Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Respiratory disorders, such as tuberculosis, cystic fibrosis, chronic obstructive pulmonary disease, asthma, lung cancer, and pulmonary inflammation, are among the most prevalent ailments in today’s world. Dextran, an exopolysaccharide formed by (slime-producing bacteria), and its derivatives are investigated for several therapeutic utilities. Dextran-based drug delivery system can become an innovative strategy in the treatment of several respiratory ailments as it offers numerous advantages, such as mucolytic action, airway hydration, anti-inflammatory properties, and radioprotective effect as compared to other polysaccharides. Being biocompatible, flexible hydrophilic nature, biodegradable, tasteless, odourless, non-mutagenic, water-soluble and non-toxic edible polymer, dextran-based drug delivery systems have been explored for a wide range of therapeutic applications, especially in lungs and respiratory diseases. The present article comprehensively discusses various derivatives of dextran with their attributes to be considered for drug delivery and extensive therapeutic benefits, with a special emphasis on the armamentarium of dextran-based formulations for the treatment of respiratory disorders and associated pathological conditions. The information provided will act as a platform for formulation scientists as important considerations in designing therapeutic approaches for lung and respiratory diseases.

With an emphasis on lung illnesses, this article will offer an in-depth understanding of dextran-based delivery systems in respiratory illnesses.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018267737231116100812
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. SorianoJ.B. KendrickP.J. PaulsonK.R. GuptaV. AbramsE.M. AdedoyinR.A. AdhikariT.B. AdvaniS.M. AgrawalA. AhmadianE. AlahdabF. AljunidS.M. AltirkawiK.A. Alvis-GuzmanN. AnberN.H. AndreiC.L. AnjomshoaM. AnsariF. AntóJ.M. ArablooJ. AthariS.M. AthariS.S. AwokeN. BadawiA. BanoubJ.A.M. BennettD.A. BensenorI.M. BerfieldK.S.S. BernsteinR.S. BhattacharyyaK. BijaniA. BrauerM. BukhmanG. ButtZ.A. CámeraL.A. CarJ. CarreroJ.J. CarvalhoF. Castañeda-OrjuelaC.A. ChoiJ-Y.J. ChristopherD.J. CohenA.J. DandonaL. DandonaR. DangA.K. DaryaniA. de CourtenB. DemekeF.M. DemozG.T. De NeveJ-W. DesaiR. DharmaratneS.D. DiazD. DouiriA. DriscollT.R. DukenE.E. EftekhariA. ElkoutH. EndriesA.Y. FadhilI. FaroA. FarzadfarF. FernandesE. FilipI. FischerF. ForoutanM. Garcia-GordilloM.A. GebreA.K. GebremedhinK.B. GebremeskelG.G. GezaeK.E. GhoshalA.G. GillP.S. GillumR.F. GoudarziH. GuoY. GuptaR. HailuG.B. HasanzadehA. HassenH.Y. HayS.I. HoangC.L. HoleM.K. HoritaN. HosgoodH.D. HostiucM. HousehM. IlesanmiO.S. IlicM.D. IrvaniS.S.N. IslamS.M.S. JakovljevicM. JamalA.A. JhaR.P. JonasJ.B. KabirZ. KasaeianA. KasahunG.G. KassaG.M. KefaleA.T. KengneA.P. KhaderY.S. KhafaieM.A. KhanE.A. KhanJ. KhubchandaniJ. KimY-E. KimY.J. KisaS. KisaA. KnibbsL.D. KomakiH. KoulP.A. KoyanagiA. KumarG.A. LanQ. LasradoS. LauriolaP. La VecchiaC. LeT.T. LeighJ. LeviM. LiS. LopezA.D. LotufoP.A. MadottoF. MahotraN.B. MajdanM. MajeedA. MalekzadehR. MamunA.A. ManafiN. ManafiF. MantovaniL.G. MeharieB.G. MelesH.G. MelesG.G. MenezesR.G. MestrovicT. MillerT.R. MiniG.K. MirrakhimovE.M. MoazenB. MohammadK.A. MohammedS. MohebiF. MokdadA.H. MolokhiaM. MonastaL. MoradiM. MoradiG. MorawskaL. MousaviS.M. MusaK.I. MustafaG. NaderiM. NaghaviM. NaikG. NairS. NangiaV. NansseuJ.R. NazariJ. NdwandweD.E. NegoiR.I. NguyenT.H. NguyenC.T. NguyenH.L.T. NixonM.R. Ofori-AsensoR. OgboF.A. OlagunjuA.T. OlagunjuT.O. OrenE. OrtizJ.R. OwolabiM.O. P A, M.; Pakhale, S.; Pana, A.; Panda-Jonas, S.; Park, E-K.; Pham, H.Q.; Postma, M.J.; Pourjafar, H.; Poustchi, H.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahman, M.H.U.; Rahman, M.A.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C., Jr; Reitsma, M.B.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rudd, K.E.; Sabde, Y.D.; Sabour, S.; Saddik, B.; Safari, S.; Saleem, K.; Samy, A.M.; Santric-Milicevic, M.M.; Sao Jose, B.P.; Sartorius, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sepanlou, S.G.; Shaikh, M.A.; Sheikh, A.; Shigematsu, M.; Shirkoohi, R.; Si, S.; Siabani, S.; Singh, V.; Singh, J.A.; Soljak, M.; Somayaji, R.; Soofi, M.; Soyiri, I.N.; Tefera, Y.M.; Temsah, M-H.; Tesfay, B.E.; Thakur, J.S.; Toma, A.T.; Tortajada-Girbés, M.; Tran, K.B.; Tran, B.X.; Tudor Car, L.; Ullah, I.; Vacante, M.; Valdez, P.R.; van Boven, J.F.M.; Vasankari, T.J.; Veisani, Y.; Violante, F.S.; Wagner, G.R.; Westerman, R.; Wolfe, C.D.A.; Wondafrash, D.Z.; Wondmieneh, A.B.; Yonemoto, N.; Yoon, S-J.; Zaidi, Z.; Zamani, M.; Zar, H.J.; Zhang, Y.; Vos, T. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017.Lancet Respir. Med.20208658559610.1016/S2213‑2600(20)30105‑3 32526187
    [Google Scholar]
  2. GouldG.S. HurstJ.R. TroforA. AlisonJ.A. FoxG. KulkarniM.M. WheelockC.E. ClarkeM. KumarR. Recognising the importance of chronic lung disease: A consensus statement from the Global Alliance for Chronic Diseases (Lung Diseases group).Respir. Res.20232411510.1186/s12931‑022‑02297‑y 36639661
    [Google Scholar]
  3. HoT. CusackR.P. ChaudharyN. SatiaI. KurmiO.P. Under- and over-diagnosis of COPD: A global perspective.Breathe2019151243510.1183/20734735.0346‑2018 30838057
    [Google Scholar]
  4. ZanjbeelM AsgharN AslamM KhalidS IslamF RazaA Quality of life of participants with chronic respiratory disease.
    [Google Scholar]
  5. VarshosazJ. Dextran conjugates in drug delivery.Expert Opin. Drug Deliv.20129550952310.1517/17425247.2012.673580 22432550
    [Google Scholar]
  6. ShenY. WangX. XieA. HuangL. ZhuJ. ChenL. Synthesis of dextran/Se nanocomposites for nanomedicine application.Mater. Chem. Phys.20081092-353454010.1016/j.matchemphys.2008.01.016
    [Google Scholar]
  7. SharmaS. NamanS. DwivediJ. BaldiA. Dextran for application in dds for lung diseases.Natural Polymeric Materials based Drug Delivery Systems in Lung Diseases.Springer202329732710.1007/978‑981‑19‑7656‑8_17
    [Google Scholar]
  8. MohanT. KleinschekK.S. Kargl, R Polysaccharide peptide conjugates: Chemistry, properties and applications.Carbohydr. Polym.202228011887510.1016/j.carbpol.2021.118875
    [Google Scholar]
  9. IoanC.E. AberleT. BurchardW. Structure properties of dextran. 2. Dilute solution.Macromolecules200033155730573910.1021/ma000282n
    [Google Scholar]
  10. ShigelK.I. Determination of structural peculiarities of dextran, pulluan and gamma irradiated pullulan by Fourier-transform IR spectroscopy.Carbohydr. Res.200233726492701
    [Google Scholar]
  11. MehvarR. Dextrans for targeted and sustained delivery of therapeutic and imaging agents.J. Control. Release200069112510.1016/S0168‑3659(00)00302‑3 11018543
    [Google Scholar]
  12. BachelderE.M. BeaudetteT.T. BroadersK.E. DasheJ. FréchetJ.M.J. Acetal-derivatized dextran: An acid-responsive biodegradable material for therapeutic applications.J. Am. Chem. Soc.200813032104941049510.1021/ja803947s 18630909
    [Google Scholar]
  13. GannimaniR. WalvekarP. NaiduV.R. AminabhaviT.M. GovenderT. Acetal containing polymers as pH-responsive nano-drug de-livery systems.J. Control. Release202032873676110.1016/j.jconrel.2020.09.044 32980419
    [Google Scholar]
  14. MeenachS.A. KimY.J. KauffmanK.J. KanthamneniN. BachelderE.M. AinslieK.M. Synthesis, optimization, and characterization of camptothecin-loaded acetalated dextran porous microparticles for pulmonary delivery.Mol. Pharm.20129229029810.1021/mp2003785 22149217
    [Google Scholar]
  15. ShahN.K. GuptaS.K. WangZ. MeenachS.A. Enhancement of macrophage uptake via phosphatidylserine-coated acetalated dextran nanoparticles.J. Drug Deliv. Sci. Technol.201950576510.1016/j.jddst.2019.01.013
    [Google Scholar]
  16. WangZ. GuptaS.K. MeenachS.A. Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery.Int. J. Pharm.2017525126427410.1016/j.ijpharm.2017.04.052 28450166
    [Google Scholar]
  17. DellacherieE. BonneauxF. A new approach to aldehydic dextrans.Polym. Bull.199331214514910.1007/BF00329959
    [Google Scholar]
  18. DrayeJ.P. DelaeyB. Van de VoordeA. Van Den BulckeA. De ReuB. SchachtE. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films.Biomaterials199819181677168710.1016/S0142‑9612(98)00049‑0 9840003
    [Google Scholar]
  19. FuentesM. MateoC. Fernandez-LafuenteR. GuisánJ.M. Aldehyde-dextran-protein conjugates to immobilize amino-haptens: Avoiding cross-reactions in the immunodetection.Enzyme Microb. Technol.200536451051310.1016/j.enzmictec.2004.11.004
    [Google Scholar]
  20. BetancorL. FuentesM. Dellamora-OrtizG. López-GallegoF. HidalgoA. Alonso-MoralesN. MateoC. GuisánJ.M. Fernández-LafuenteR. Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles.J. Mol. Catal., B Enzym.20053239710110.1016/j.molcatb.2004.11.003
    [Google Scholar]
  21. WengL. RomanovA. RooneyJ. ChenW. Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran.Biomaterials200829293905391310.1016/j.biomaterials.2008.06.025 18639926
    [Google Scholar]
  22. WengL. ChenX. ChenW. Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan.Biomacromolecules2007841109111510.1021/bm0610065 17358076
    [Google Scholar]
  23. YuL. CaiL. HuH. ZhangY. Experiments and synthesis of bone-targeting epirubicin with the water-soluble macromolecular drug delivery systems of oxidized-dextran.J. Drug Target.201422434335110.3109/1061186X.2013.877467 24405056
    [Google Scholar]
  24. HuangQ. ZhangL. SunX. ZengK. LiJ. LiuY.N. Coating of carboxymethyl dextran on liposomal curcumin to improve the anticancer activity.RSC Advances20144103592115921710.1039/C4RA11181H
    [Google Scholar]
  25. HuynhR. ChaubetF. JozefonviczJ. Carboxymethylation of dextran in aqueous alcohol as the first step of the preparation of derivatized dextrans.Angew. Makromol. Chem.19982541616510.1002/(SICI)1522‑9505(19980201)254:1<61::AID‑APMC61>3.0.CO;2‑0
    [Google Scholar]
  26. McLeanK.M. JohnsonG. ChatelierR.C. BeumerG.J. SteeleJ.G. GriesserH.J. Method of immobilization of carboxymethyl-dextran affects resistance to tissue and cell colonization.Colloids Surf. B Biointerfaces2000183-422123410.1016/S0927‑7765(99)00149‑6 10915945
    [Google Scholar]
  27. BurnsD.L. MascioliE.A. BistrianB.R. Parenteral iron dextran therapy: A review.Nutrition1995112163168 7647482
    [Google Scholar]
  28. MartinL.E. BatesC.M. BeresfordC.R. DonaldsonJ.D. McDONALD, F.F.; Dunlop, D.; Sheard, P.; London, E.; Twigg, G.D. The pharmacology of an iron-dextran intramuscular haematinic.Br. J. Pharmacol. Chemother.195510337538210.1111/j.1476‑5381.1955.tb00887.x 13269718
    [Google Scholar]
  29. DhaneshwarS. KandpalM. GairolaN. KadamS.S. Dextran: A promising macromolecular drug carrier.Indian J. Pharm. Sci.200668670571410.4103/0250‑474X.31000
    [Google Scholar]
  30. SolimanS.M.A. ColombeauL. NouvelC. BabinJ. SixJ.L. Amphiphilic photosensitive dextran-g-poly(o-nitrobenzyl acrylate) glycopolymers.Carbohydr. Polym.201613659860810.1016/j.carbpol.2015.09.061 26572392
    [Google Scholar]
  31. SonS. RaoN.V. KoH. ShinS. JeonJ. HanH.S. NguyenV.Q. ThambiT. SuhY.D. ParkJ.H. Carboxymethyl dextran-based hypoxia-responsive nanoparticles for doxorubicin delivery.Int. J. Biol. Macromol.201811039940510.1016/j.ijbiomac.2017.11.048 29133095
    [Google Scholar]
  32. LeeJ.S. JungY.J. DohM.J. KimY.M. Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid.Drug Dev. Ind. Pharm.200127433133610.1081/DDC‑100103732 11411900
    [Google Scholar]
  33. MiaoK.H. GuthmillerK.B. Dextran.20227058
    [Google Scholar]
  34. WasiakI. KulikowskaA. JanczewskaM. MichalakM. CymermanI.A. NagalskiA. KallingerP. SzymanskiW.W. CiachT. Dextran nanoparticle synthesis and properties.PLoS One2016111e014623710.1371/journal.pone.0146237 26752182
    [Google Scholar]
  35. BhavaniA.L. NishaJ. Dextran-the polysaccharide with versatile uses.Int. J. Pharm. Biol. Sci.201014569573
    [Google Scholar]
  36. GelinL.E. Studies in anemia of injury.Acta Chir. Scand. Suppl.19562101130 13339042
    [Google Scholar]
  37. ThorsénG. Aggregation, Sedimentation and Intravascular Sludging of Erythrocytes: Interrelation Between Suspension Stability and Colloids in Suspension Fluid: An Experimental Study.Norsdedt1950
    [Google Scholar]
  38. SchwartzS.I. ShayH.P. BeebeH. RobC. Effect of low molecular weight dextran on venous flow.Surgery1964551106112 14114255
    [Google Scholar]
  39. WinfreyE.W.III FosterJ.H. FOSTER JH. Low molecular weight dextran in small artery surgery: Antithrombogenic effect.Arch. Surg.1964881788210.1001/archsurg.1964.01310190080009 14072539
    [Google Scholar]
  40. FosterJ.H. KillenD.A. JollyP.C. KirtleyJ.H. Low molecular weight dextran in vascular surgery: Prevention of early thrombosis following arterial reconstruction in 85 cases.Ann. Surg.1966163576477010.1097/00000658‑196605000‑00013 5930459
    [Google Scholar]
  41. BergentzS.E. EikenO. GelinL.E. Rheomacrodex in vascular surgery.J. Cardiovasc. Surg.19634388392 13970660
    [Google Scholar]
  42. DavisJ.H. BensonJ.W. WolfeM. NelsonB. AbbottW.E. The effect of capillary permeability on the maintenance of plasma volume following the administration of dextran and albumin.Surgical forum1955
    [Google Scholar]
  43. RagallerM.J.R. TheilenH. KochT. Volume replacement in critically ill patients with acute renal failure.J. Am. Soc. Nephrol.200112Suppl. 1S33S3910.1681/ASN.V12suppl_1s33 11251029
    [Google Scholar]
  44. MillicanR.C. StohlmanE.F. MowryR.W. A comparison of plasma substitutes (dextran, polyvinylpyrrolidone and oxypolygelatin) with saline therapy in treatment of experimental tourniquet and burn shock in mice.Am. J. Physiol.1952170117317810.1152/ajplegacy.1952.170.1.173 12985881
    [Google Scholar]
  45. de RaucourtE. MaurayS. ChaubetF. Maiga-RevelO. JozefowiczM. FischerA.M. Anticoagulant activity of dextran derivatives.J. Biomed. Mater. Res.1998411495710.1002/(SICI)1097‑4636(199807)41:1<49::AID‑JBM6>3.0.CO;2‑Q 9641623
    [Google Scholar]
  46. MauzacM. JozefonviczJ. Anticoagulant activity of dextran derivatives. Part I: Synthesis and characterization.Biomaterials19845530130410.1016/0142‑9612(84)90078‑4 6207865
    [Google Scholar]
  47. DaiF. DuM. LiuY. LiuG. LiuQ. ZhangX. Folic acid-conjugated glucose and dextran coated iron oxide nanoparticles as MRI contrast agents for diagnosis and treatment response of rheumatoid arthritis.J. Mater. Chem. B Mater. Biol. Med.20142162240224710.1039/C3TB21732A 32261712
    [Google Scholar]
  48. ChenC.C. SheeranP.S. WuS.Y. OlumoladeO.O. DaytonP.A. KonofagouE.E. Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets.J. Control. Release2013172379580410.1016/j.jconrel.2013.09.025 24096019
    [Google Scholar]
  49. XiaoF. NicholsonC. HrabeJ. HrabĕtováS. Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extra cellular space by integrative optical imaging.Biophys. J.20089531382139210.1529/biophysj.107.124743 18456831
    [Google Scholar]
  50. KhanM.S. GowdaB.H.J. NasirN. WahabS. PichikaM.R. SahebkarA. KesharwaniP. Advancements in dextran-based nanocarriers for treatment and imaging of breast cancer.Int. J. Pharm.202364312327610.1016/j.ijpharm.2023.123276 37516217
    [Google Scholar]
  51. LiL. WangC. HuangQ. XiaoJ. ZhangQ. ChengY. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy.J. Mater. Chem. B Mater. Biol. Med.20186162474248010.1039/C8TB00091C 32254464
    [Google Scholar]
  52. ChungH.J. KimH.J. HongS.T. Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment.Appl. Biol. Chem.20196212410.1186/s13765‑019‑0432‑6
    [Google Scholar]
  53. PrasherP. SharmaM.R. WichP. JhaN.K. SinghS.K. ChellappanD.K. DuaK. Can dextran-based nanoparticles mitigate inflammatory lung diseases?Future Med. Chem.20211320272031
    [Google Scholar]
  54. Nácher-VázquezM. BallesterosN. CanalesÁ. Rodríguez Saint-JeanS. Pérez-PrietoS.I. PrietoA. AznarR. LópezP. Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses.Carbohydr. Polym.201512429230110.1016/j.carbpol.2015.02.020 25839823
    [Google Scholar]
  55. PramanikS. MohantoS. ManneR. RajendranR.R. DeepakA. EdapullyS.J. PatilT. KatariO. Nanoparticle-based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases.Mol. Pharm.202118103671371810.1021/acs.molpharmaceut.1c00491 34491754
    [Google Scholar]
  56. PooleP. SathananthanK. FortescueR. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease.Cochrane Database Syst. Rev.20195CD00128710.1002/14651858.CD001287.pub6
    [Google Scholar]
  57. BaldeA. KimS.K. BenjakulS. NazeerR.A. Pulmonary drug delivery applications of natural polysaccharide polymer derived nano/micro-carrier systems: A review.Int. J. Biol. Macromol.20222201464147910.1016/j.ijbiomac.2022.09.116 36116588
    [Google Scholar]
  58. FengW. GarrettH. SpeertD.P. KingM. Improved clearability of cystic fibrosis sputum with dextran treatment in vitro.Am. J. Respir. Crit. Care Med.1998157371071410.1164/ajrccm.157.3.9703059 9517580
    [Google Scholar]
  59. PrasherP. SharmaM. SinghS.K. HaghiM. MacLoughlinR. ChellappanD.K. GuptaG. PaudelK.R. HansbroP.M. George Oliver, B.G.; Wich, P.R.; Dua, K. Advances and applications of dextran-based nanomaterials targeting inflammatory respiratory diseases.J. Drug Deliv. Sci. Technol.20227410359810.1016/j.jddst.2022.103598
    [Google Scholar]
  60. SteckelH. EskandarF. WitthohnK. The effect of formulation variables on the stability of nebulized aviscumine.Int. J. Pharm.20032571-218119410.1016/S0378‑5173(03)00126‑1 12711173
    [Google Scholar]
  61. HulbertW.C. ForsterB.B. MehtaJ.G. ManS.F.P. MoldayR.S. WalkerB.A. WalkerD.C. HoggJ.C. Study of airway epithelial permeability with dextran.J. Electron Microsc. Tech.198911213714210.1002/jemt.1060110208 2468752
    [Google Scholar]
  62. WatersR.C. HochhausG. Characterization of a dextran-budesonide prodrug for inhalation therapy.Eur. J. Pharm. Sci.2019129586710.1016/j.ejps.2018.11.038 30521945
    [Google Scholar]
  63. LeeY. KimI.H. KimJ. YoonJ.H. ShinY.H. JungY. KimY.M. Evaluation of dextran-flufenamic acid ester as a polymeric colon-specific prodrug of flufenamic acid, an anti-inflammatory drug, for chronotherapy.J. Drug Target.201119533634310.3109/1061186X.2010.499462 20615092
    [Google Scholar]
  64. JoshyK.S. GeorgeA. SnigdhaS. JosephB. KalarikkalN. PothenL.A. ThomasS. Novel core-shell dextran hybrid nanosystem for anti-viral drug delivery.Mater. Sci. Eng. C20189386487210.1016/j.msec.2018.08.015 30274122
    [Google Scholar]
  65. KiruthikaV. MayaS. SureshM.K. Anil KumarV. JayakumarR. BiswasR. Comparative efficacy of chloramphenicol loaded chondroitin sulfate and dextran sulfate nanoparticles to treat intracellular Salmonella infections.Colloids Surf. B Biointerfaces2015127334010.1016/j.colsurfb.2015.01.012 25645750
    [Google Scholar]
  66. KangS. SonY. ShinI.S. MoonC. LeeM.Y. LimK.S. ParkS.J. LeeC.G. JoW.S. LeeH.J. KimJ.S. Effect of abdominal irradiation in mice model of inflammatory bowel disease.Radiat. Prot. Dosimetry2023199656457110.1093/rpd/ncad051 36917812
    [Google Scholar]
  67. YaziciH. AlpaslanE. WebsterT.J. The role of dextran coatings on the cytotoxicity properties of ceria nanoparticles toward bone cancer cells.J. Miner. Met. Mater. Soc.201567480481010.1007/s11837‑015‑1336‑5
    [Google Scholar]
  68. ShcherbakovA.B. ZholobakN.M. SpivakN.Y. IvanovV.K. Advances and prospects of using nanocrystalline ceria in cancer theranostics.Russ. J. Inorg. Chem.201459131556157510.1134/S003602361413004X
    [Google Scholar]
  69. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  70. GuanX. ZhangW. Applications of chitosan in pulmonary drug delivery.Role of Novel Drug Delivery Vehicles in Nanobiomedicine.IntechOpen202010.5772/intechopen.87932
    [Google Scholar]
  71. HuangG. HuangH. Application of dextran as nanoscale drug carriers.Nanomedicine201813243149315810.2217/nnm‑2018‑0331 30516091
    [Google Scholar]
  72. VeroneseF.M. MorpurgoM. Bioconjugation in pharmaceutical chemistry.Farmaco199954849751610.1016/S0014‑827X(99)00066‑X 10510847
    [Google Scholar]
  73. RastogiA. YadavK. MishraA. SinghM.S. ChaudharyS. ManoharR. ParmarA.S. Early diagnosis of lung cancer using magnetic nanoparticles-integrated systems.Nanotechnol. Rev.202211154457410.1515/ntrev‑2022‑0032
    [Google Scholar]
  74. SudoE. BoydW.A. KingM. Effects of dextran sulfate on tracheal mucociliary velocity in dogs.J. Aerosol Med.2000132879610.1089/089426800418613 11010598
    [Google Scholar]
  75. GraciaR. MarradiM. CossíoU. BenitoA. Pérez-San VicenteA. Gómez-VallejoV. GrandeH.J. LlopJ. LoinazI. Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media.J. Mater. Chem. B Mater. Biol. Med.2017561143114710.1039/C6TB02773C 32263583
    [Google Scholar]
  76. RosenbergS.R. KalhanR. Recent advances in the management of chronic obstructive pulmonary disease.F1000 Res.2017686310.12688/f1000research.9819.1 28663790
    [Google Scholar]
  77. MuralidharanP. HayesD.Jr BlackS.M. MansourH.M. Microparticulate/nanoparticulate powders of a novel Nrf2 activator and an aerosol performance enhancer for pulmonary delivery targeting the lung Nrf2/Keap-1 pathway.Mol. Syst. Des. Eng.201611486510.1039/C5ME00004A 27774309
    [Google Scholar]
  78. KellyR.F. MurarJ. HongZ. NelsonD.P. HongF. VargheseA. WeirE.K. Low potassium dextran lung preservation solution reduces reactive oxygen species production.Ann. Thorac. Surg.20037561705171010.1016/S0003‑4975(03)00173‑5 12822603
    [Google Scholar]
  79. ChiaramoniN.S. GasparriJ. SperoniL. TairaM.C. AlonsoS.V. Biodistribution of liposome/DNA systems after subcutaneous and intraperitoneal inoculation.J. Liposome Res.201020319120110.3109/08982100903244518 19845441
    [Google Scholar]
  80. Di MarcoM. ShamsuddinS. RazakK.A. AzizA.A. DevauxC. BorghiE. LevyL. SadunC. Overview of the main methods used to combine proteins with nanosystems: Absorption, bioconjugation, and encapsulation.Int. J. Nanomedicine201053749 20161986
    [Google Scholar]
  81. AlexescuT. TarmureS. NegreanV. CosnaroviciM. RutaV. PopoviciI. ParaI. PerneM. OrasanO. TodeaD. Nanoparticles in the treatment of chronic lung diseases.J. Mind Med. Sci.20196222423110.22543/7674.62.P224231
    [Google Scholar]
  82. TanY.Y. YapP.K. Xin LimG.L. MehtaM. ChanY. NgS.W. KapoorD.N. NegiP. AnandK. SinghS.K. JhaN.K. LimL.C. MadheswaranT. SatijaS. GuptaG. DuaK. ChellappanD.K. Perspectives and advancements in the design of nanomaterials for targeted cancer theranostics.Chem. Biol. Interact.202032910922110.1016/j.cbi.2020.109221 32768398
    [Google Scholar]
  83. AltikatogluM. BasaranY. AriozC. OganA. KuzuH. Glucose oxidase-dextran conjugates with enhanced stabilities against temperature and pH.Appl. Biochem. Biotechnol.201016082187219710.1007/s12010‑009‑8812‑8 20054664
    [Google Scholar]
  84. ZhongG. ZhangS. LiY. LiuX. GaoR. MiaoQ. ZhenY. A tandem scFv-based fusion protein and its enediyne-energized analogue show intensified therapeutic efficacy against lung carcinoma xenograft in athymic mice.Cancer Lett.2010295112413310.1016/j.canlet.2010.02.020 20303650
    [Google Scholar]
  85. SoodA. GuptaA. AgrawalG. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications.Carbohydr. Polym. Technol. Appl.20212March10006710.1016/j.carpta.2021.100067
    [Google Scholar]
  86. ByrneA.L. MaraisB.J. MitnickC.D. LeccaL. MarksG.B. Tuberculosis and chronic respiratory disease: A systematic review.Int. J. Infect. Dis.20153213814610.1016/j.ijid.2014.12.016 25809770
    [Google Scholar]
  87. KushwahaS. Targeted macrophages delivery of antitubercular agent through solid lipid nanoparticles. Lett. Appl.NanoBioSci.2022121310.33263/LIANBS121.003
    [Google Scholar]
  88. ByronP.R. PattonJ.S. Drug delivery via the respiratory tract.J. Aerosol Med.199471497510.1089/jam.1994.7.49 10147058
    [Google Scholar]
  89. ThengB.K.G. Polysaccharides.Developments in Clay Science20124351390
    [Google Scholar]
  90. SmolaM. VandammeT. SokolowskiA. Nanocarriers as pulmonary drug delivery systems to treat and to diagnose respiratory and non respiratory diseases.Int. J. Nanomedicine200831119 18488412
    [Google Scholar]
  91. KaewprapanK. InprakhonP. MarieE. DurandA. Enzymatically degradable nanoparticles of dextran esters as potential drug delivery systems.Carbohydr. Polym.201288387588110.1016/j.carbpol.2012.01.030
    [Google Scholar]
  92. TangY. LiY. XuR. LiS. HuH. XiaoC. WuH. ZhuL. MingJ. ChuZ. XuH. YangX. LiZ. Self-assembly of folic acid dextran conjugates for cancer chemotherapy.Nanoscale20181036172651727410.1039/C8NR04657C 30191943
    [Google Scholar]
  93. TarvirdipourS. Vasheghani-FarahaniE. SoleimaniM. BardaniaH. Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells.Int. J. Pharm.20165011-233134110.1016/j.ijpharm.2016.02.012 26875475
    [Google Scholar]
  94. YingF. Doxorubicin-loaded dextran-based nano-carriers for highly efficient inhibition of lymphoma cell growth and synchronous reduction of cardiac toxicity.Int. J. Nanomedicine20181356735683
    [Google Scholar]
  95. LvW. XuJ. WangX. LiX. XuQ. XinH. Bioengineered boronic ester modified dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment.ACS Nano20181265417542610.1021/acsnano.8b00477 29869497
    [Google Scholar]
  96. AlhaiqueF. CasadeiM.A. CencettiC. CovielloT. Di MeoC. MatricardiP. MontanariE. PacelliS. PaolicelliP. From macro to nano polysaccharide hydrogels: An opportunity for the delivery of drugs.J. Drug Deliv. Sci. Technol.201632889910.1016/j.jddst.2015.09.018
    [Google Scholar]
  97. MorsiN. IbrahimM. RefaiH. El SorogyH. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide.Eur. J. Pharm. Sci.201710430231410.1016/j.ejps.2017.04.013 28433750
    [Google Scholar]
  98. ZhouY. WangS. YingX. WangY. GengP. DengA. YuZ. Doxorubicin-loaded redox-responsive micelles based on dextran and indomethacin for resistant breast cancer.Int. J. Nanomedicine2017126153616810.2147/IJN.S141229 28883726
    [Google Scholar]
  99. FanY. YiJ. ZhangY. YokoyamaW. Fabrication of curcumin-loaded bovine serum albumin (BSA)-dextran nanoparticles and the cellular antioxidant activity.Food Chem.20182391210121810.1016/j.foodchem.2017.07.075 28873542
    [Google Scholar]
  100. JafariM. KaffashiB. Synthesis and characterization of a novel solvent-free dextran-HEMA-PNIPAM thermosensitive nanogel.J. Macromol. Sci. Part A Pure Appl. Chem.2016532687410.1080/10601325.2016.1120173
    [Google Scholar]
  101. NakajimaN. SugaiH. TsutsumiS. HyonS.H. Self-degradable bioadhesive.Polym Prepr Japan.20065511998
    [Google Scholar]
  102. LiuJ. QiC. TaoK. ZhangJ. ZhangJ. XuL. JiangX. ZhangY. HuangL. LiQ. XieH. GaoJ. ShuaiX. WangG. WangZ. WangL. Sericin/Dextran injectable hydrogel as an optically trackable drug delivery system for malignant melanoma treatment.ACS Appl. Mater. Interfaces20168106411642210.1021/acsami.6b00959 26900631
    [Google Scholar]
  103. ChenX. ChenL. YaoX. ZhangZ. HeC. ZhangJ. ChenX. Dual responsive supramolecular nanogels for intracellular drug delivery.Chem. Commun.201450293789379110.1039/c4cc00016a 24519486
    [Google Scholar]
  104. MaS. ZhouJ. WaliA.R.M. HeY. XuX. TangJ.Z. GuZ. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery.J. Mater. Sci. Mater. Med.201526821910.1007/s10856‑015‑5550‑z 26238777
    [Google Scholar]
  105. FuY. LiY. LiG. YangL. YuanQ. TaoL. WangX. Adaptive chitosan hollow microspheres as efficient drug carrier.Biomacromolecules20171872195220410.1021/acs.biomac.7b00592 28558194
    [Google Scholar]
  106. HouX. LiuY. Preparation and drug controlled release of porous octyl-dextran microspheres.J. Biomater. Sci. Polym. Ed.201526151051106610.1080/09205063.2015.1077917 26230155
    [Google Scholar]
  107. ZhangR. JiaX. PeiM. LiuP. Facile preparation of pH/reduction dual-responsive prodrug microspheres with high drug content for tumor intracellular triggered release of DOX.React. Funct. Polym.2017116116243010.1016/j.reactfunctpolym.2017.05.002
    [Google Scholar]
  108. PekarekK.J. JacobJ.S. MathiowitzE. Double-walled polymer microspheres for controlled drug release.Nature1994367646025826010.1038/367258a0 8121490
    [Google Scholar]
  109. BroadersK.E. GrandheS. FréchetJ.M.J. A biocompatible oxidation-triggered carrier polymer with potential in therapeutics.J. Am. Chem. Soc.2011133475675810.1021/ja110468v 21171594
    [Google Scholar]
  110. KauffmanK.J. KanthamneniN. MeenachS.A. PiersonB.C. BachelderE.M. AinslieK.M. Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression.Int. J. Pharm.20124221-235636310.1016/j.ijpharm.2011.10.034 22037446
    [Google Scholar]
  111. ChenN. GallovicM.D. TietP. TingJ.P.Y. AinslieK.M. BachelderE.M. Investigation of tunable acetalated dextran microparticle platform to optimize M2e-based influenza vaccine efficacy.J. Control. Release201828911412410.1016/j.jconrel.2018.09.020 30261204
    [Google Scholar]
  112. GrafM. ZieglerC.E. GregoritzaM. GoepferichA.M. Hydrogel microspheres evading alveolar macrophages for sustained pulmonary protein delivery.Int. J. Pharm.201956665266110.1016/j.ijpharm.2019.06.019 31181308
    [Google Scholar]
  113. KwonG.S. OkanoT. Polymeric micelles as new drug carriers.Adv. Drug Deliv. Rev.199621210711610.1016/S0169‑409X(96)00401‑2
    [Google Scholar]
  114. KataokaK. HaradaA. NagasakiY. Block copolymer micelles for drug delivery: Design, characterization and biological significance.Adv. Drug Deliv. Rev.201264Suppl.374810.1016/j.addr.2012.09.013 11251249
    [Google Scholar]
  115. KwonG.S. FurgesonD.Y. Biodegradable polymers for drug delivery systems.Biomedical Polymers.Woodhead Publishing Limited200710.1533/9781845693640.83
    [Google Scholar]
  116. ZhangX. BurtH.M. MangoldG. DexterD. HoffD.V. MayerL. HunterW.L. Anti-tumor efficacy and biodistribution of intravenous polymeric micellar paclitaxel.Anticancer Drugs19978769670110.1097/00001813‑199708000‑00008 9311446
    [Google Scholar]
  117. PilcerG. AmighiK. Formulation strategy and use of excipients in pulmonary drug delivery.Int. J. Pharm.20103921-211910.1016/j.ijpharm.2010.03.017 20223286
    [Google Scholar]
  118. DuY.Z. WengQ. YuanH. HuF.Q. Synthesis and antitumor activity of stearate-g-dextran micelles for intracellular doxorubicin delivery.ACS Nano20104116894690210.1021/nn100927t 20939508
    [Google Scholar]
  119. NikolaizikW.H. VietzkeD. RatjenF. A pilot study to compare tobramycin 80 mg injectable preparation with 300 mg solution for inhalation in cystic fibrosis patients.Can. Respir. J.200815525926210.1155/2008/202464 18716688
    [Google Scholar]
  120. KuehlP.J. CherringtonA. DobryD.E. EdgertonD. FriesenD.T. HobbsC. LeachC.L. MurriB. NealD. LyonD.K. VodakD.T. ReedM.D. Biologic comparison of inhaled insulin formulations: Exubera™ and novel spray-dried engineered particles of dextran-10.AAPS PharmSciTech20141561545155010.1208/s12249‑014‑0181‑0 25106135
    [Google Scholar]
  121. RosièreR. Van WoenselM. LangerI. MathieuV. AmighiK. WauthozN. Nanomicelle-based dry powders for inhalation for targeted delivery to lung cancer cells : In vitro evaluation and in vivo local pulmonary tolerance on healthy mice.Europ. Conf. Pharmaceut.2015
    [Google Scholar]
  122. KadotaK. YanagawaY. TachikawaT. DekiY. UchiyamaH. ShirakawaY. TozukaY. Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin.Int. J. Pharm.201955528029010.1016/j.ijpharm.2018.11.055 30471373
    [Google Scholar]
  123. Figueiredo-JuniorA.T. ValençaS.S. FinotelliP.V. AnjosF.F. de Brito-GitiranaL. TakiyaC.M. LanzettiM. Treatment with bixin-loaded polymeric nanoparticles prevents cigarette smoke-induced acute lung inflammation and oxidative stress in mice.Antioxidants2022117129310.3390/antiox11071293 35883784
    [Google Scholar]
  124. NainwalN. SharmaY. JakhmolaV. Dry powder inhalers of antitubercular drugs.Tuberculosis202213510222810.1016/j.tube.2022.102228 35779497
    [Google Scholar]
  125. MaryJ. The effects of anoxia on the newborn and adult rat lung.J. Geotech. Geoenvironmental. Eng. ASCE.196413784641645
    [Google Scholar]
  126. El-SherbinyI.M. ElbazN.M. SedkiM. ElgammalA. YacoubM.H. Magnetic nanoparticles-based drug and gene delivery systems for the treatment of pulmonary diseases.Nanomedicine201712438740210.2217/nnm‑2016‑0341 28078950
    [Google Scholar]
  127. Blanco-CabraN. MovellanJ. MarradiM. GraciaR. SalvadorC. DupinD. LoinazI. TorrentsE. Neutralization of ionic interactions by dextran-based single-chain nanoparticles improves tobramycin diffusion into a mature biofilm.NPJ Biofilms Microbiomes202281
    [Google Scholar]
  128. VadakkanM.V. Binil RajS.S. KarthaC.C. Vinod KumarG.S. Cationic, amphiphilic dextran nanomicellar clusters as an excipient for dry powder inhaler formulation.Acta Biomater.20152317218810.1016/j.actbio.2015.05.019 26013041
    [Google Scholar]
  129. ShkurupiyV.A. ChernovaT.G. NadeevA.P. Granulomatous inflammation in the lungs of mice with systemic candidiasis receiving a composition of amphotericin B and dialdehyde dextran.Bull. Exp. Biol. Med.2008146682983110.1007/s10517‑009‑0410‑9 19513397
    [Google Scholar]
  130. ShkurupiyV.A. KozyaevM.A. PotapovaO.V. Morphological study of the efficiency of isoniazid and dialdehyde dextran composition in the treatment of mice with BCG granulomatosis.Bull. Exp. Biol. Med.2008146685385610.1007/s10517‑009‑0401‑x 19513404
    [Google Scholar]
  131. AlmasiT. JabbariK. GholipourN. Mokhtari KheirabadiA. BeikiD. ShahrokhiP. AkhlaghiM. Synthesis, characterization, and in vitro and in vivo68Ga radiolabeling of thiosemicarbazone Schiff base derived from dialdehyde dextran as a promising blood pool imaging agent.Int. J. Biol. Macromol.201912591592110.1016/j.ijbiomac.2018.12.133 30572040
    [Google Scholar]
  132. JinF. ChengY. TodaK. Distribution model for the intact urokinase and urokinases modified by soluble macromolecules in rat and mouse bodies.Radioisotopes198837844144710.3769/radioisotopes.37.8_441 2464842
    [Google Scholar]
  133. LiB. LiuX. LiL. ZhangS. LiY. LiD. ZhenY. A tumor-targeting dextran-apoprotein conjugate integrated with enediyne chromophore shows highly potent antitumor efficacy.Polym. Chem.20145195680568810.1039/C4PY00532E
    [Google Scholar]
  134. RichmondH.G. Induction of sarcoma in the rat by iron-dextran complex.BMJ19591512794794010.1136/bmj.1.5127.947 13638595
    [Google Scholar]
  135. PotapovaO.V. CherdantsevaL.A. KovnerA.V. SharkovaT.V. TroitskiiA.V. ShestopalovA.M. ShkurupyV.A. Preventive effects of oxidized dextran on functional activity of pulmonary macrophages in mice infected with influenza a virus.Bull. Exp. Biol. Med.20181651576010.1007/s10517‑018‑4098‑6 29796811
    [Google Scholar]
  136. ChisA.A. ArseniuA.M. MorgovanC. DobreaC.M. FrumA. JuncanA.M. ButucaA. GhibuS. GligorF.G. RusL.L. Biopolymeric prodrug systems as potential antineoplastic therapy.Pharmaceutics2022149177310.3390/pharmaceutics14091773 36145522
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018267737231116100812
Loading
/content/journals/cdd/10.2174/0115672018267737231116100812
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Asthma; COPD; delivery system; dextran; dextran derivatives; respiratory diseases
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test