Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Adding a suitable surfactant can enhance the transdermal permeability of transethosomes while also leveraging its functionality as a functional material. In this study, transethosomes were prepared using D-α-tocopherol acid polyethylene glycol succinate (TPGS) as edge activators for transdermal delivery of curcumin (Cur).

Methods

The TPGS-mediated curcumin-loaded transethosomes (Cur@TES) were prepared and formulated optimally, and the optimized formulations were characterized for their morphology, particle size, entrapment efficiency (EE) and drug loading (DL). The stability and deformability of Cur@TES were investigated, while the transdermal delivery of Cur@TES was investigated through transdermal assays and fluorescence imaging. A mouse ear swelling model was performed to determine the anti-inflammatory effect of Cur@TES.

Results

Cur@TES appeared round or elliptical in shape. The particle size, EE and DL for the optimized formulation were observed as 131.2 ± 7.2 nm, 97.68 ± 2.26%, and 6.58 ± 0.62%, respectively. X-ray diffraction analysis confirmed the formation of disordered structures in the inner core of the vesicles. Moreover, Cur@TES system demonstrated better stability and deformability compared to the curcumin-loaded ethosomes (Cur@ES). transdermal experiments demonstrated that Cur@TES significantly increased the amount of drug retained in the skin (P<0.05). Fluorescence imaging confirmed that the skin distribution was distinctly enhanced with the delivery by TPGS mediated transethosomes. In addition, Cur@TES showed a significant inhibitory effect on Inflammatory swelling in the mouse ear-swelling model.

Conclusion

TPGS-mediated transethosomes exhibit significant transdermal advantages and enhanced anti-inflammatory effects, providing a new perspective for the transdermal delivery of curcumin.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018279577231208055415
2024-01-09
2025-05-06
Loading full text...

Full text loading...

References

  1. EckertR.W. WiemannS. KeckC.M. Improved dermal and transdermal delivery of curcumin with smartfilms and nanocrystals.Molecules2021266163310.3390/molecules2606163333804137
    [Google Scholar]
  2. WaghuleT. GorantlaS. RapalliV.K. ShahP. DubeyS.K. SahaR.N. SinghviG. Emerging trends in topical delivery of curcumin through lipid nanocarriers: Effectiveness in skin disorders.AAPS PharmSciTech202021728410.1208/s12249‑020‑01831‑933058071
    [Google Scholar]
  3. ZiaA. FarkhondehT. Pourbagher-ShahriA.M. SamarghandianS. The role of curcumin in aging and senescence: Molecular mechanisms.Biomed. Pharmacother.202113411111910.1016/j.biopha.2020.11111933360051
    [Google Scholar]
  4. Pourbagher-ShahriA.M. FarkhondehT. AshrafizadehM. TalebiM. SamargahndianS. Curcumin and cardiovascular diseases: Focus on cellular targets and cascades.Biomed. Pharmacother.202113611121410.1016/j.biopha.2020.11121433450488
    [Google Scholar]
  5. Wan Mohd TajuddinW.N.B. LajisN.H. AbasF. OthmanI. NaiduR. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer.Nutrients20191112298910.3390/nu1112298931817718
    [Google Scholar]
  6. ZussoM. LunardiV. FranceschiniD. PagettaA. LoR. StifaniS. FrigoA.C. GiustiP. MoroS. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway.J. Neuroinflammation201916114810.1186/s12974‑019‑1538‑931319868
    [Google Scholar]
  7. Yavarpour-BaliH. Ghasemi-KasmanM. PirzadehM. Curcumin-loaded nanoparticles: A novel therapeutic strategy in treatment of central nervous system disorders.Int. J. Nanomedicine2019144449446010.2147/IJN.S20833231417253
    [Google Scholar]
  8. Hafez GhoranS. CalcaterraA. AbbasiM. TaktazF. NieseltK. BabaeiE. Curcumin-based nanoformulations: A promising adjuvant towards cancer treatment.Molecules20222716523610.3390/molecules2716523636014474
    [Google Scholar]
  9. ChamaniS. MoossaviM. NaghizadehA. AbbasifardM. MajeedM. JohnstonT.P. SahebkarA. Immunomodulatory effects of curcumin in systemic autoimmune diseases.Phytother. Res.20223641616163210.1002/ptr.741735302258
    [Google Scholar]
  10. LimaE.P. GonçalvesO.H. AmesF.Q. Castro-HoshinoL.V. LeimannF.V. CumanR.K.N. ComarJ.F. Bersani-AmadoC.A. Anti-inflammatory and antioxidant activity of nanoencapsulated curcuminoids extracted from curcuma longa L. in a model of cutaneous inflammation.Inflammation202144260461610.1007/s10753‑020‑01360‑433164160
    [Google Scholar]
  11. KongD. ZhangZ. ChenL. HuangW. ZhangF. WangL. WangY. CaoP. ZhengS. Curcumin blunts epithelial-mesenchymal transition of hepatocytes to alleviate hepatic fibrosis through regulating oxidative stress and autophagy.Redox Biol.20203610160010.1016/j.redox.2020.10160032526690
    [Google Scholar]
  12. DehghaniS. DalirfardoueiR. JafariN.A.M.H. Ebrahimi NikM. JaafariM.R. MahdipourE. Topical application of curcumin regulates the angiogenesis in diabetic ‐ impaired cutaneous wound.Cell Biochem. Funct.202038555856610.1002/cbf.350032030812
    [Google Scholar]
  13. NairR.S. MorrisA. BillaN. LeongC.O. An evaluation of curcumin-encapsulated chitosan nanoparticles for transdermal delivery.AAPS PharmSciTech20192026910.1208/s12249‑018‑1279‑630631984
    [Google Scholar]
  14. HuQ. LuoY. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review.Int. J. Biol. Macromol.202117912513510.1016/j.ijbiomac.2021.02.21633667554
    [Google Scholar]
  15. SahebM. FereydouniN. NematiS. BarretoG.E. JohnstonT.P. SahebkarA. Chitosan‐based delivery systems for curcumin: A review of pharmacodynamic and pharmacokinetic aspects.J. Cell. Physiol.20192348123251234010.1002/jcp.2802430697728
    [Google Scholar]
  16. AtaeiM. GumprichtE. KesharwaniP. JamialahmadiT. SahebkarA. Recent advances in curcumin-based nanoformulations in diabetes.J. Drug Target.202331767168410.1080/1061186X.2023.222996137354074
    [Google Scholar]
  17. Abd El-HackM.E. El-SaadonyM.T. SwelumA.A. ArifM. Abo GhanimaM.M. ShukryM. NoreldinA. TahaA.E. El-TarabilyK.A. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability.J. Sci. Food Agric.2021101145747576210.1002/jsfa.1137234143894
    [Google Scholar]
  18. LiY. XuF. LiX. ChenS.Y. HuangL.Y. BianY.Y. WangJ. ShuY.T. YanG.J. DongJ. YinS.P. GuW. ChenJ. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability.Int. J. Pharm.202159211993610.1016/j.ijpharm.2020.11993633038455
    [Google Scholar]
  19. SharmaA. KuhadA. BhandariR. Novel nanotechnological approaches for treatment of skin-aging.J. Tissue Viability202231337438610.1016/j.jtv.2022.04.01035550314
    [Google Scholar]
  20. NayakA.K. HasnainM.S. AminabhaviT.M. TorchilinV.P. Nanovesicular systems in drug delivery. NayakAK HasnainMS AminabhaviTM TorchilinVP Systems of Nanovesicular Drug DeliveryAcademic Press202211510.1016/B978‑0‑323‑91864‑0.00026‑7
    [Google Scholar]
  21. NayakB.S. MohantyB. MishraB. RoyH. NandiS. Transethosomes: Cutting edge approach for drug permeation enhancement in transdermal drug delivery system.Chem. Biol. Drug Des.2023102365366710.1111/cbdd.1425437062593
    [Google Scholar]
  22. MunirM. ZamanM. WaqarM.A. HameedH. RiazT. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route.J. Liposome Res.20232011610.1080/08982104.2023.222135437338000
    [Google Scholar]
  23. TouitouE. NatshehH. Topical administration of drugs incorporated in carriers containing phospholipid soft vesicles for the treatment of skin medical conditions.Pharmaceutics20211312212910.3390/pharmaceutics1312212934959410
    [Google Scholar]
  24. VermaS. UtrejaP. Vesicular nanocarrier based treatment of skin fungal infections: Potential and emerging trends in nanoscale pharmacotherapy.Asian J. Pharm. Sci.201914211712910.1016/j.ajps.2018.05.00732104444
    [Google Scholar]
  25. SguizzatoM. FerraraF. HallanS.S. BaldisserottoA. DrechslerM. MalatestaM. CostanzoM. CortesiR. PugliaC. ValacchiG. EspositoE. Ethosomes and transethosomes for mangiferin transdermal delivery.Antioxidants202110576810.3390/antiox1005076834066018
    [Google Scholar]
  26. MishraK.K. KaurC.D. SinghS. TiwariA. TiwariV. SharmaA. Assessing the efficacy of berberine hydrochloride-loaded transethosomal gel system in treating dermatophytosis caused by trichophyton rubrum in ex-vivo, in-vitro, and in-vivo models.Curr Drug Res Rev202316341242210.2174/2589977515666230726151456
    [Google Scholar]
  27. EspositoE. CalderanL. GalvanA. CappellozzaE. DrechslerM. MarianiP. PepeA. SguizzatoM. VigatoE. Dalla PozzaE. MalatestaM. Ex vivo evaluation of ethosomes and transethosomes applied on human skin: A comparative study.Int. J. Mol. Sci.202223231511210.3390/ijms23231511236499432
    [Google Scholar]
  28. Domínguez-DelgadoC.L. Pozos-NonatoS. Campos-SantanderK.A. BenavidesA.A. Pacheco-OrtinS.M. Higuera-PiedrahitaR.I. Resendiz-GonzálezG. Molina-TrinidadE.M. Novel nanotechnological strategies for skin anti-aging.Curr. Pharm. Biotechnol.202324111397141910.2174/138920102466622122309531536567280
    [Google Scholar]
  29. FerraraF. BenedusiM. SguizzatoM. CortesiR. BaldisserottoA. BuzziR. ValacchiG. EspositoE. Ethosomes and transethosomes as cutaneous delivery systems for quercetin: A preliminary study on melanoma cells.Pharmaceutics2022145103810.3390/pharmaceutics1405103835631628
    [Google Scholar]
  30. GhezziM. PescinaS. DelledonneA. FerraboschiI. SissaC. TerenzianiF. RemiroP.D.F.R. SantiP. NicoliS. Improvement of imiquimod solubilization and skin retention via TPGS micelles: Exploiting the co-solubilizing effect of oleic acid.Pharmaceutics2021139147610.3390/pharmaceutics1309147634575553
    [Google Scholar]
  31. Le GuyaderG. DoB. RietveldI.B. CoricP. BouazizS. GuignerJ.M. SecretanP.H. AndrieuxK. PaulM. Mixed polymeric micelles for rapamycin skin delivery.Pharmaceutics202214356910.3390/pharmaceutics1403056935335945
    [Google Scholar]
  32. Puig-RigallJ. Fernández-RubioC. González-BenitoJ. HoustonJ.E. RadulescuA. NguewaP. González-GaitanoG. Structural characterization by scattering and spectroscopic methods and biological evaluation of polymeric micelles of poloxamines and TPGS as nanocarriers for miltefosine delivery.Int. J. Pharm.202057811905710.1016/j.ijpharm.2020.11905731991188
    [Google Scholar]
  33. RathodS. BahadurP. TiwariS. Nanocarriers based on vitamin E-TPGS: Design principle and molecular insights into improving the efficacy of anticancer drugs.Int. J. Pharm.202159212004510.1016/j.ijpharm.2020.12004533212172
    [Google Scholar]
  34. XuY. WangS. YangL. DongY. ZhangY. YanG. TangR. pH-sensitive micelles self-assembled from star-shaped TPGS copolymers with ortho ester linkages for enhanced MDR reversal and chemotherapy.Asian J. Pharm. Sci202116336337310.1016/j.ajps.2021.01.00234276824
    [Google Scholar]
  35. SrivastavaA. LallR. TalukderJ. DuBourdieuD. GuptaR.C. Iron transport tocopheryl polyethylene glycol succinate in animal health and diseases.Molecules20192423428910.3390/molecules2423428931775281
    [Google Scholar]
  36. RossiI. SonvicoF. McConvilleJ.T. RossiF. FröhlichE. ZellnitzS. RossiA. Del FaveroE. BettiniR. ButtiniF. Nebulized coenzyme Q 10 nanosuspensions: A versatile approach for pulmonary antioxidant therapy.Eur. J. Pharm. Sci.201811315917010.1016/j.ejps.2017.10.02429066385
    [Google Scholar]
  37. SunM.C. ChenY.F. LiuD. XuX.L. YouY.C. LuW. ShiY.J. RenM.Y. FanY.B. DuY.Z. TaoX.H. Effective decolonization strategy for mupirocin-resistant Staphylococcus aureus by TPGS-modified mupirocin-silver complex.Mater. Today Bio20231810053410.1016/j.mtbio.2022.10053436686036
    [Google Scholar]
  38. MalathiS. PavithraP.S. SrideviS. VermaR.S. Fabrication of nanopatterned PLGA films of curcumin and TPGS for skin cancer.Int. J. Pharm.202057811910010.1016/j.ijpharm.2020.11910032014600
    [Google Scholar]
  39. ChenM.L. LaiC.J. LinY.N. HuangC.M. LinY.H. Multifunctional nanoparticles for targeting the tumor microenvironment to improve synergistic drug combinations and cancer treatment effects.J. Mater. Chem. B Mater. Biol. Med.2020845104161042710.1039/D0TB01733G33112350
    [Google Scholar]
  40. GuoT. LuJ. FanY. ZhangY. YinS. ShaX. FengN. TPGS assists the percutaneous administration of curcumin and glycyrrhetinic acid coloaded functionalized ethosomes for the synergistic treatment of psoriasis.Int. J. Pharm.202160412076210.1016/j.ijpharm.2021.12076234082000
    [Google Scholar]
  41. HaneefI.N.H.M. BuysY.F. ShaffiarN.M. Abdul HamidA.M. ShaharuddinS.I.S. Fitriani, Composition optimization of PLA/PPC/HNT nanocomposites for mandibular fixation plate using single-factor experimental design.J. Mech. Behav. Biomed. Mater.202213510542310.1016/j.jmbbm.2022.10542336087517
    [Google Scholar]
  42. WolskaE. BrachM. Distribution of drug substances in solid lipid microparticles (SLM)—methods of analysis and interpretation.Pharmaceutics202214233510.3390/pharmaceutics1402033535214067
    [Google Scholar]
  43. WangM.Z. XuY. XieJ.F. JiangZ.H. PengL.H. Ginsenoside as a new stabilizer enhances the transfection efficiency and biocompatibility of cationic liposome.Biomater. Sci.20219248373838510.1039/D1BM01353J34787604
    [Google Scholar]
  44. HongC. LiangJ. XiaJ. ZhuY. GuoY. WangA. LuC. RenH. ChenC. LiS. WangD. ZhanH. WangJ. One stone four birds: A novel liposomal delivery system multi-functionalized with ginsenoside Rh2 for tumor targeting therapy.Nano-Micro Lett.202012112910.1007/s40820‑020‑00472‑834138128
    [Google Scholar]
  45. LiH. PengQ. GuoY. WangX. ZhangL. Preparation and in vitro and in vivo study of asiaticoside-loaded nanoemulsions and nanoemulsions-based gels for transdermal delivery.Int. J. Nanomedicine2020153123313610.2147/IJN.S24192332440114
    [Google Scholar]
  46. TeaimaM. AbdelmonemR. AdelY.A. El-NabarawiM.A. El-NawawyT.M. Transdermal delivery of telmisartan: formulation, in vitro, ex vivo, iontophoretic permeation enhancement and comparative pharmacokinetic study in rats.Drug Des. Devel. Ther.2021154603461410.2147/DDDT.S32786034785889
    [Google Scholar]
  47. SongC.K. BalakrishnanP. ShimC.K. ChungS.J. ChongS. KimD.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation.Colloids Surf. B Biointerfaces20129229930410.1016/j.colsurfb.2011.12.00422205066
    [Google Scholar]
  48. ChenZ.X. LiB. LiuT. WangX. ZhuY. WangL. WangX.H. NiuX. XiaoY. SunQ. Evaluation of paeonol-loaded transethosomes as transdermal delivery carriers.Eur. J. Pharm. Sci.20179924024510.1016/j.ejps.2016.12.02628039091
    [Google Scholar]
  49. El-ZaafaranyG.M. Abdel-AzizR.T.A. MontaserM.H.A. NasrM. Coenzyme Q10 phospholipidic vesicular formulations for treatment of androgenic alopecia: ex vivo permeation and clinical appraisal.Expert Opin. Drug Deliv.202118101513152210.1080/17425247.2021.193649734047661
    [Google Scholar]
  50. CombsC.A. FishmanA. A proposal to reduce the risk of transmission of human papilloma virus via transvaginal ultrasound.Am. J. Obstet. Gynecol.20162151636710.1016/j.ajog.2016.03.01426994654
    [Google Scholar]
  51. SchmidtS.T. ChristensenD. PerrieY. Applying microfluidics for the production of the cationic liposome-based vaccine adjuvant CAF09b.Pharmaceutics20201212123710.3390/pharmaceutics1212123733352684
    [Google Scholar]
  52. SchlosserC.S. BrocchiniS. WilliamsG.R. Stable dried catalase particles prepared by electrospraying.Nanomaterials20221214248410.3390/nano1214248435889708
    [Google Scholar]
  53. QiZ. ShiJ. SongY. DengY. A novel micellar carrier to reverse multidrug resistance of tumours: TPGS derivatives with end-grafted cholesterol.J. Drug Target.202331553755310.1080/1061186X.2023.220561437092957
    [Google Scholar]
  54. YangC. WuT. QiY. ZhangZ. Recent advances in the application of vitamin E TPGS for drug delivery.Theranostics20188246448510.7150/thno.2271129290821
    [Google Scholar]
  55. QuartierJ. RaoW. SladeS. MétralF. LaptevaM. KaliaY.N. DESI-MS imaging to visualize spatial distribution of xenobiotics and endogenous lipids in the skin.Int. J. Pharm.202160712096710.1016/j.ijpharm.2021.12096734352336
    [Google Scholar]
  56. PiazziniV. D’AmbrosioM. LuceriC. CinciL. LanducciE. BiliaA.R. BergonziM.C. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin.Molecules2019249168810.3390/molecules2409168831052197
    [Google Scholar]
  57. WuB. LiY. LiY.Y. ShiZ.H. BianX.H. XiaQ. Nanostructured-lipid carriers-Chitosan hydrogel beads carrier system for loading of resveratrol: A new method of topical application.J. Biomater. Appl.20223681444145710.1177/0885328221105392334995470
    [Google Scholar]
  58. PengT.X. LiangD.S. GuoF. PengH. XuY.C. LuoN.P. ZhangX.Y. ZhongH.J. Enhanced storage stability of solid lipid nanoparticles by surface modification of comb-shaped amphiphilic inulin derivatives.Colloids Surf. B Biointerfaces201918136937810.1016/j.colsurfb.2019.05.06131170643
    [Google Scholar]
  59. CaritaA.C. EloyJ.O. ChorilliM. LeeR.J. LeonardiG.R. Recent advances and perspectives in liposomes for cutaneous drug delivery.Curr. Med. Chem.201825560663510.2174/092986732466617100912015428990515
    [Google Scholar]
  60. RajA. DuaK. NairR.S. Sarath ChandranC. AlexA.T. Transethosome: An ultra-deformable ethanolic vesicle for enhanced transdermal drug delivery.Chem. Phys. Lipids202325510531510.1016/j.chemphyslip.2023.10531537356610
    [Google Scholar]
  61. ChiS. ZuoM. ZhuM. WangZ. LiuZ. Loading drugs in natural phospholipid bilayers of cell membrane shells to construct biomimetic nanocomposites for enhanced tumor therapy.ACS Appl. Mater. Interfaces20221425286712868210.1021/acsami.2c0858735703029
    [Google Scholar]
  62. FarooqM.A. TrevaskisN.L. TPGS decorated liposomes as multifunctional nano-delivery systems.Pharm. Res.202340124526310.1007/s11095‑022‑03424‑636376604
    [Google Scholar]
  63. AlbashR. AbdelbaryA. RefaiH. El-NabarawiM. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation.Int. J. Nanomedicine2019141953196810.2147/IJN.S19677130936696
    [Google Scholar]
  64. El-ZaafaranyG.M. NasrM. Insightful exploring of advanced nanocarriers for the topical/transdermal treatment of skin diseases.Pharm. Dev. Technol.202126101136115710.1080/10837450.2021.200460634751091
    [Google Scholar]
  65. AscensoA. BatistaC. CardosoP. MendesT. PraçaF. BentleyV. RaposoS. SimõesS. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes.Int. J. Nanomedicine2015105837585110.2147/IJN.S8618626425085
    [Google Scholar]
  66. ZhaoY.P. HanJ.F. ZhangF.Y. LiaoT.T. NaR. YuanX.F. HeG. YeW. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for rheumatoid arthritis therapy.Drug Deliv.20222912269228210.1080/10717544.2022.209671835815790
    [Google Scholar]
  67. SapkotaR. DashA.K. Liposomes and transferosomes: A breakthrough in topical and transdermal delivery.Ther. Deliv.202112214515810.4155/tde‑2020‑012233583219
    [Google Scholar]
  68. NatshehH. TouitouE. Phospholipid vesicles for dermal/transdermal and nasal administration of active molecules: The effect of surfactants and alcohols on the fluidity of their lipid bilayers and penetration enhancement properties.Molecules20202513295910.3390/molecules2513295932605117
    [Google Scholar]
  69. MahmoudD.B. ElMeshadA.N. FadelM. TawfikA. RamezS.A. Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: Optimization and clinical study.Int. J. Pharm.202261412145910.1016/j.ijpharm.2022.12145935026313
    [Google Scholar]
  70. MehataA.K. SetiaA. VikasV. MalikA.K. HassaniR. DailahH.G. AlhazmiH.A. AlbarraqA.A. MohanS. MuthuM.S. Vitamin E TPGS-based nanomedicine, nanotheranostics, and targeted drug delivery: Past, present, and future.Pharmaceutics202315372210.3390/pharmaceutics1503072236986583
    [Google Scholar]
  71. TavaresL.M. Delello DiF.L. CarolinaA.R. SousaA.V.H. LobatoD.J. MaldonadoM.J. ChorilliM. The use of TPGS in drug delivery systems to overcome biological barriers.Eur. Polym. J.202114211012910.1016/j.eurpolymj.2020.110129
    [Google Scholar]
  72. RemiroP.F.R. NagaharaM.H.T. GhezziM. FilippiniA. DemurtasA. PescinaS. SantiP. PadulaC. MoraesÂ.M. NicoliS. An alternative device for the topical treatment of oral cancer: Development and ex-vivo evaluation of imiquimod-loaded polysaccharides formulations.Pharmaceutics20221412257310.3390/pharmaceutics1412257336559066
    [Google Scholar]
  73. AkhtarG. ShabbirA. Urginea indica attenuated rheumatoid arthritis and inflammatory paw edema in diverse animal models of acute and chronic inflammation.J. Ethnopharmacol.201923811186410.1016/j.jep.2019.11186430970284
    [Google Scholar]
  74. AslamB. HussainA. BariM.U. FaisalM.N. SindhuZ.D. AlonaizanR. Al-AkeelR.K. NazS. KhanR.U. Anti-pyretic, analgesic, and anti-inflammatory activities of meloxicam and curcumin co-encapsulated plga nanoparticles in acute experimental models.Metabolites202313893510.3390/metabo1308093537623878
    [Google Scholar]
  75. ZhangZ.B. LuoD.D. XieJ.H. XianY.F. LaiZ.Q. LiuY.H. LiuW.H. ChenJ.N. LaiX.P. LinZ.X. SuZ.R. Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway.Front. Pharmacol.20189118110.3389/fphar.2018.0118130386242
    [Google Scholar]
  76. KottaS. AldawsariH.M. Badr-EldinS.M. BinmahfouzL.S. BakhaidarR.B. SreeharshaN. NairA.B. RamnarayananC. Lung targeted lipopolymeric microspheres of dexamethasone for the treatment of ARDS.Pharmaceutics2021139134710.3390/pharmaceutics1309134734575422
    [Google Scholar]
  77. RachmawatiH. SafitriD. PradanaA. AdnyanaI. TPGS-stabilized curcumin nanoparticles exhibit superior effect on carrageenan-induced inflammation in wistar rat.Pharmaceutics2016832410.3390/pharmaceutics803002427537907
    [Google Scholar]
  78. Abu-HuwaijR. ZidanA.N. Unlocking the potential of cosmetic dermal delivery with ethosomes: A comprehensive review.J. Cosmet. Dermatol.2023Epub ahead of print10.1111/jocd.1589537393573
    [Google Scholar]
  79. NatshehH. VettoratoE. TouitouE. Ethosomes for dermal administration of natural active molecules.Curr. Pharm. Des.201925212338234810.2174/138161282566619071609582631333087
    [Google Scholar]
  80. LuJ. GuoT. FanY. LiZ. HeZ. YinS. FengN. Recent developments in the principles, modification and application prospects of functionalized ethosomes for topical delivery.Curr. Drug Deliv.202118557058210.2174/156720181766620082609310232851961
    [Google Scholar]
  81. SongH. WenJ. LiH. MengY. ZhangY. ZhangN. ZhengW. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome.Int. J. Nanomedicine2019143177318810.2147/IJN.S18884231118630
    [Google Scholar]
  82. ZhangY. ZhangH. ZhangK. LiZ. GuoT. WuT. HouX. FengN. Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis.Nanomedicine20202810221210.1016/j.nano.2020.10221232334099
    [Google Scholar]
  83. LiK. GaoS. TianB. ShiY. LvQ. HanJ. Formulation optimization and in-vitro and in-vivo evaluation of lornoxicam ethosomal gels with penetration enhancers.Curr. Drug Deliv.201815342443510.2174/156720181566617120716301029219057
    [Google Scholar]
  84. AhmedT.A. AlzahraniM.M. SirwiA. AlhakamyN.A. Study the antifungal and ocular permeation of ketoconazole from ophthalmic formulations containing trans-ethosomes nanoparticles.Pharmaceutics202113215110.3390/pharmaceutics1302015133498849
    [Google Scholar]
  85. AlfadhelM.M. ZakiR.M. AldosariB.N. SayedO.M. Numerical optimization of prednisolone–tacrolimus loaded ultraflexible transethosomes for transdermal delivery enhancement; box–behnken design, evaluation, optimization, and pharmacokinetic study.Gels20239540010.3390/gels905040037232992
    [Google Scholar]
  86. NiuX.Q. ZhangD.P. BianQ. FengX.F. LiH. RaoY.F. ShenY.M. GengF.N. YuanA.R. YingX.Y. GaoJ.Q. Mechanism investigation of ethosomes transdermal permeation.Int. J. Pharm. X2019110002710.1016/j.ijpx.2019.10002731517292
    [Google Scholar]
  87. GhoshI. Michniak-KohnB. Design and characterization of submicron formulation for a poorly soluble drug: The effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement.Int. J. Pharm.20124341-2909810.1016/j.ijpharm.2012.05.03122633930
    [Google Scholar]
  88. RachmawatiH. PradanaA. SafitriD. AdnyanaI. Multiple functions of d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) as curcumin nanoparticle stabilizer: In vivo kinetic profile and anti-ulcerative colitis analysis in animal model.Pharmaceutics2017942410.3390/pharmaceutics903002428754010
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018279577231208055415
Loading
/content/journals/cdd/10.2174/0115672018279577231208055415
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): anti-inflammatory; deformability; stability; TPGS; transdermal; transethosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test