self-prescribed apricot kernel extract.BMJ Case Rep.20172017bcr2017220814
    [Google Scholar]
  75. DangT. NguyenC. TranP.N. Physician beware: Severe cyanide toxicity from amygdalin tablets ingestion.Case Rep. Emerg. Med.201720171310.1155/2017/4289527 28912981
    [Google Scholar]
  76. AkyildizB.N. KurtoğluS. KondolotM. TunçA. Cyanide poisoning caused by ingestion of apricot seeds.Ann. Trop. Paediatr.2010301394310.1179/146532810X12637745451951 20196932
    [Google Scholar]
  77. NaderR. Mathieu-DaudéJ.C. DeveauxM. FaureK. Hayek-LanthoisM. de HaroL. Child cyanide poisoning after ingestion of bitter almonds.Clin. Toxicol.201048657457510.3109/15563650.2010.492351 20560788
    [Google Scholar]
  78. BoutbaouchtM. NajibM. El AdibA.G. SbihiM. YounousS. MouaffakY. ZegzoutiF. Cyanide poisoning after bitter almond ingestion.Ann. Trop. Med. Public Health20136667910.4103/1755‑6783.140262
    [Google Scholar]
  79. Sanchez-VerlaanP. GeeraertsT. BuysS. Riu-PoulencB. CabotC. FourcadeO. MégarbaneB. GenestalM. An unusual cause of severe lactic acidosis: Cyanide poisoning after bitter almond ingestion.Intensive Care Med.201137116816910.1007/s00134‑010‑2029‑8 20845029
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018280381231119150732
Loading
/content/journals/cdd/10.2174/0115672018280381231119150732
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Amygdalin; cancer; cyanide; mandelonitrile; nanoparticles; toxicity
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test