Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Pulmonary, nasal, and nose-to-brain diseases involve clinical approaches, such as bronchodilators, inhaled steroids, oxygen therapy, antibiotics, antihistamines, nasal steroids, decongestants, intranasal drug delivery, neurostimulation, and surgery to treat patients. However, systemic medicines have serious adverse effects, necessitating the development of inhaled formulations that allow precise drug delivery to the airways with minimum systemic drug exposure. Particle size, surface charge, biocompatibility, drug capacity, and mucoadhesive are unique chemical and physical features that must be considered for pulmonary and nasal delivery routes due to anatomical and permeability considerations. The traditional management of numerous chronic diseases has a variety of drawbacks. As a result, targeted medicine delivery systems that employ nanotechnology enhancer drug efficiency and optimize the overall outcome are created. The pulmonary route is one of the most essential targeted drug delivery systems because it allows the administering of drugs locally and systemically to the lungs, nasal cavity, and brain. Furthermore, the lungs' beneficial characteristics, such as their ability to inhibit first-pass metabolism and their thin epithelial layer, help treat several health complications. The potential to serve as noninvasive self-administration delivery sites of the lung and nasal routes is discussed in this script. New methods for treating respiratory and some systemic diseases with inhalation have been explored and highlight particular attention to using specialized nanocarriers for delivering various drugs the nasal and pulmonary pathways. The design and development of inhaled nanomedicine for pulmonary, nasal, and respiratory medicine applications is a potential approach for clinical translation.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018268047231207105652
2024-01-24
2024-12-26
Loading full text...

Full text loading...

References

  1. FeinermanC.E. Pulmonary diseases in women.Med. Clin. North Am.199882218920210.1016/S0025‑7125(05)70603‑9 9531922
    [Google Scholar]
  2. HagerT. ReisH. TheegartenD. Infectious pulmonary diseases.Pathologe201435660661110.1007/s00292‑014‑1924‑0 25319227
    [Google Scholar]
  3. P, A. Nose-to-brain drug delivery for the treatment of Alzheimer’s disease: Current advancements and challenges.Expert Opin. Drug Deliv.202219187102
    [Google Scholar]
  4. AgrawalM. SarafS. SarafS. AntimisiarisS.G. ChouguleM.B. ShoyeleS.A. AlexanderA. Nose-to-brain drug delivery: An update on clinical challenges and progress towards approval of anti-Alzheimer drugs.J. Control. Release201828113917710.1016/j.jconrel.2018.05.011 29772289
    [Google Scholar]
  5. GiunchediP. GaviniE. BonferoniM.C. Nose-to-brain delivery.Pharmaceutics202012213810.3390/pharmaceutics12020138 32041344
    [Google Scholar]
  6. Pérez-OsorioI.N. EspinosaA. Giraldo VelázquezM. PadillaP. BárcenaB. FragosoG. Jung-CookH. BesedovskyH. MenesesG. Sciutto CondeE.L. Nose-to-brain delivery of dexamethasone: Biodistribution studies in mice.J. Pharmacol. Exp. Ther.2021378324425010.1124/jpet.121.000530 34531307
    [Google Scholar]
  7. BhatA.A. ThapaR. GoyalA. SubramaniyanV. KumarD. GuptaS. SinghS.K. DuaK. GuptaG. Curcumin-based nanoformulations as an emerging therapeutic strategy for inflammatory lung diseases.Future Med. Chem.202315758358610.4155/fmc‑2023‑0048 37140132
    [Google Scholar]
  8. TannaV. SawarkarS.P. RavikumarP. Exploring nose to brain nano delivery for effective management of migraine.Curr. Drug Deliv.202320214415710.2174/1567201819666220401091632 35366772
    [Google Scholar]
  9. AroraS. AhmadS. IrshadR. GoyalY. RafatS. SiddiquiN. DevK. HusainM. AliS. MohanA. SyedM.A. TLRs in pulmonary diseases.Life Sci.201923311667110.1016/j.lfs.2019.116671 31336122
    [Google Scholar]
  10. BosettiR. Cost–effectiveness of nanomedicine: The path to a future successful and dominant market?Nanomedicine201510121851185310.2217/nnm.15.74 26139120
    [Google Scholar]
  11. BraschF. Interstitial pulmonary diseases.Pathologe200627211613210.1007/s00292‑006‑0823‑4 16456642
    [Google Scholar]
  12. HarariS. HumbertM. Rare pulmonary diseases: A common fight.Eur. Respir. Rev.20172614517005910.1183/16000617.0059‑2017 28877977
    [Google Scholar]
  13. AndersonC.F. GrimmettM.E. DomalewskiC.J. CuiH. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2020121e158610.1002/wnan.1586 31602823
    [Google Scholar]
  14. MuluhT.A. ChenZ. LiY. XiongK. JinJ. FuS. WuJ. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system.Int. J. Nanomedicine2021162389240410.2147/IJN.S295300 33790556
    [Google Scholar]
  15. BanwellB. BennettJ.L. MarignierR. KimH.J. BrilotF. FlanaganE.P. RamanathanS. WatersP. TenembaumS. GravesJ.S. ChitnisT. BrandtA.U. HemingwayC. NeuteboomR. PanditL. ReindlM. SaizA. SatoD.K. RostasyK. PaulF. PittockS.J. FujiharaK. PalaceJ. Diagnosis of myelin oligodendrocyte glycoprotein antibody-associated disease: International MOGAD panel proposed criteria.Lancet Neurol.202322326828210.1016/S1474‑4422(22)00431‑8 36706773
    [Google Scholar]
  16. CaoY. ZhangR. The application of nanotechnology in treatment of Alzheimer’s disease.Front. Bioeng. Biotechnol.202210104298610.3389/fbioe.2022.1042986 36466349
    [Google Scholar]
  17. KherC. KumarS. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review.Cureus2022149e2905910.7759/cureus.29059 36259014
    [Google Scholar]
  18. TillmanL. TabishT.A. KamalyN. MossP. El-bririA. ThiemermannC. PranjolM.Z.I. YaqoobM.M. Advancements in nanomedicines for the detection and treatment of diabetic kidney disease.Biomaterials and Biosystems2022610004710.1016/j.bbiosy.2022.100047 36824160
    [Google Scholar]
  19. GonçalvesJ. AlvesG. CaronaA. BickerJ. VitorinoC. FalcãoA. FortunaA. Pre-clinical assessment of the nose-to-brain delivery of zonisamide after intranasal administration.Pharm. Res.20203747410.1007/s11095‑020‑02786‑z 32215749
    [Google Scholar]
  20. GongY. LiuH. KeS. ZhuoL. WangH. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease.Front. Cardiovasc. Med.20239103774110.3389/fcvm.2022.1037741 36684578
    [Google Scholar]
  21. DebeleT.A. ParkY. Application of nanoparticles: diagnosis, therapeutics, and delivery of insulin/anti-diabetic drugs to enhance the therapeutic efficacy of diabetes mellitus.Life20221212207810.3390/life12122078 36556443
    [Google Scholar]
  22. MillerM.R. RaftisJ.B. LangrishJ.P. McLeanS.G. SamutrtaiP. ConnellS.P. WilsonS. VeseyA.T. FokkensP.H.B. BoereA.J.F. KrystekP. CampbellC.J. HadokeP.W.F. DonaldsonK. CasseeF.R. NewbyD.E. DuffinR. MillsN.L. Inhaled nanoparticles accumulate at sites of vascular disease.ACS Nano20171154542455210.1021/acsnano.6b08551 28443337
    [Google Scholar]
  23. BurM. HenningA. HeinS. SchneiderM. LehrC.M. Inhalative nanomedicine—Opportunities and challenges.Inhal. Toxicol.200921sup1)(Suppl. 113714310.1080/08958370902962283 19558246
    [Google Scholar]
  24. ChinnasamyV. SubramaniyanV. ChandiranS. KayarohanamS. KanniyanD.C. VelagaV.S.S.R. MuhammadS. Antiarthritic activity of achyranthes aspera on formaldehyde - induced arthritis in rats.Open Access Maced. J. Med. Sci.20197172709271410.3889/oamjms.2019.559 31844425
    [Google Scholar]
  25. Cifuentes-RiusA. DesaiA. YuenD. JohnstonA.P.R. VoelckerN.H. Inducing immune tolerance with dendritic cell-targeting nanomedicines.Nat. Nanotechnol.2021161374610.1038/s41565‑020‑00810‑2 33349685
    [Google Scholar]
  26. de JongW.H. BormP.J. Drug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine20083213314910.2147/IJN.S596 18686775
    [Google Scholar]
  27. DingL. TangS. WyattT.A. KnoellD.L. OupickýD. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges.J. Control. Release202133097799110.1016/j.jconrel.2020.11.005 33181203
    [Google Scholar]
  28. RosenY. Pathology of granulomatous pulmonary diseases.Arch. Pathol. Lab. Med.2022146223325110.5858/arpa.2020‑0543‑RA 33905479
    [Google Scholar]
  29. AlbiniA. PaganiA. PulzeL. BrunoA. PrincipiE. CongiuT. GiniE. GrimaldiA. BassaniB. De FloraS. de EguileorM. NoonanD.M. Environmental impact of multi-wall carbon nanotubes in a novel model of exposure: Systemic distribution, macrophage accumulation, and amyloid deposition.Int. J. Nanomedicine20151061336145 26457053
    [Google Scholar]
  30. FuloriaS. SubramaniyanV. KarupiahS. KumariU. SathasivamK. MeenakshiD.U. WuY.S. GuadR.M. UdupaK. FuloriaN.K. A comprehensive review on source, types, effects, nanotechnology, detection, and therapeutic management of reactive carbonyl species associated with various chronic diseases.Antioxidants2020911107510.3390/antiox9111075 33147856
    [Google Scholar]
  31. WenQ. Erythrocyte membrane-camouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer.Int J Biol Macromol2021193(Pt A): 228237
    [Google Scholar]
  32. HanM.K. McLaughlinV.V. CrinerG.J. MartinezF.J. Pulmonary diseases and the heart.Circulation2007116252992300510.1161/CIRCULATIONAHA.106.685206 18086941
    [Google Scholar]
  33. TamuraG. ChoiJ.W. TakedaS. NishinaN. HayashiA. Aerosol velocity of two pressurized metered-dose inhalers using AEROSPHERE® delivery technology.Respir. Investig.202159115315410.1016/j.resinv.2020.07.002 32859558
    [Google Scholar]
  34. AhmadA. Pharmacological strategies and recent advancement in nano-drug delivery for targeting asthma.Life202212459610.3390/life12040596 35455087
    [Google Scholar]
  35. CunhaS. SwedrowskaM. BellahnidY. XuZ. Sousa LoboJ.M. ForbesB. SilvaA.C. Thermosensitive in situ hydrogels of rivastigmine-loaded lipid-based nanosystems for nose-to-brain delivery: Characterisation, biocompatibility, and drug deposition studies.Int. J. Pharm.202262012172010.1016/j.ijpharm.2022.121720 35413397
    [Google Scholar]
  36. GonçalvesJ. AlvesG. FonsecaC. CaronaA. BickerJ. FalcãoA. FortunaA. Is intranasal administration an opportunity for direct brain delivery of lacosamide?Eur. J. Pharm. Sci.202115710563210.1016/j.ejps.2020.105632 33152466
    [Google Scholar]
  37. MuralidharanP. MalapitM. MalloryE. HayesD.Jr MansourH.M. Inhalable nanoparticulate powders for respiratory delivery.Nanomedicine20151151189119910.1016/j.nano.2015.01.007 25659645
    [Google Scholar]
  38. FidlerL. GreenS. WintemuteK. Pressurized metered-dose inhalers and their impact on climate change.CMAJ202219412E46010.1503/cmaj.211747 35347049
    [Google Scholar]
  39. MohsenA.M. Nanotechnology advanced strategies for the management of diabetes mellitus.Curr. Drug Targets20192010995100710.2174/1389450120666190307101642 30848199
    [Google Scholar]
  40. RosièreR. HureauxJ. LevetV. AmighiK. WauthozN. Inhaled chemotherapy - Part 1: General concept and current technological challenges.Rev. Mal. Respir.2018354357377 29731372
    [Google Scholar]
  41. TopalE. ArgaM. ÖzmenA.H. KurşunM.A. İlhanÖ.A. AlıcıM. The pharmacists’ ability to use pressurized metered-dose inhalers with a spacer device and factors affecting it.J. Asthma202158565966410.1080/02770903.2020.1731823 32066310
    [Google Scholar]
  42. WangW. HuangZ. XueK. LiJ. WangW. MaJ. MaC. BaiX. HuangY. PanX. WuC. Development of aggregation-caused quenching probe-loaded pressurized metered-dose inhalers with fluorescence tracking potentials.AAPS PharmSciTech202021829610.1208/s12249‑020‑01782‑1 33099699
    [Google Scholar]
  43. BarjaktarevicI.Z. MilstoneA.P. Nebulized therapies in copd: past, present, and the future.Int. J. Chron. Obstruct. Pulmon. Dis.2020151665167710.2147/COPD.S252435 32764912
    [Google Scholar]
  44. LiX. ChenL. LuanS. ZhouJ. XiaoX. YangY. MaoC. FangP. ChenL. ZengX. GaoH. YuanY. The development and progress of nanomedicine for esophageal cancer diagnosis and treatment.Semin. Cancer Biol.202286Pt 287388510.1016/j.semcancer.2022.01.007 35074509
    [Google Scholar]
  45. UrsoA. MeloniF. MalatestaM. LatorreR. DamociC. CrapanzanoJ. PandolfiL. GiustraM.D. PearsonM. ColomboM. SchillingK. GlabonjatR.A. D’OvidioF. Endotracheal nebulization of gold nanoparticles for noninvasive pulmonary drug delivery.Nanomedicine202318431733010.2217/nnm‑2022‑0179 37140430
    [Google Scholar]
  46. LiuM. LiL. JinD. LiuY. Nanobody—A versatile tool for cancer diagnosis and therapeutics.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2021134e169710.1002/wnan.1697 33470555
    [Google Scholar]
  47. LiX. BottiniM. ZhangL. ZhangS. ChenJ. ZhangT. LiuL. RosatoN. MaX. ShiX. WuY. GuoW. LiangX.J. Core–satellite nanomedicines for in vivo real-time monitoring of enzyme-activatable drug release by fluorescence and photoacoustic dual-modal imaging.ACS Nano201913117618610.1021/acsnano.8b05136 30592401
    [Google Scholar]
  48. LinV.Y. KazaN. BirketS.E. KimH. EdwardsL.J. LaFontaineJ. LiuL. MazurM. ByzekS.A. HanesJ. TearneyG.J. RajuS.V. RoweS.M. Excess mucus viscosity and airway dehydration impact COPD airway clearance.Eur. Respir. J.2020551190041910.1183/13993003.00419‑2019 31672759
    [Google Scholar]
  49. NafeeN. ForierK. BraeckmansK. SchneiderM. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: Proof of concept, challenges and pitfalls.Eur. J. Pharm. Biopharm.201812412513710.1016/j.ejpb.2017.12.017 29291931
    [Google Scholar]
  50. LiuX. TangI. WainbergZ.A. MengH. Safety considerations of cancer nanomedicine—a key step toward translation.Small20201636200067310.1002/smll.202000673 32406992
    [Google Scholar]
  51. OsmanG. RodriguezJ. ChanS.Y. ChisholmJ. DuncanG. KimN. TatlerA.L. ShakesheffK.M. HanesJ. SukJ.S. DixonJ.E. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy.J. Control. Release2018285354510.1016/j.jconrel.2018.07.001 30004000
    [Google Scholar]
  52. MalviyaR. RajS. FuloriaS. SubramaniyanV. SathasivamK. KumariU. Unnikrishnan MeenakshiD. PorwalO. Hari KumarD. SinghA. ChakravarthiS. Kumar FuloriaN. Evaluation of antitumor efficacy of chitosan-tamarind gum polysaccharide polyelectrolyte complex stabilized nanoparticles of simvastatin.Int. J. Nanomedicine2021162533255310.2147/IJN.S300991 33824590
    [Google Scholar]
  53. ParisA.J. GuoL. DaiN. KatzenJ.B. PatelP.N. WorthenG.S. BrennerJ.S. Using selective lung injury to improve murine models of spatially heterogeneous lung diseases.PLoS One2019144e020245610.1371/journal.pone.0202456 30943189
    [Google Scholar]
  54. TalaatM. SiX.A. DongH. XiJ. Leveraging statistical shape modeling in computational respiratory dynamics: Nanomedicine delivery in remodeled airways.Comput. Methods Programs Biomed.202120410607910.1016/j.cmpb.2021.106079 33831725
    [Google Scholar]
  55. GulatiN. ChellappanD.K. MacLoughlinR. DuaK. DurejaH. Inhaled nano-based therapeutics for inflammatory lung diseases: Recent advances and future prospects.Life Sci.202128511996910.1016/j.lfs.2021.119969 34547339
    [Google Scholar]
  56. ShimosarayaN. SotaniT. MiyagiY. MondarteE.A.Q. SuthiwanichK. HayashiT. NagataY. SogawaH. SandaF. Tyrosine-based photoluminescent diketopiperazine supramolecular aggregates.Soft Matter202118113714510.1039/D1SM01206A 34821896
    [Google Scholar]
  57. ZhangZ. ConantC.R. El-BabaT.J. RaabS.A. FullerD.R. HalesD.A. ClemmerD.E. Diketopiperazine formation from fpgn k (n = 1–9) peptides: Rates of structural rearrangements and mechanisms.J. Phys. Chem. B2021125298107811610.1021/acs.jpcb.1c03515 34270248
    [Google Scholar]
  58. MirshafieeV. JiangW. SunB. WangX. XiaT. Facilitating translational nanomedicine via predictive safety assessment.Mol. Ther.20172571522153010.1016/j.ymthe.2017.03.011 28412168
    [Google Scholar]
  59. DeppermannN. MaisonW. Proline-based diketopiperazine-scaffolds.Adv. Exp. Med. Biol.200961120320410.1007/978‑0‑387‑73657‑0_93 19400160
    [Google Scholar]
  60. CrosbyD. BhatiaS. BrindleK.M. CoussensL.M. DiveC. EmbertonM. EsenerS. FitzgeraldR.C. GambhirS.S. KuhnP. RebbeckT.R. BalasubramanianS. Early detection of cancer.Science20223756586eaay904010.1126/science.aay9040 35298272
    [Google Scholar]
  61. DoroudianM. O’ NeillA. Mac LoughlinR. Prina-MelloA. VolkovY. DonnellyS.C. Nanotechnology in pulmonary medicine.Curr. Opin. Pharmacol.202156859210.1016/j.coph.2020.11.002 33341460
    [Google Scholar]
  62. SinghY. FuloriaN.K. FuloriaS. SubramaniyanV. MeenakshiD.U. ChakravarthiS. KumariU. JoshiN. GuptaG. N‐terminal domain of SARS CoV‐2 spike protein mutation associated reduction in effectivity of neutralizing antibody with vaccinated individuals.J. Med. Virol.202193105726572810.1002/jmv.27181 34232521
    [Google Scholar]
  63. BhatA.A. GuptaG. AlharbiK.S. AfzalO. AltamimiA.S.A. AlmalkiW.H. KazmiI. Al-AbbasiF.A. AlzareaS.I. ChellappanD.K. SinghS.K. MacLoughlinR. OliverB.G. DuaK. Polysaccharide-based nanomedicines targeting lung cancer.Pharmaceutics20221412278810.3390/pharmaceutics14122788 36559281
    [Google Scholar]
  64. Carrasco-EstebanE. Domínguez-RullánJ.A. Barrionuevo-CastilloP. Pelari-MiciL. LeamanO. Sastre-GallegoS. López-CamposF. Current role of nanoparticles in the treatment of lung cancer.J. Clin. Transl. Res.202172140155 34104817
    [Google Scholar]
  65. SripadaK. WierzbickaA. AbassK. GrimaltJ.O. ErbeA. RöllinH.B. WeiheP. DíazG.J. SinghR.R. VisnesT. RautioA. OdlandJ.Ø. WagnerM. a children’s health perspective on nano- and microplastics.Environ. Health Perspect.2022130101500110.1289/EHP9086 35080434
    [Google Scholar]
  66. DoroudianM. ZanganehS. AbbasgholinejadE. DonnellyS.C. Nanomedicine in lung cancer immunotherapy.Front. Bioeng. Biotechnol.202311114465310.3389/fbioe.2023.1144653 37008041
    [Google Scholar]
  67. HaiderM. ElsherbenyA. PittalàV. ConsoliV. AlghamdiM.A. HussainZ. KhoderG. GreishK. Nanomedicine strategies for management of drug resistance in lung cancer.Int. J. Mol. Sci.2022233185310.3390/ijms23031853 35163777
    [Google Scholar]
  68. HsiehC.H. HsiehH.C. ShihF.H. WangP.W. YangL.X. ShiehD.B. WangY.C. An innovative NRF2 nano-modulator induces lung cancer ferroptosis and elicits an immunostimulatory tumor microenvironment.Theranostics202111147072709110.7150/thno.57803 34093872
    [Google Scholar]
  69. JovčevskaI. MuyldermansS. The therapeutic potential of nanobodies.BioDrugs2020341112610.1007/s40259‑019‑00392‑z 31686399
    [Google Scholar]
  70. KoutuV. GuptaM. DasS. RawatD.K. KharadeV. PasrichaR.K. Nanotechnology in lung cancer therapeutics: A narrative review.Cureus2023151e3424510.7759/cureus.34245 36855484
    [Google Scholar]
  71. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  72. MiaoY. ChenM. ZhouX. GuoL. ZhuJ. WangR. ZhangX. GanY. Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel.Acta Pharmacol. Sin.202142101714172210.1038/s41401‑020‑00594‑0 33469196
    [Google Scholar]
  73. RaguramanR. SrivastavaA. MunshiA. RameshR. Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer.Adv. Drug Deliv. Rev.202117811391810.1016/j.addr.2021.113918 34375681
    [Google Scholar]
  74. Sharifi-RadJ. QuispeC. PatraJ.K. SinghY.D. PandaM.K. DasG. AdetunjiC.O. MichaelO.S. SytarO. PolitoL. ŽivkovićJ. Cruz-MartinsN. Klimek-SzczykutowiczM. EkiertH. ChoudharyM.I. AyatollahiS.A. TynybekovB. KobarfardF. MunteanA.C. GrozeaI. DaştanS.D. ButnariuM. SzopaA. CalinaD. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy.Oxid. Med. Cell. Longev.2021202112410.1155/2021/3687700 34707776
    [Google Scholar]
  75. SharmaA. ShambhwaniD. PandeyS. SinghJ. LalhlenmawiaH. KumarasamyM. SinghS.K. ChellappanD.K. GuptaG. PrasherP. DuaK. KumarD. Advances in lung cancer treatment using nanomedicines.ACS Omega202381104110.1021/acsomega.2c04078 36643475
    [Google Scholar]
  76. TarasovV.V. SvistunovA.A. ChubarevV.N. DostdarS.A. SokolovA.V. BrzeckaA. SukochevaO. NeganovaM.E. KlochkovS.G. SomasundaramS.G. KirklandC.E. AlievG. Extracellular vesicles in cancer nanomedicine.Semin. Cancer Biol.20216921222510.1016/j.semcancer.2019.08.017 31421263
    [Google Scholar]
  77. Vikas; Sahu, H.K.; Mehata, A.K.; Viswanadh, M.K.; Priya, V.; Muthu, M.S. Dual-receptor-targeted nanomedicines: Emerging trends and advances in lung cancer therapeutics.Nanomedicine202217191375139510.2217/nnm‑2021‑0470 36317852
    [Google Scholar]
  78. WoodmanC. VunduG. GeorgeA. WilsonC.M. Applications and strategies in nanodiagnosis and nanotherapy in lung cancer.Semin. Cancer Biol.20216934936410.1016/j.semcancer.2020.02.009 32088362
    [Google Scholar]
  79. AndersonS. AtkinsP. BäckmanP. CipollaD. ClarkA. DaviskasE. DisseB. Entcheva-DimitrovP. FullerR. GondaI. LundbäckH. OlssonB. WeersJ. Inhaled medicines: Past, present, and future.Pharmacol. Rev.20227414811810.1124/pharmrev.120.000108 34987088
    [Google Scholar]
  80. BaiX. ZhaoG. ChenQ. LiZ. GaoM. HoW. XuX. ZhangX.Q. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge.Sci. Adv.2022825eabn716210.1126/sciadv.abn7162 35731866
    [Google Scholar]
  81. HopeA. WadeS.J. AghmeshehM. VineK.L. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment.J. Control. Release202234139941310.1016/j.jconrel.2021.11.043 34863842
    [Google Scholar]
  82. ParanjpeM. Müller-GoymannC. Nanoparticle-mediated pulmonary drug delivery: A review.Int. J. Mol. Sci.20141545852587310.3390/ijms15045852 24717409
    [Google Scholar]
  83. TrapaniA. Di GioiaS. DitarantoN. CioffiN. GoycooleaF.M. CarboneA. Garcia-FuentesM. ConeseM. AlonsoM.J. Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles.Int. J. Pharm.20134471-211512310.1016/j.ijpharm.2013.02.035 23454518
    [Google Scholar]
  84. YangL. LuoJ. ShiS. ZhangQ. SunX. ZhangZ. GongT. Development of a pulmonary peptide delivery system using porous nanoparticle-aggregate particles for systemic application.Int. J. Pharm.20134511-210411110.1016/j.ijpharm.2013.04.077 23651645
    [Google Scholar]
  85. Karsch-BlumanA. AvrahamS. AssayagM. SchwobO. BennyO. Encapsulated carbenoxolone reduces lung metastases.Cancers2019119138310.3390/cancers11091383 31533288
    [Google Scholar]
  86. MarchettiG.M. BurwellT.J. PetersonN.C. CannJ.A. HannaR.N. LiQ. OngstadE.L. BoydJ.T. KennedyM.A. ZhaoW. RickertK.W. GrimsbyJ.S. Dall’AcquaW.F. WuH. TsuiP. BorrokM.J. GuptaR. Targeted drug delivery via caveolae-associated protein PV1 improves lung fibrosis.Commun. Biol.2019219210.1038/s42003‑019‑0337‑2 30854484
    [Google Scholar]
  87. IslamN. RichardD. Inhaled micro/nanoparticulate anticancer drug formulations: An emerging targeted drug delivery strategy for lung cancers.Curr. Cancer Drug Targets201919316217810.2174/1568009618666180525083451 29793407
    [Google Scholar]
  88. NieH. XieX. ZhangD. ZhouY. LiB. LiF. LiF. ChengY. MeiH. MengH. JiaL. Use of lung-specific exosomes for miRNA-126 delivery in non-small cell lung cancer.Nanoscale202012287788710.1039/C9NR09011H 31833519
    [Google Scholar]
  89. JinQ. ZhuW. ZhuJ. ZhuJ. ShenJ. LiuZ. YangY. ChenQ. Nanoparticle‐mediated delivery of inhaled immunotherapeutics for treating lung metastasis.Adv. Mater.2021337200755710.1002/adma.202007557 33448035
    [Google Scholar]
  90. ZhangK. DongC. ChenM. YangT. WangX. GaoY. WangL. WenY. ChenG. WangX. YuX. ZhangY. WangP. ShangM. HanK. ZhouY. Extracellular vesicle-mediated delivery of miR-101 inhibits lung metastasis in osteosarcoma.Theranostics202010141142510.7150/thno.33482 31903129
    [Google Scholar]
  91. MuluhT.A. LuX. ZhangY. LiY. FuQ. HanZ. WangD. Umar ShingeS.A. Combined immunotherapy and targeted therapies for cancer treatment: Recent advances and future perspectives.Curr. Cancer Drug Targets202323425126410.2174/1568009623666221020104603 36278447
    [Google Scholar]
  92. AgnihotriV. AgrawalY. GoyalS. SharmaC. OjhaS. An update on advancements and challenges in inhalational drug delivery for pulmonary arterial hypertension.Molecules20222711349010.3390/molecules27113490 35684428
    [Google Scholar]
  93. AliM.E. McConvilleJ.T. LamprechtA. Pulmonary delivery of anti-inflammatory agents.Expert Opin. Drug Deliv.201512692994510.1517/17425247.2015.993968 25534260
    [Google Scholar]
  94. AbdelazizH.M. GaberM. Abd-ElwakilM.M. MabroukM.T. ElgoharyM.M. KamelN.M. KabaryD.M. FreagM.S. SamahaM.W. MortadaS.M. ElkhodairyK.A. FangJ.Y. ElzoghbyA.O. Inhalable particulate drug delivery systems for lung cancer therapy: Nanoparticles, microparticles, nanocomposites and nanoaggregates.J. Control. Release201826937439210.1016/j.jconrel.2017.11.036 29180168
    [Google Scholar]
  95. Beck-BroichsitterM. GaussJ. PackhaeuserC.B. LahnsteinK. SchmehlT. SeegerW. KisselT. GesslerT. Pulmonary drug delivery with aerosolizable nanoparticles in an ex vivo lung model.Int. J. Pharm.20093671-216917810.1016/j.ijpharm.2008.09.017 18848609
    [Google Scholar]
  96. ChenR. XuL. FanQ. LiM. WangJ. WuL. LiW. DuanJ. ChenZ. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.Drug Deliv.20172411191120310.1080/10717544.2017.1365395 28844172
    [Google Scholar]
  97. FormigaF.R. LeblancR. de Souza RebouçasJ. FariasL.P. de OliveiraR.N. PenaL. Ivermectin: An award-winning drug with expected antiviral activity against COVID-19.J. Control. Release202132975876110.1016/j.jconrel.2020.10.009 33038449
    [Google Scholar]
  98. García-FernándezA. SancenónF. Martínez-MáñezR. Mesoporous silica nanoparticles for pulmonary drug delivery.Adv. Drug Deliv. Rev.202117711395310.1016/j.addr.2021.113953 34474094
    [Google Scholar]
  99. GencerA. DuralogluC. OzbayS. CiftciT.T. Yabanoglu-CiftciS. AricaB. Recent advances in treatment of lung cancer: Nanoparticle-based drug and siRNA delivery systems.Curr. Drug Deliv.202118210312010.2174/1567201817999200730211718 32748745
    [Google Scholar]
  100. GomezA.I. AcostaM.F. MuralidharanP. YuanJ.X.J. BlackS.M. HayesD.Jr MansourH.M. Advanced spray dried proliposomes of amphotericin B lung surfactant-mimic phospholipid microparticles/nanoparticles as dry powder inhalers for targeted pulmonary drug delivery.Pulm. Pharmacol. Ther.20206410197510.1016/j.pupt.2020.101975 33137515
    [Google Scholar]
  101. Hamarat ŞanlıerŞ. AkG. YılmazH. ÜnalA. BozkayaÜ.F. TanıyanG. YıldırımY. Yıldız TürkyılmazG. Development of ultrasound-triggered and magnetic-targeted nanobubble system for dual-drug delivery.J. Pharm. Sci.201910831272128310.1016/j.xphs.2018.10.030 30773203
    [Google Scholar]
  102. LazoR.E.L. MengardaM. AlmeidaS.L. CaldonazoA. EspinozaJ.T. MurakamiF.S. Advanced formulations and nanotechnology-based approaches for pulmonary delivery of sildenafil: A scoping review.J. Control. Release202235030832310.1016/j.jconrel.2022.08.021 35995298
    [Google Scholar]
  103. BahmanpourA.H. Nanotechnology for pulmonary and nasal drug deliveryNanoengineered Biomaterials for Advanced Drug Delivery202056157910.1016/B978‑0‑08‑102985‑5.00023‑1
    [Google Scholar]
  104. YueP. ZhouW. HuangG. LeiF. ChenY. MaZ. ChenL. YangM. Nanocrystals based pulmonary inhalation delivery system: Advance and challenge.Drug Deliv.202229163765110.1080/10717544.2022.2039809 35188021
    [Google Scholar]
  105. ShenA.M. MinkoT. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery.J. Control. Release202032622224410.1016/j.jconrel.2020.07.011 32681948
    [Google Scholar]
  106. LiH.Y. ZhangF. Preparation of spray-dried nanoparticles for efficient drug delivery to the lungs.Methods Mol. Biol.2020211813914510.1007/978‑1‑0716‑0319‑2_10 32152976
    [Google Scholar]
  107. NganC.L. AsmawiA.A. Lipid-based pulmonary delivery system: A review and future considerations of formulation strategies and limitations.Drug Deliv. Transl. Res.2018851527154410.1007/s13346‑018‑0550‑4 29881970
    [Google Scholar]
  108. IrvineJ. AfroseA. IslamN. Formulation and delivery strategies of ibuprofen: challenges and opportunities.Drug Dev. Ind. Pharm.201844217318310.1080/03639045.2017.1391838 29022772
    [Google Scholar]
  109. SubramaniyanV. FuloriaS. GuptaG. KumarD.H. SekarM. SathasivamK.V. SudhakarK. AlharbiK.S. Al-MalkiW.H. AfzalO. KazmiI. Al-AbbasiF.A. AltamimiA.S.A. FuloriaN.K. A review on epidermal growth factor receptor’s role in breast and non-small cell lung cancer.Chem. Biol. Interact.202235110973510.1016/j.cbi.2021.109735 34742684
    [Google Scholar]
  110. SudhakarK. FuloriaS. SubramaniyanV. SathasivamK.V. AzadA.K. SwainS.S. SekarM. KarupiahS. PorwalO. SahooA. MeenakshiD.U. SharmaV.K. JainS. CharyuluR.N. FuloriaN.K. Ultraflexible liposome nanocargo as a dermal and transdermal drug delivery system.Nanomaterials20211110255710.3390/nano11102557 34685005
    [Google Scholar]
  111. TammamS.N. El SafyS. RamadanS. ArjuneS. KrakorE. MathurS. Repurpose but also (nano)-reformulate! The potential role of nanomedicine in the battle against SARS-CoV2.J. Control. Release202133725828410.1016/j.jconrel.2021.07.028 34293319
    [Google Scholar]
  112. WolframJ. ZhuM. YangY. ShenJ. GentileE. PaolinoD. FrestaM. NieG. ChenC. ShenH. FerrariM. ZhaoY. Safety of nanoparticles in medicine.Curr. Drug Targets201516141671168110.2174/1389450115666140804124808 26601723
    [Google Scholar]
  113. ZimmermannC.M. BaldassiD. ChanK. AdamsN.B.P. NeumannA. Porras-GonzalezD.L. WeiX. KneidingerN. StoleriuM.G. BurgstallerG. WitzigmannD. LucianiP. MerkelO.M. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery.J. Control. Release202235113715010.1016/j.jconrel.2022.09.021 36126785
    [Google Scholar]
  114. PilcerG. AmighiK. Formulation strategy and use of excipients in pulmonary drug delivery.Int. J. Pharm.20103921-211910.1016/j.ijpharm.2010.03.017 20223286
    [Google Scholar]
  115. SanzhakovM.A. IpatovaO.M. TorkhovskayaT.I. ProzorovskiĭV.N. TikhonovaE.G. DruzhilovskayaO.S. MedvedevaN.V. [Nanoparticles as drug delivery system for antituberculous drugs].Annals of the Russian academy of medical sciences2013688374410.15690/vramn.v68i8.722 24340644
    [Google Scholar]
  116. LombardoR. MusumeciT. CarboneC. PignatelloR. Nanotechnologies for intranasal drug delivery: An update of literature.Pharm. Dev. Technol.202126882484510.1080/10837450.2021.1950186 34218736
    [Google Scholar]
  117. MuntimaduguE. DhommatiR. JainA. ChallaV.G.S. ShaheenM. KhanW. Intranasal delivery of nanoparticle encapsulated tarenflurbil: A potential brain targeting strategy for Alzheimer’s disease.Eur. J. Pharm. Sci.20169222423410.1016/j.ejps.2016.05.012 27185298
    [Google Scholar]
  118. BiC. WangA. ChuY. LiuS. MuH. LiuW. WuZ. SunK. LiY. Intranasal delivery of rotigotine to the brain with lactoferrin-modified PEG-PLGA nanoparticles for Parkinson’s disease treatment.Int. J. Nanomedicine2016116547655910.2147/IJN.S120939 27994458
    [Google Scholar]
  119. YunT. LiuZ. WangJ. WangR. ZhuL. ZhuZ. WangX. Microenvironment immune response induced by tumor ferroptosis—the application of nanomedicine.Front. Oncol.202212101965410.3389/fonc.2022.1019654 36185311
    [Google Scholar]
  120. ZhengY. LiZ. ChenH. GaoY. Nanoparticle-based drug delivery systems for controllable photodynamic cancer therapy.Eur. J. Pharm. Sci.202014410521310.1016/j.ejps.2020.105213 31926941
    [Google Scholar]
  121. ZhuangJ. HolayM. ParkJ.H. FangR.H. ZhangJ. ZhangL. Nanoparticle delivery of immunostimulatory agents for cancer immunotherapy.Theranostics20199257826784810.7150/thno.37216 31695803
    [Google Scholar]
  122. SalehT. ShojaosadatiS.A. Multifunctional nanoparticles for cancer immunotherapy.Hum. Vaccin. Immunother.201612718631875 26901287
    [Google Scholar]
  123. LiH. FuQ. MuluhT.A. ShingeS.A.U. FuS. WuJ. The application of nanotechnology in immunotherapy based combinations for cancer treatment.Recent Patents Anticancer Drug Discov.2023181536510.2174/1574892817666220308090954 35260063
    [Google Scholar]
  124. Abd-AllahH. Abdel-AzizR.T.A. NasrM. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment.Int. J. Biol. Macromol.202015626227010.1016/j.ijbiomac.2020.04.040 32289418
    [Google Scholar]
  125. FanY. MarioliM. ZhangK. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery.J. Pharm. Biomed. Anal.202119211364210.1016/j.jpba.2020.113642 33011580
    [Google Scholar]
  126. ChenF. ShiY. ZhangJ. LiuQ. Nanoparticle-based drug delivery systems for targeted epigenetics cancer therapy.Curr. Drug Targets202021111084109810.2174/1389450121666200514222900 32410563
    [Google Scholar]
  127. AmreddyN. BabuA. MuralidharanR. PanneerselvamJ. SrivastavaA. AhmedR. MehtaM. MunshiA. RameshR. Recent advances in nanoparticle-based cancer drug and gene delivery.Adv. Cancer Res.201813711517010.1016/bs.acr.2017.11.003 29405974
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018268047231207105652
Loading
/content/journals/cdd/10.2174/0115672018268047231207105652
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test