Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines.

Methods

Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology.

Results

The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 µg/ml and 45.80±2.53 µg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology.

Conclusion

It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018268315231206045504
2024-01-08
2025-05-03
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  3. RahibL. SmithB.D. AizenbergR. RosenzweigA.B. FleshmanJ.M. MatrisianL.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States.Cancer Res.201474112913292110.1158/0008‑5472.CAN‑14‑0155 24840647
    [Google Scholar]
  4. FerlayJ. ColombetM. SoerjomataramI. MathersC. ParkinD.M. PiñerosM. ZnaorA. BrayF. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods.Int. J. Cancer201914481941195310.1002/ijc.31937 30350310
    [Google Scholar]
  5. AkinyemijuT. AberaS. AhmedM. AlamN. AlemayohuM.A. AllenC. Al-RaddadiR. Alvis-GuzmanN. AmoakoY. ArtamanA. AyeleT.A. BaracA. BensenorI. BerhaneA. BhuttaZ. Castillo-RivasJ. ChitheerA. ChoiJ.Y. CowieB. DandonaL. DandonaR. DeyS. DickerD. PhucH. EkwuemeD.U. ZakiM.E.S. FischerF. FürstT. HancockJ. HayS.I. HotezP. JeeS.H. KasaeianA. KhaderY. KhangY.H. KumarG.A. KutzM. LarsonH. LopezA. LuneviciusR. MalekzadehR. McAlindenC. MeierT. MendozaW. MokdadA. Moradi-LakehM. NagelG. NguyenQ. NguyenG. OgboF. PattonG. PereiraD.M. PourmalekF. QorbaniM. RadfarA. RoshandelG. SalomonJ.A. SanabriaJ. SartoriusB. SatpathyM. SawhneyM. SepanlouS. ShackelfordK. ShoreH. SunJ. MengistuD.T. Topór-MadryR. TranB. UkwajaK.N. VlassovV. VollsetS.E. VosT. WakayoT. WeiderpassE. WerdeckerA. YonemotoN. YounisM. YuC. ZaidiZ. ZhuL. MurrayC.J.L. NaghaviM. FitzmauriceC. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: Results from the global burden of disease study 2015.JAMA Oncol.20173121683169110.1001/jamaoncol.2017.3055 28983565
    [Google Scholar]
  6. RazumilavaN. GoresG.J. Cholangiocarcinoma.Lancet201438399352168217910.1016/S0140‑6736(13)61903‑0 24581682
    [Google Scholar]
  7. LiY. SongY. LiuS. The new insight of treatment in Cholangiocarcinoma.J. Cancer202213245046410.7150/jca.68264 35069894
    [Google Scholar]
  8. ScheinerB. PomejK. KirsteinM.M. HuckeF. FinkelmeierF. WaidmannO. HimmelsbachV. SchulzeK. von FeldenJ. FründtT.W. StadlerM. HeinzlH. ShmankoK. SpahnS. RaduP. SiebenhünerA.R. MertensJ.C. RahbariN.N. KüttingF. WaldschmidtD.T. EbertM.P. TeufelA. De DossoS. PinatoD.J. PressianiT. MeischlT. BalcarL. MüllerC. MandorferM. ReibergerT. TraunerM. PersoneniN. RimassaL. BitzerM. TrojanJ. WeinmannA. WegeH. DufourJ.F. Peck-RadosavljevicM. VogelA. PinterM. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy – development and validation of the CRAFITY score.J. Hepatol.202276235336310.1016/j.jhep.2021.09.035 34648895
    [Google Scholar]
  9. LugariS. BaldelliE. LonardoA. Metabolic primary liver cancer in adults: Risk factors and pathogenic mechanisms.Metabolism and Target Organ Damage202331510.20517/mtod.2022.38
    [Google Scholar]
  10. El‐SeragH.B. Epidemiology of hepatocellular carcinoma. The liver: Biology and pathobiology.6th edUSAWiley202075877210.1002/9781119436812.ch59
    [Google Scholar]
  11. SingalA.G. Sanduzzi-ZamparelliM. NahonP. RonotM. HoshidaY. RichN. ReigM. VilgrainV. MarreroJ. LlovetJ.M. ParikhN.D. VillanuevaA. International Liver Cancer Association (ILCA) white paper on hepatocellular carcinoma risk stratification and surveillance.J. Hepatol.202379122623910.1016/j.jhep.2023.02.022 36854345
    [Google Scholar]
  12. Santana-SalgadoI. Bautista-SantosA. Moreno-AlcántarR. Risk factors for developing hepatocellular carcinoma in patients treated with direct-acting antivirals.Revista de Gastroenterología de México (English Edition)202287445546110.1016/j.rgmxen.2021.09.005 35523684
    [Google Scholar]
  13. KanwalF. KramerJ. AschS.M. ChayanupatkulM. CaoY. El-SeragH.B. Risk of hepatocellular cancer in HCV patients treated with direct-acting antiviral agents.Gastroenterology201715349961005.e110.1053/j.gastro.2017.06.012 28642197
    [Google Scholar]
  14. HamoirC. HorsmansY. StärkelP. DahlqvistG. Negrin DastisS. LanthierN. Risk of hepatocellular carcinoma and fibrosis evolution in hepatitis C patients with severe fibrosis or cirrhosis treated with direct acting antiviral agents.Acta Gastroenterol. Belg.2021841253210.51821/84.1.420 33639690
    [Google Scholar]
  15. VoPhamT. JonesR.R. State of the science on outdoor air pollution exposure and liver cancer risk.Environ. Adv.20231110035410.1016/j.envadv.2023.100354 36875691
    [Google Scholar]
  16. EstesC. RazaviH. LoombaR. YounossiZ. SanyalA.J. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease.Hepatology201867112313310.1002/hep.29466 28802062
    [Google Scholar]
  17. WenQ. ZhangY. MuluhT.A. XiongK. WangB. LuY. WuZ. LiuY. ShiH. XiaoS. FuS. Erythrocyte membranecamouflaged gefitinib/albumin nanoparticles for tumor imaging and targeted therapy against lung cancer.Int. J. Biol. Macromol.2021193Pt A22823710.1016/j.ijbiomac.2021.10.11334688683
    [Google Scholar]
  18. LiuY.C. LinC.H. ChenK.T. LaiD.W. HsuF.T. Inactivation of EGFR/ERK/NF‐κB signalling associates with radiosensitizing effect of 18β‐glycyrrhetinic acid on progression of hepatocellular carcinoma.J. Cell. Mol. Med.202327111539154910.1111/jcmm.17760 37177859
    [Google Scholar]
  19. TanabeK.K. ZahriehD. StrandC.A. HoshidaY. FlotteT.J. Della’ZannaG. UmarA. LimburgP. Abstract 3031: Pilot study of EGFR inhibition with erlotinib in liver fibrosis for hepatocellular carcinoma prevention.Cancer Res.2023837_Supplement3031303110.1158/1538‑7445.AM2023‑3031
    [Google Scholar]
  20. JinH. ShiY. LvY. YuanS. RamirezC.F.A. LieftinkC. WangL. WangS. WangC. DiasM.H. JochemsF. YangY. BosmaA. HijmansE.M. de GrootM.H.P. VegnaS. CuiD. ZhouY. LingJ. WangH. GuoY. ZhengX. IsimaN. WuH. SunC. BeijersbergenR.L. AkkariL. ZhouW. ZhaiB. QinW. BernardsR. EGFR activation limits the response of liver cancer to lenvatinib.Nature2021595786973073410.1038/s41586‑021‑03741‑7 34290403
    [Google Scholar]
  21. HöpfnerM. SutterA.P. HuetherA. SchuppanD. ZeitzM. ScherüblH. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma.J. Hepatol.20044161008101610.1016/j.jhep.2004.08.024 15582135
    [Google Scholar]
  22. CampiglioM. LocatelliA. OlgiatiC. NormannoN. SomenziG. ViganòL. FumagalliM. MénardS. GianniL. Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (‘Iressa’) is independent of EGFR expression level.J. Cell. Physiol.2004198225926810.1002/jcp.10411 14603528
    [Google Scholar]
  23. BaselgaJ. AlbanellJ. Targeting epidermal growth factor receptor in lung cancer.Curr. Oncol. Rep.20024431732410.1007/s11912‑002‑0007‑1 12044241
    [Google Scholar]
  24. DaneshmandM. ParolinD.A.E. HirteH.W. MajorP. GossG. StewartD. BatistG. MillerW.H.Jr MatthewsS. SeymourL. LorimerI.A. A pharmacodynamic study of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in metastatic colorectal cancer patients.Clin. Cancer Res.20039724572464 12855618
    [Google Scholar]
  25. SchifferE. HoussetC. CacheuxW. WendumD. Desbois-MouthonC. ReyC. ClergueF. PouponR. BarbuV. RosmorducO. Gefitinib, an EGFR inhibitor, prevents hepatocellular carcinoma development in the rat liver with cirrhosis.Hepatology200541230731410.1002/hep.20538 15660382
    [Google Scholar]
  26. OkanoJ. MatsumotoK. NagaharaT. MurawakiY. Gefitinib and the modulation of the signaling pathways downstream of epidermal growth factor receptor in human liver cancer cells.J. Gastroenterol.200641216617610.1007/s00535‑005‑1736‑3 16568376
    [Google Scholar]
  27. FrattoM.E. SantiniD. VincenziB. SilvestrisN. AzzaritiA. TommasiS. ZoccoliA. GalluzzoS. MaielloE. ColucciG. ToniniG. Targeting EGFR in bilio-pancreatic and liver carcinoma.Front. Biosci. (Schol. Ed.)2011311622 21196353
    [Google Scholar]
  28. Moradi KashkooliF. SoltaniM. SouriM. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies.J. Control. Release202032731634910.1016/j.jconrel.2020.08.012 32800878
    [Google Scholar]
  29. LiZ. XiaoC. YongT. LiZ. GanL. YangX. Influence of nanomedicine mechanical properties on tumor targeting delivery.Chem. Soc. Rev.20204982273229010.1039/C9CS00575G 32215407
    [Google Scholar]
  30. MartinsA.F. VlcekJ. WigmostaT. HedayatiM. ReynoldsM.M. PopatK.C. KipperM.J. Chitosan/iota-carrageenan and chitosan/pectin polyelectrolyte multilayer scaffolds with antiadhesive and bactericidal properties.Appl. Surf. Sci.202050214428210.1016/j.apsusc.2019.144282
    [Google Scholar]
  31. WongC.Y. Al-SalamiH. DassC.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin.Int. J. Pharm.20185371-222324410.1016/j.ijpharm.2017.12.036 29288095
    [Google Scholar]
  32. RoyS. ChakrabortyT. BegumJ. HasnainM.S. NayakA.K. Chapter 1-chitosan: A versatile biopolymer. In chitosan in biomedical applicationsHasnain, M.S., Beg, S., Nayak, A.K., Eds.; Elsevier Academic PressCambridge, MA, USA2022111
    [Google Scholar]
  33. RaoS.B. SharmaC.P. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential.J. Biomed. Mater. Res.1997341212810.1002/(SICI)1097‑4636(199701)34:1<21::AID‑JBM4>3.0.CO;2‑P 8978649
    [Google Scholar]
  34. WedmoreI. McManusJ.G. PusateriA.E. HolcombJ.B. A special report on the chitosan-based hemostatic dressing: Experience in current combat operations.J. Trauma200660365565810.1097/01.ta.0000199392.91772.44 16531872
    [Google Scholar]
  35. GadesM.D. SternJ.S. Chitosan supplementation and fecal fat excretion in men.Obes. Res.200311568368810.1038/oby.2003.97 12740459
    [Google Scholar]
  36. TapolaN.S. LyyraM.L. KolehmainenR.M. SarkkinenE.S. SchaussA.G. Safety aspects and cholesterol-lowering efficacy of chitosan tablets.J. Am. Coll. Nutr.2008271223010.1080/07315724.2008.10719671 18460478
    [Google Scholar]
  37. AlaviM. AghaieE. Self-assembled nanostructures for anticancer applications: Advances and limitations.Nano Micro Biosystems202212731
    [Google Scholar]
  38. NarmaniA. JafariS.M. Chitosan-based nanodelivery systems for cancer therapy: Recent advances.Carbohydr. Polym.202127211846410.1016/j.carbpol.2021.118464 34420724
    [Google Scholar]
  39. KurczewskaJ. Chitosan-based nanoparticles with optimized parameters for targeted delivery of a specific anticancer Drug—A comprehensive review.Pharmaceutics202315250310.3390/pharmaceutics15020503 36839824
    [Google Scholar]
  40. LinX. ShengY. ZhangX. LiZ. YangY. WuJ. SuZ. MaG. ZhangS. Oil-in-ionic liquid nanoemulsion-based intranasal delivery system for influenza split-virus vaccine.J. Control. Release202234638039110.1016/j.jconrel.2022.04.036 35483639
    [Google Scholar]
  41. AmidiM. MastrobattistaE. JiskootW. HenninkW.E. Chitosan-based delivery systems for protein therapeutics and antigens.Adv. Drug Deliv. Rev.2010621598210.1016/j.addr.2009.11.009 19925837
    [Google Scholar]
  42. GiriN.C. Protein and peptide drug delivery.Smart Drug Delivery20221239
    [Google Scholar]
  43. RagelleH. RivaR. VandermeulenG. NaeyeB. PourcelleV. Le DuffC.S. D’HaeseC. NystenB. BraeckmansK. De SmedtS.C. JérômeC. PréatV. Chitosan nanoparticles for siRNA delivery: Optimizing formulation to increase stability and efficiency.J. Control. Release2014176546310.1016/j.jconrel.2013.12.026 24389132
    [Google Scholar]
  44. SolimanN.M. ShakeelF. HaqN. AlanaziF.K. AlshehriS. BayomiM. AlenaziA.S.M. AlsarraI.A. Development and optimization of ciprofloxacin hcl-loaded chitosan nanoparticles using box–behnken experimental design.Molecules20222714446810.3390/molecules27144468 35889340
    [Google Scholar]
  45. MiladiK. SfarS. FessiH. ElaissariA. Enhancement of alendronate encapsulation in chitosan nanoparticles.J. Drug Deliv. Sci. Technol.20153039139610.1016/j.jddst.2015.04.007
    [Google Scholar]
  46. TanQ. LiuW. GuoC. ZhaiG. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery.Int. J. Nanomedicine2011616211630 21904452
    [Google Scholar]
  47. HuB. PanC. SunY. HouZ. YeH. HuB. ZengX. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of tea catechins.J. Agric. Food Chem.200856167451745810.1021/jf801111c 18627163
    [Google Scholar]
  48. KonecsniK. LowN.H. NickersonM.T. Chitosan–tripolyphosphate submicron particles as the carrier of entrapped rutin.Food Chem.201213441775177910.1016/j.foodchem.2012.03.070 23442620
    [Google Scholar]
  49. JangK.I. LeeH.G. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution.J. Agric. Food Chem.20085661936194110.1021/jf073385e 18284198
    [Google Scholar]
  50. AnithaA. MayaS. DeepaN. ChennazhiK.P. NairS.V. JayakumarR. Curcumin-loadedN. Curcumin-loaded N, O-carboxymethyl chitosan nanoparticles for cancer drug delivery.J. Biomater. Sci. Polym. Ed.201223111381140010.1163/092050611X581534 21722423
    [Google Scholar]
  51. de Pinho NevesA.L. MilioliC.C. MüllerL. RiellaH.G. KuhnenN.C. StulzerH.K. Factorial design as tool in chitosan nanoparticles development by ionic gelation technique.Colloids Surf. A Physicochem. Eng. Asp.2014445343910.1016/j.colsurfa.2013.12.058
    [Google Scholar]
  52. DesaiK.G. Chitosan nanoparticles prepared by ionotropic gelation: An overview of recent advances.Crit. Rev. Ther. Drug Carrier Syst.201633210715810.1615/CritRevTherDrugCarrierSyst.2016014850 27651100
    [Google Scholar]
  53. BashirS.M. Ahmed RatherG. PatrícioA. HaqZ. SheikhA.A. ShahM.Z.H. SinghH. KhanA.A. ImtiyazS. AhmadS.B. NabiS. RakhshanR. HassanS. FonteP. Chitosan nanoparticles: A versatile platform for biomedical applications.Materials20221519652110.3390/ma15196521 36233864
    [Google Scholar]
  54. ZhangZ. TanS. FengS.S. Vitamin E TPGS as a molecular biomaterial for drug delivery.Biomaterials201233194889490610.1016/j.biomaterials.2012.03.046 22498300
    [Google Scholar]
  55. SinghM. KanoujiaJ. SinghP. TripathiC.B. AryaM. ParasharP. SinhaV.R. SarafS.A. Development of an α-linolenic acid containing soft nanocarrier for oral delivery: In vitro and in vivo evaluation.RSC Advances2016681775907760210.1039/C6RA15166C
    [Google Scholar]
  56. VinayagamR. SanthoshkumarM. LeeK.E. DavidE. KangS.G. Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities.Bioprocess Biosyst. Eng.20214461253126210.1007/s00449‑021‑02527‑5 33606108
    [Google Scholar]
  57. ArbabI.A. AbdulA.B. SukariM.A. AbdullahR. SyamS. KamalidehghanB. IbrahimM.Y. TahaM.M.E. AbdelwahabS.I. Mohd AliH. MohanS. Dentatin isolated from clausena excavata induces apoptosis in MCF-7 cells through the intrinsic pathway with involvement of NF-κB signalling and G0/G1 cell cycle arrest: A bioassay-guided approach.J. Ethnopharmacol.2013145134335410.1016/j.jep.2012.11.020 23178663
    [Google Scholar]
  58. LiuY. JiangY. FengY. Study on the chitosan hydrolysis catalyzed by special cellulase and preparation of chitooligosaccharide.Journal of Functional Polymers200518325
    [Google Scholar]
  59. LustrianeC. DwivanyF.M. SuendoV. RezaM. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits.J. Plant Biotechnol.2018451364410.5010/JPB.2018.45.1.036
    [Google Scholar]
  60. MichałW. EwaD. TomaszC. Lecithin-based wet chemical precipitation of hydroxyapatite nanoparticles.Colloid Polym. Sci.201529351561156810.1007/s00396‑015‑3557‑0 26316673
    [Google Scholar]
  61. ZhouS. XuJ. YangH. DengX. Synthesis and characterization of biodegradable poly(ε ‐caprolactone)‐polyglycolide‐poly(ethylene glycol) monomethyl ether random copolymer.Macromol. Mater. Eng.2004289657658010.1002/mame.200300283
    [Google Scholar]
  62. LiuK. KiranE. High-pressure solution blending of poly(ɛ-caprolactone) with poly(methyl methacrylate) in acetone+carbon dioxide.Polymer (Guildf.)20084961555156110.1016/j.polymer.2008.02.005
    [Google Scholar]
  63. ZhengY. ChenH. ZengX. LiuZ. XiaoX. ZhuY. GuD. MeiL. Surface modification of TPGS-b-(PCL-ran-PGA) nanoparticles with polyethyleneimine as a co-delivery system of TRAIL and endostatin for cervical cancer gene therapy.Nanoscale Res. Lett.20138116110.1186/1556‑276X‑8‑161
    [Google Scholar]
  64. KhalilN.Y. AldosariK.F. Chapter six—meloxicam. in profiles of drug substances, excipients, and related methodology Brittain Excipients and Related MethodologyBrittain, H.G., Ed.; Academic PressCambridge, MA, USA202045159197
    [Google Scholar]
  65. RahmanA.F.M.M. KorashyH.M. KassemM.G. Gefitinib.Profiles Drug Subst. Excip. Relat. Methodol.20143923926410.1016/B978‑0‑12‑800173‑8.00005‑2 24794908
    [Google Scholar]
  66. LiuJ. LuoZ. ZhangJ. LuoT. ZhouJ. ZhaoX. CaiK. Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy.Biomaterials201683516510.1016/j.biomaterials.2016.01.008 26773665
    [Google Scholar]
  67. AlrbyawiH. PoudelI. AnnajiM. BodduS.H.S. ArnoldR.D. TiwariA.K. BabuR.J. pH-sensitive liposomes for enhanced cellular uptake and cytotoxicity of daunorubicin in melanoma (B16-BL6) cell lines.Pharmaceutics2022146112810.3390/pharmaceutics14061128 35745701
    [Google Scholar]
  68. Mora-HuertasC.E. FessiH. ElaissariA. Polymer-based nanocapsules for drug delivery.Int. J. Pharm.20103851-211314210.1016/j.ijpharm.2009.10.018 19825408
    [Google Scholar]
  69. HafnerA. LovrićJ. VoinovichD. Filipović-GrčićJ. Melatonin-loaded lecithin/chitosan nanoparticles: Physicochemical characterisation and permeability through Caco-2 cell monolayers.Int. J. Pharm.2009381220521310.1016/j.ijpharm.2009.07.001 19596430
    [Google Scholar]
  70. SonvicoF. CagnaniA. RossiA. MottaS. Di BariM.T. CavatortaF. AlonsoM.J. DeriuA. ColomboP. Formation of self-organized nanoparticles by lecithin/chitosan ionic interaction.Int. J. Pharm.20063241677310.1016/j.ijpharm.2006.06.036 16973314
    [Google Scholar]
  71. CunD. FogedC. YangM. FrøkjærS. NielsenH.M. Preparation and characterization of poly(dl-lactide-co-glycolide) nanoparticles for siRNA delivery.Int. J. Pharm.20103901707510.1016/j.ijpharm.2009.10.023 19836438
    [Google Scholar]
  72. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387 18654426
    [Google Scholar]
  73. AlkholiefM. AlbasitH. AlhowyanA. AlshehriS. RaishM. Abul KalamM. AlshamsanA. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir.Saudi Pharm. J.201927229330210.1016/j.jsps.2018.11.011 30766442
    [Google Scholar]
  74. ZafarA. AlruwailiN.K. ImamS.S. AlsaidanO.A. AhmedM.M. YasirM. WarsiM.H. AlqurainiA. GhoneimM.M. AlshehriS. Development and optimization of hybrid polymeric nanoparticles of apigenin: Physicochemical characterization, antioxidant activity and cytotoxicity evaluation.Sensors2022224136410.3390/s22041364 35214260
    [Google Scholar]
  75. PeppasN.A. Analysis of fickian and non-fickian drug release from polymers.Pharm. Acta Helv.1985604110111 4011621
    [Google Scholar]
  76. WarsiM.H. AnwarM. GargV. JainG.K. TalegaonkarS. AhmadF.J. KharR.K. Dorzolamide-loaded PLGA/vitamin E TPGS nanoparticles for glaucoma therapy: Pharmacoscintigraphy study and evaluation of extended ocular hypotensive effect in rabbits.Colloids Surf. B Biointerfaces201412242343110.1016/j.colsurfb.2014.07.004 25159319
    [Google Scholar]
  77. PandaA. MeenaJ. KataraR. MajumdarD.K. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles.Pharm. Dev. Technol.2016211435310.3109/10837450.2014.965324 25403112
    [Google Scholar]
  78. Ford VersyptA.N. PackD.W. BraatzR.D. Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres — A review.J. Control. Release20131651293710.1016/j.jconrel.2012.10.015 23103455
    [Google Scholar]
  79. AbdellatifA.A.H. Al-SubaiyelA. MohammedA.M. Thermosensitive polymers-based injectable hydrogels: a quantitative validations design utilized for controlled delivery of gefitinib anticancer drug.Eur. Rev. Med. Pharmacol. Sci.202327626462658 37013783
    [Google Scholar]
  80. Akram GhummanS. MahmoodA. NoreenS. AslamA. IjazB. AmanatA. KausarR. RanaM. HameedH. Chitosan-Linseed mucilage polyelectrolyte complex nanoparticles of Methotrexate: In vitro cytotoxic efficacy and toxicological studies.Arab. J. Chem.202316210446310.1016/j.arabjc.2022.104463
    [Google Scholar]
  81. HuetherA. HöpfnerM. SutterA.P. SchuppanD. ScherüblH. Erlotinib induces cell cycle arrest and apoptosis in hepatocellular cancer cells and enhances chemosensitivity towards cytostatics.J. Hepatol.200543466166910.1016/j.jhep.2005.02.040 16023762
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018268315231206045504
Loading
/content/journals/cdd/10.2174/0115672018268315231206045504
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chitosan; cytotoxicity; Gefitinib; hepatocellular carcinoma; HepG2; nanomedicine; nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test