Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Cold atmospheric plasma (CAP) is an ionized matter with potential applications in various medical fields, ranging from wound healing and disinfection to cancer treatment. CAP's clinical usefulness stems from its ability to act as an adjustable source of reactive oxygen and nitrogen species (RONS), which are known to function as pleiotropic signaling agents within cells. Plasma-activated species, such as RONS, have the potential to be consistently and precisely released by carriers, enabling their utilization in a wide array of biomedical applications. Furthermore, understanding the behavior of CAP in different environments, including water, salt solutions, culture medium, hydrogels, and nanoparticles, may lead to new opportunities for maximizing its therapeutic potential. This review article sought to provide a comprehensive and critical analysis of current biomaterial approaches for the targeted delivery of plasma-activated species in the hope to boost therapeutic response and clinical applicability.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018268207231124014915
2024-12-01
2024-11-26
Loading full text...

Full text loading...

References

  1. Mott-SmithH.M. History of “Plasmas”.Nature1971233531621921910.1038/233219a0 16063290
    [Google Scholar]
  2. BittencourtJ.A. Fundamentals of plasma physics.Springer200410.1007/978‑1‑4757‑4030‑1
    [Google Scholar]
  3. AdhikariB. KhanalR.J.H.P. Introduction to the plasma state of matter.Himalayan Phys.201346010.3126/hj.v4i0.9430
    [Google Scholar]
  4. EhlbeckJ. SchnabelU. PolakM. WinterJ. von WoedtkeT. BrandenburgR. von dem HagenT. WeltmannK-D. Low temperature atmospheric pressure plasma sources for microbial decontamination.J. Phys. D Appl. Phys.201144101300210.1088/0022‑3727/44/1/013002
    [Google Scholar]
  5. MurphyA.B. UhrlandtD. Foundations of high-pressure thermal plasmas.Plasma Sources Sci. Technol.201827606300110.1088/1361‑6595/aabdce
    [Google Scholar]
  6. ParkG.Y. ParkS.J. ChoiM.Y. KooI.G. ByunJ.H. HongJ.W. SimJ.Y. CollinsG.J. LeeJ.K. Atmospheric-pressure plasma sources for biomedical applications.Plasma Sources Sci. Technol.201221404300110.1088/0963‑0252/21/4/043001
    [Google Scholar]
  7. Von WoedtkeT. SchmidtA. BekeschusS. WendeK. WeltmannK.D. Plasma medicine: A field of applied redox biology. in vivo 20193341011102610.21873/invivo.1157031280189
    [Google Scholar]
  8. ReiaziR. AkbariM.E. NoroziA. EtedadialiabadiM. Application of cold atmospheric plasma (CAP) in cancer therapy: A review.Int. J. Cancer Manag.201710310.5812/ijcp.8728
    [Google Scholar]
  9. YanD. LinL. ZvanskyM. KohanzadehL. TabanS. ChriquiS. KeidarM. Improving seed germination by cold atmospheric plasma.Plasma2022519811010.3390/plasma5010008
    [Google Scholar]
  10. GuoL. XuR. GouL. LiuZ. ZhaoY. LiuD. ZhangL. ChenH. KongM.G. Mechanism of virus inactivation by cold atmospheric-pressure plasma and plasma-activated water.Appl. Environ. Microbiol.20188417e00726e1810.1128/AEM.00726‑18 29915117
    [Google Scholar]
  11. ChenZ. GarciaG.Jr ArumugaswamiV. WirzR.E. Cold atmospheric plasma for SARS-CoV-2 inactivation.Phys. Fluids2020321111170210.1063/5.0031332 33244211
    [Google Scholar]
  12. NomuraY. Investigation of blood coagulation effect of nonthermal multigas plasma jet in vitro and in vivo.J. Surg. Res.2017219302309
    [Google Scholar]
  13. HaertelB. WoedtkeT. WeltmannK.D. LindequistU. Non-thermal atmospheric-pressure plasma possible application in wound healing.Biomol. Ther.201422647749010.4062/biomolther.2014.105 25489414
    [Google Scholar]
  14. LeeJ.H. JeongW.S. SeoS.J. KimH.W. KimK.N. ChoiE.H. KimK.M. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration.Dent. Mater.201733325727010.1016/j.dental.2016.11.011 28088458
    [Google Scholar]
  15. DuskeK. JablonowskiL. KobanI. MatthesR. HoltfreterB. SckellA. NebeJ.B. von WoedtkeT. WeltmannK.D. KocherT. Cold atmospheric plasma in combination with mechanical treatment improves osteoblast growth on biofilm covered titanium discs.Biomaterials20155232733410.1016/j.biomaterials.2015.02.035 25818439
    [Google Scholar]
  16. WonH.R. KangS.U. KimH.J. JangJ.Y. ShinY.S. KimC.H. Non-thermal plasma treated solution with potential as a novel therapeutic agent for nasal mucosa regeneration.Sci. Rep.2018811375410.1038/s41598‑018‑32077‑y 30213992
    [Google Scholar]
  17. EisenhauerP. ChernetsN. SongY. DobryninD. PleshkoN. SteinbeckM.J. FreemanT.A. Chemical modification of extracellular matrix by cold atmospheric plasma-generated reactive species affects chondrogenesis and bone formation.J. Tissue Eng. Regen. Med.201610977278210.1002/term.2224 27510797
    [Google Scholar]
  18. TanF. FangY. ZhuL. Al-RubeaiM. Controlling stem cell fate using cold atmospheric plasma.Stem Cell Res. Ther.202011136810.1186/s13287‑020‑01886‑2 32847625
    [Google Scholar]
  19. KeidarM. Plasma for cancer treatment.Plasma Sources Sci. Technol.201524303300110.1088/0963‑0252/24/3/033001
    [Google Scholar]
  20. SchlegelJ. Köritzer, J.; Boxhammer, V. Plasma in cancer treatment.Clin. Plasma Med.2013122710.1016/j.cpme.2013.08.001
    [Google Scholar]
  21. DubucA. MonsarratP. VirardF. MerbahiN. SarretteJ.P. Laurencin-DalicieuxS. CoustyS. Use of cold-atmospheric plasma in oncology: A concise systematic review.Ther. Adv. Med. Oncol.201810175883591878647510.1177/1758835918786475 30046358
    [Google Scholar]
  22. IzadjooM. Medical applications of cold atmospheric plasma: State of the science.J. Wound Care201827S9S4S1010.12968/jowc.2018.27.Sup9.S4
    [Google Scholar]
  23. BorgesA.C. LimaG.M.G. NishimeT.M.C. GontijoA.V.L. KostovK.G. Koga-ItoC.Y. Amplitude-modulated cold atmospheric pressure plasma jet for treatment of oral candidiasis: In vivo study.PLoS One2018136e019983210.1371/journal.pone.0199832 29949638
    [Google Scholar]
  24. BernhardtT. Plasma medicine: Applications of cold atmospheric pressure plasma in dermatology.Oxid. Med. Cell. Longev.20192019387392810.1155/2019/3873928
    [Google Scholar]
  25. LaroussiM. Plasma medicine: A brief introduction.Plasma201811476010.3390/plasma1010005
    [Google Scholar]
  26. KongM.G. KeidarM. OstrikovK. Plasmas meet nanoparticles—where synergies can advance the frontier of medicine.J. Phys. D Appl. Phys.2011441717401810.1088/0022‑3727/44/17/174018
    [Google Scholar]
  27. TorninJ. LabayC. TampieriF. GinebraM.P. CanalC. Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures.Nat. Protoc.20211662826285010.1038/s41596‑021‑00521‑5 33990800
    [Google Scholar]
  28. BekeschusS. LiebeltG. MenzJ. BernerJ. SagwalS.K. WendeK. WeltmannK.D. BoeckmannL. von WoedtkeT. MetelmannH.R. EmmertS. SchmidtA. Tumor cell metabolism correlates with resistance to gas plasma treatment: The evaluation of three dogmas.Free Radic. Biol. Med.2021167122810.1016/j.freeradbiomed.2021.02.035 33711420
    [Google Scholar]
  29. BruggemanP.J. KushnerM.J. LockeB.R. GardeniersJ.G.E. GrahamW.G. GravesD.B. Hofman-CarisR.C.H.M. MaricD. ReidJ.P. CerianiE. Fernandez RivasD. FosterJ.E. GarrickS.C. GorbanevY. HamaguchiS. IzaF. JablonowskiH. KlimovaE. KolbJ. KrcmaF. LukesP. MachalaZ. MarinovI. MariottiD. Mededovic ThagardS. MinakataD. NeytsE.C. PawlatJ. PetrovicZ.L. PfliegerR. ReuterS. SchramD.C. Schrِter, S.; Shiraiwa, M.; Tarabovل, B.; Tsai, P.A.; Verlet, J.R.R.; von Woedtke, T.; Wilson, K.R.; Yasui, K.; Zvereva, G. Plasma–liquid interactions: A review and roadmap.Plasma Sources Sci. Technol.201625505300210.1088/0963‑0252/25/5/053002
    [Google Scholar]
  30. HsuW.H. MasimF.C.P. PortaM. NguyenM.T. YonezawaT. BalčytisA. WangX. RosaL. JuodkazisS. HatanakaK. Femtosecond laser-induced hard X-ray generation in air from a solution flow of Au nano-sphere suspension using an automatic positioning system.Opt. Express20162418199942000110.1364/OE.24.019994 27607607
    [Google Scholar]
  31. CanalC. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review.Front. Chem. Sci. Eng.2019
    [Google Scholar]
  32. KajiyamaH. UtsumiF. NakamuraK. TanakaH. ToyokuniS. HoriM. KikkawaF. Future perspective of strategic non-thermal plasma therapy for cancer treatment.J. Clin. Biochem. Nutr.2017601333810.3164/jcbn.16‑65 28163380
    [Google Scholar]
  33. KeidarM. ShashurinA. VolotskovaO. Ann SteppM. SrinivasanP. SandlerA. TrinkB. Cold atmospheric plasma in cancer therapy.Phys. Plasmas201320505710110.1063/1.4801516
    [Google Scholar]
  34. AdamovichI. BaalrudS.D. BogaertsA. BruggemanP.J. CappelliM. ColomboV. CzarnetzkiU. EbertU. EdenJ.G. FaviaP. GravesD.B. HamaguchiS. HieftjeG. HoriM. KaganovichI.D. KortshagenU. KushnerM.J. MasonN.J. MazouffreS. ThagardS.M. MetelmannH-R. MizunoA. MoreauE. MurphyA.B. NiemiraB.A. OehrleinG.S. PetrovicZ.L. PitchfordL.C. PuY-K. RaufS. SakaiO. SamukawaS. StarikovskaiaS. TennysonJ. TerashimaK. TurnerM.M. van de SandenM.C.M. VardelleA. The 2017 Plasma Roadmap: Low temperature plasma science and technology.J. Phys. D Appl. Phys.2017503232300110.1088/1361‑6463/aa76f5
    [Google Scholar]
  35. HarleyJ.C. SuchowerskaN. McKenzieD.R. Cancer treatment with gas plasma and with gas plasma–activated liquid: Positives, potentials and problems of clinical translation.Biophys. Rev.2020124989100610.1007/s12551‑020‑00743‑z 32757133
    [Google Scholar]
  36. KimS. KimC.H. Applications of plasma-activated liquid in the medical field.Biomedicines2021911170010.3390/biomedicines9111700 34829929
    [Google Scholar]
  37. MohadesS. LaroussiM. SearsJ. BarekziN. RazaviH. Evaluation of the effects of a plasma activated medium on cancer cells.Phys. Plasmas2015221212200110.1063/1.4933367
    [Google Scholar]
  38. Mateu-SanzM. GinebraM.P. Tornín, J.; Canal, C. Cold atmospheric plasma enhances doxorubicin selectivity in metastasic bone cancer.Free Radic. Biol. Med.2022189324110.1016/j.freeradbiomed.2022.07.007 35843475
    [Google Scholar]
  39. BrunnerT.F. ProbstF.A. TroeltzschM. Schwenk-ZiegerS. ZimmermannJ.L. MorfillG. BeckerS. HarréusU. WelzC. Primary cold atmospheric plasma combined with low dose cisplatin as a possible adjuvant combination therapy for HNSCC cells-an in-vitro study.Head Face Med.20221812110.1186/s13005‑022‑00322‑5 35768853
    [Google Scholar]
  40. LeeC.M. JeongY.I.L. KookM.S. KimB.H. Combinatorial effect of cold atmosphere plasma (Cap) and the anticancer drug cisplatin on oral squamous cell cancer therapy.Int. J. Mol. Sci.20202120764610.3390/ijms21207646 33076565
    [Google Scholar]
  41. LiY. TangT. LeeH.J. SongK. Selective anti-cancer effects of plasma-activated medium and its high efficacy with cisplatin on hepatocellular carcinoma with cancer stem cell characteristics.Int. J. Mol. Sci.2021228395610.3390/ijms22083956 33921230
    [Google Scholar]
  42. KimS.Y. KimH.J. KangS.U. KimY.E. ParkJ.K. ShinY.S. KimY.S. LeeK. KimC.H. Non-thermal plasma induces AKT degradation through turn-on the MUL1 E3 ligase in head and neck cancer.Oncotarget2015632333823339610.18632/oncotarget.5407 26450902
    [Google Scholar]
  43. NakamuraK. PengY. UtsumiF. TanakaH. MizunoM. ToyokuniS. HoriM. KikkawaF. KajiyamaH. Novel intraperitoneal treatment with non-thermal plasma-activated medium inhibits metastatic potential of ovarian cancer cells.Sci. Rep.201771608510.1038/s41598‑017‑05620‑6 28729634
    [Google Scholar]
  44. LiaoX. SuY. LiuD. ChenS. HuY. YeX. WangJ. DingT. Application of atmospheric cold plasma-activated water (PAW) ice for preservation of shrimps (Metapenaeus ensis).Food Control20189430731410.1016/j.foodcont.2018.07.026
    [Google Scholar]
  45. ZhouR. ZhouR. WangP. XianY. Mai-ProchnowA. LuX. CullenP.J. OstrikovK.K. BazakaK. Plasma-activated water: Generation, origin of reactive species and biological applications.J. Phys. D Appl. Phys.2020533030300110.1088/1361‑6463/ab81cf
    [Google Scholar]
  46. ShenJ. TianY. LiY. MaR. ZhangQ. ZhangJ. FangJ. Bactericidal effects against S. aureus and physicochemical properties of plasma activated water stored at different temperatures.Sci. Rep.2016612850510.1038/srep28505 27346695
    [Google Scholar]
  47. BălanG.G. RoșcaI. UrsuE.L. DorofteiF. BostănaruA.C. HnatiucE. NăstasăV. ȘandruV. ȘtefănescuG. TrifanA. MareșM. Plasma-activated water: A new and effective alternative for duodenoscope reprocessing.Infect. Drug Resist.20181172773310.2147/IDR.S159243 29844690
    [Google Scholar]
  48. JoshiS.G. CooperM. YostA. PaffM. ErcanU.K. FridmanG. FriedmanG. FridmanA. BrooksA.D. Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.Antimicrob. Agents Chemother.20115531053106210.1128/AAC.01002‑10 21199923
    [Google Scholar]
  49. XuX. MullerJ.G. YeY. BurrowsC.J. DNA-protein cross-links between guanine and lysine depend on the mechanism of oxidation for formation of C5 vs C8 guanosine adducts.J. Am. Chem. Soc.2008130270370910.1021/ja077102a 18081286
    [Google Scholar]
  50. LunovO. Plasma will….Br. J. Dermatol.2016174348648710.1111/bjd.14428 27002574
    [Google Scholar]
  51. LiuT. WuL. BabuJ.P. HottelT.L. Garcia-GodoyF. HongL. Effects of atmospheric non-thermal argon/oxygen plasma on biofilm viability and hydrophobicity of oral bacteria.Am. J. Dent.20173015256 29178715
    [Google Scholar]
  52. LiY. PanJ. YeG. ZhangQ. WangJ. ZhangJ. FangJ. In vitro studies of the antimicrobial effect of non‐thermal plasma‐activated water as a novel mouthwash.Eur. J. Oral Sci.2017125646347010.1111/eos.12374 29024061
    [Google Scholar]
  53. ChenZ. Cold atmospheric plasma activated deionized water using helium, argon, and nitrogen as feeding gas for cancer therapy.arxiv2022202206121
    [Google Scholar]
  54. SuX. TianY. ZhouH. LiY. ZhangZ. JiangB. YangB. ZhangJ. FangJ. Inactivation efficacy of nonthermal plasma-activated solutions against Newcastle disease virus.Appl. Environ. Microbiol.2018849e02836e1710.1128/AEM.02836‑17 29475861
    [Google Scholar]
  55. LiuZ.C. GuoL. LiuD.X. RongM.Z. ChenH.L. KongM.G. Chemical kinetics and reactive species in normal saline activated by a surface air discharge.Plasma Process. Polym.2017144-5160011310.1002/ppap.201600113
    [Google Scholar]
  56. ChenZ. LinL. GjikaE. ChengX. CanadyJ. KeidarM. Selective treatment of pancreatic cancer cells by plasma-activated saline solutions.IEEE Trans. Radiat. Plasma Med. Sci.20182211612010.1109/TRPMS.2017.2761192
    [Google Scholar]
  57. JirásekV. LukešP. Formation of reactive chlorine species in saline solution treated by non-equilibrium atmospheric pressure He/O 2 plasma jet.Plasma Sources Sci. Technol.201928303501510.1088/1361‑6595/ab0930
    [Google Scholar]
  58. ZhangJ. QuK. ZhangX. WangB. WangW. BiJ. ZhangS. LiZ. KongM.G. LiuD. LiuC. Discharge plasma-activated saline protects against abdominal sepsis by promoting bacterial clearance.Shock20195219210110.1097/SHK.0000000000001232 30028781
    [Google Scholar]
  59. LanK.C. ChaoS.C. WuH.Y. ChiangC.L. WangC.C. LiuS.H. WengT.I. Salidroside ameliorates sepsis-induced acute lung injury and mortality via downregulating NF-κB and HMGB1 pathways through the upregulation of SIRT1.Sci. Rep.2017711202610.1038/s41598‑017‑12285‑8 28931916
    [Google Scholar]
  60. SriskandanS. AltmannD. The immunology of sepsis. J. Pathol.: A J.Pathol. Soci. Great Britain Ireland2008214221122310.1002/path.2274
    [Google Scholar]
  61. KongR. JiaG. ChengZ. WangY. MuM. WangS. PanS. GaoY. JiangH. DongD. SunB. Dihydroartemisinin enhances Apo2L/TRAIL-mediated apoptosis in pancreatic cancer cells via ROS-mediated up-regulation of death receptor 5.PLoS One201275e3722210.1371/journal.pone.0037222 22666346
    [Google Scholar]
  62. ZhangR. HumphreysI. SahuR.P. ShiY. SrivastavaS.K. In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway.Apoptosis200813121465147810.1007/s10495‑008‑0278‑6 19002586
    [Google Scholar]
  63. FreundE. LiedtkeK.R. van der LindeJ. MetelmannH.R. HeideckeC.D. ParteckeL.I. BekeschusS. Physical plasma-treated saline promotes an immunogenic phenotype in CT26 colon cancer cells in vitro and in vivo.Sci. Rep.20199163410.1038/s41598‑018‑37169‑3 30679720
    [Google Scholar]
  64. KryskoD.V. RavichandranK.S. VandenabeeleP. Macrophages regulate the clearance of living cells by calreticulin.Nat. Commun.201891464410.1038/s41467‑018‑06807‑9 30405101
    [Google Scholar]
  65. YamazakiT. HannaniD. Poirier-ColameV. LadoireS. LocherC. SistiguA. PradaN. AdjemianS. CataniJ.P. FreudenbergM. GalanosC. AndréF. KroemerG. ZitvogelL. Defective immunogenic cell death of HMGB1-deficient tumors: Compensatory therapy with TLR4 agonists.Cell Death Differ.2014211697810.1038/cdd.2013.72 23811849
    [Google Scholar]
  66. TanakaH. HosoiY. IshikawaK. YoshitakeJ. ShibataT. UchidaK. HashizumeH. MizunoM. OkazakiY. ToyokuniS. NakamuraK. KajiyamaH. KikkawaF. HoriM. Low temperature plasma irradiation products of sodium lactate solution that induce cell death on U251SP glioblastoma cells were identified.Sci. Rep.20211111848810.1038/s41598‑021‑98020‑w 34531507
    [Google Scholar]
  67. IshikawaK. HosoiY. TanakaH. JiangL. ToyokuniS. NakamuraK. KajiyamaH. KikkawaF. MizunoM. HoriM. Non-thermal plasma–activated lactate solution kills U251SP glioblastoma cells in an innate reductive manner with altered metabolism.Arch. Biochem. Biophys.202068810841410.1016/j.abb.2020.108414 32464090
    [Google Scholar]
  68. LiuY. NakatsuY. TanakaH. KogaK. IshikawaK. ShirataniM. HoriM. Effects of plasma-activated Ringer’s lactate solution on cancer cells: Evaluation of genotoxicity.Genes Environ.2023451310.1186/s41021‑023‑00260‑x 36639786
    [Google Scholar]
  69. Mateu-SanzM. TornínJ. BrulinB. KhlyustovaA. GinebraM.P. LayrolleP. CanalC. Cold plasma-treated ringer’s saline: A weapon to target osteosarcoma.Cancers202012122710.3390/cancers12010227 31963398
    [Google Scholar]
  70. Reyes-CarmonaJ.F. FelippeM.S. FelippeW.T. A phosphate-buffered saline intracanal dressing improves the biomineralization ability of mineral trioxide aggregate apical plugs.J. Endod.201036101648165210.1016/j.joen.2010.06.014 20850670
    [Google Scholar]
  71. TraylorM.J. PavlovichM.J. KarimS. HaitP. SakiyamaY. ClarkD.S. GravesD.B. Long-term antibacterial efficacy of air plasma-activated water.J. Phys. D Appl. Phys.2011444747200110.1088/0022‑3727/44/47/472001
    [Google Scholar]
  72. GrisetiE. Kolosnjaj-TabiJ. GibotL. FourquauxI. RolsM.P. YousfiM. MerbahiN. GolzioM. Pulsed electric field treatment enhances the cytotoxicity of plasma-activated liquids in a three-dimensional human colorectal cancer cell model.Sci. Rep.201991758310.1038/s41598‑019‑44087‑5 31110227
    [Google Scholar]
  73. YostA.D. JoshiS.G. Atmospheric nonthermal plasma-treated PBS inactivates Escherichia coli by oxidative DNA damage.PLoS One20151010e013990310.1371/journal.pone.0139903 26461113
    [Google Scholar]
  74. YanD. NourmohammadiN. BianK. MuradF. ShermanJ.H. KeidarM. Stabilizing the cold plasma-stimulated medium by regulating medium’s composition.Sci. Rep.2016612601610.1038/srep26016 27172875
    [Google Scholar]
  75. ShawP. KumarN. Privat-MaldonadoA. SmitsE. BogaertsA. Cold atmospheric plasma increases temozolomide sensitivity of three-dimensional glioblastoma spheroids via oxidative stress-mediated DNA damage.Cancers2021138178010.3390/cancers13081780 33917880
    [Google Scholar]
  76. KaushikN.K. GhimireB. LiY. AdhikariM. VeeranaM. KaushikN. JhaN. AdhikariB. LeeS.J. MasurK. von WoedtkeT. WeltmannK.D. ChoiE.H. Biological and medical applications of plasma-activated media, water and solutions.Biol. Chem.20184001396210.1515/hsz‑2018‑0226 30044757
    [Google Scholar]
  77. DuanJ. LuX. HeG. The selective effect of plasma activated medium in an in vitro co-culture of liver cancer and normal cells.J. Appl. Phys.2017121101330210.1063/1.4973484
    [Google Scholar]
  78. MihaiC.T. MihailaI. PasareM.A. PintilieR.M. CiorpacM. TopalaI. Cold atmospheric plasma-activated media improve paclitaxel efficacy on breast cancer cells in a combined treatment model.Curr. Issues Mol. Biol.20224451995201410.3390/cimb44050135 35678664
    [Google Scholar]
  79. LiY. LvY. TangM. ChoiE.H. WangJ. LvG. ZhuY. WangS. LiuY. Low‐temperature plasma‐jet‐activated medium inhibited tumorigenesis of lung adenocarcinoma in a 3D in vitro culture model.Plasma Process. Polym.20211811210004910.1002/ppap.202100049
    [Google Scholar]
  80. YangX. YangC. WangL. CaoZ. WangY. ChengC. ZhaoG. ZhaoY. Inhibition of basal cell carcinoma cells by cold atmospheric plasma activated solution and differential gene expression analysis.Int. J. Oncol.20205651262127310.3892/ijo.2020.5009 32319578
    [Google Scholar]
  81. JoA. JohH.M. BaeJ.H. KimS.J. ChungT.H. ChungJ.W. Plasma activated medium prepared by a bipolar microsecond-pulsed atmospheric pressure plasma jet array induces mitochondria-mediated apoptosis in human cervical cancer cells.PLoS One2022178e027280510.1371/journal.pone.0272805 35939492
    [Google Scholar]
  82. JoA. BaeJ.H. YoonY.J. ChungT.H. LeeE.W. KimY.H. JohH.M. ChungJ.W. Plasma-activated medium induces ferroptosis by depleting FSP1 in human lung cancer cells.Cell Death Dis.202213321210.1038/s41419‑022‑04660‑9 35256587
    [Google Scholar]
  83. SersenováD. The effect of plasma activated medium and PBS on human melanoma cells compared with other cancer and normal cells.Preprints2021, 2021202101006810.20944/preprints202101.0068.v1
    [Google Scholar]
  84. NguyenM.K. LeeD.S. Injectable biodegradable hydrogels.Macromol. Biosci.201010656357910.1002/mabi.200900402 20196065
    [Google Scholar]
  85. LiuZ. ZhengY. DangJ. ZhangJ. DongF. WangK. ZhangJ. A novel antifungal plasma-activated hydrogel.ACS Appl. Mater. Interfaces20191126229412294910.1021/acsami.9b04700 31184465
    [Google Scholar]
  86. Mørch, Ý.A.; Donati, I.; Strand, B.L.; Skjåk-Bræk, G. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads.Biomacromolecules2006751471148010.1021/bm060010d 16677028
    [Google Scholar]
  87. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  88. LabayC. HamoudaI. TampieriF. GinebraM.P. CanalC. Production of reactive species in alginate hydrogels for cold atmospheric plasma-based therapies.Sci. Rep.2019911616010.1038/s41598‑019‑52673‑w 31695110
    [Google Scholar]
  89. BelloA.B. KimD. KimD. ParkH. LeeS.H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications.Tissue Eng. Part B Rev.202026216418010.1089/ten.teb.2019.0256 31910095
    [Google Scholar]
  90. EchaveM.C. Saenz del BurgoL. PedrazJ.L. OriveG. Gelatin as biomaterial for tissue engineering.Curr. Pharm. Des.2017232435673584 28494717
    [Google Scholar]
  91. LabayC. Roldán, M.; Tampieri, F.; Stancampiano, A.; Bocanegra, P.E.; Ginebra, M.P.; Canal, C. Enhanced generation of reactive species by cold plasma in gelatin solutions for selective cancer cell death.ACS Appl. Mater. Interfaces20201242472564726910.1021/acsami.0c12930 33021783
    [Google Scholar]
  92. HamoudaR.A. Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica.Nature20199111710.1038/s41598‑019‑49444‑y
    [Google Scholar]
  93. Solé‐MartíX. Ceramic‐hydrogel composite as carrier for cold‐plasma reactive‐species: Safety and osteogenic capacity in vivo.Plasma Process. Polym.20222022e2200155
    [Google Scholar]
  94. BruggemanP. LeysC. Non-thermal plasmas in and in contact with liquids.J. Phys. D Appl. Phys.200942505300110.1088/0022‑3727/42/5/053001
    [Google Scholar]
  95. Silva-TeixeiraR. LaranjoM. LopesB. Almeida-FerreiraC. GonçalvesA.C. RodriguesT. MatafomeP. Sarmento-RibeiroA.B. CarameloF. BotelhoM.F. Plasma activated media and direct exposition can selectively ablate retinoblastoma cells.Free Radic. Biol. Med.202117130231310.1016/j.freeradbiomed.2021.05.027 34022401
    [Google Scholar]
  96. Solé-MartíX. VilellaT. LabayC. TampieriF. GinebraM.P. CanalC. Thermosensitive hydrogels to deliver reactive species generated by cold atmospheric plasma: A case study with methylcellulose.Biomater. Sci.202210143845385510.1039/D2BM00308B 35678531
    [Google Scholar]
  97. ZhaiS. Successful treatment of vitiligo with cold atmospheric plasma‒activated hydrogel.J. Invest. Dermatol.2021141112710271910.1016/j.jid.2021.04.019
    [Google Scholar]
  98. ZhangH. XuS. ZhangJ. WangZ. LiuD. GuoL. ChengC. ChengY. XuD. KongM.G. RongM. ChuP.K. Plasma-activated thermosensitive biogel as an exogenous ROS carrier for post-surgical treatment of cancer.Biomaterials202127612105710.1016/j.biomaterials.2021.121057 34399120
    [Google Scholar]
  99. RivetC-A. Impaired signaling in senescing T cells: Investigation of the role of reactive oxygen species using microfluidic platforms and computational modeling.Georgia Institute of Technology2012
    [Google Scholar]
  100. CanoI. SelivanovV. Gomez-CabreroD. TegnérJ. RocaJ. WagnerP.D. CascanteM. Oxygen pathway modeling estimates high reactive oxygen species production above the highest permanent human habitation.PLoS One2014911e11106810.1371/journal.pone.0111068 25375931
    [Google Scholar]
  101. MarkevichN.I. MarkevichL.N. HoekJ.B. Computational modeling analysis of generation of reactive oxygen species by mitochondrial assembled and disintegrated complex II.Front. Physiol.20201155772110.3389/fphys.2020.557721 33178032
    [Google Scholar]
  102. ChenQ. LesnefskyE.J. Time to target mitochondrial reactive oxygen species generation from complex I.Function202232zqac01010.1093/function/zqac01035359911
    [Google Scholar]
  103. LuX. KeidarM. LaroussiM. ChoiE. SziliE.J. OstrikovK. Transcutaneous plasma stress: From soft-matter models to living tissues.Mater. Sci. Eng. Rep.2019138365910.1016/j.mser.2019.04.002
    [Google Scholar]
  104. ThulliezM. BastinO. NonclercqA. DelchambreA. ReniersF. Gel models to assess distribution and diffusion of reactive species from cold atmospheric plasma: An overview for plasma medicine applications.J. Phys. D Appl. Phys.2021544646300110.1088/1361‑6463/ac1623
    [Google Scholar]
  105. ChupraditS. WidjajaG. Radhi MajeedB. KuznetsovaM. AnsariM.J. SuksatanW. Turki JalilA. Ghazi EsfahaniB. Recent advances in cold atmospheric plasma (CAP) for breast cancer therapy.Cell Biol. Int.202347232734010.1002/cbin.11939 36342241
    [Google Scholar]
  106. NiJ. CozziP. HaoJ. DuanW. GrahamP. KearsleyJ. LiY. Cancer stem cells in prostate cancer chemoresistance.Curr. Cancer Drug Targets201414322524010.2174/1568009614666140328152459 24720286
    [Google Scholar]
  107. DaiX. ZhuK. Cold atmospheric plasma: Novel opportunities for tumor microenvironment targeting.Cancer Med.20231267189720610.1002/cam4.5491 36762766
    [Google Scholar]
  108. IsbaryG. ShimizuT. LiY.F. StolzW. ThomasH.M. MorfillG.E. ZimmermannJ.L. Cold atmospheric plasma devices for medical issues.Expert Rev. Med. Devices201310336737710.1586/erd.13.4 23668708
    [Google Scholar]
  109. AryalS. BishtG. New paradigm for a targeted cancer therapeutic approach: A short review on potential synergy of gold nanoparticles and cold atmospheric plasma.Biomedicines2017543810.3390/biomedicines5030038 28671579
    [Google Scholar]
  110. Privat-MaldonadoA. Ros from physical plasmas: Redox chemistry for biomedical therapy.Oxid. Med. Cell. Longev.20192019906209810.1155/2019/9062098
    [Google Scholar]
  111. YanD. ShermanJ.H. KeidarM. Cold atmospheric plasma, a novel promising anti-cancer treatment modality.Oncotarget201789159771599510.18632/oncotarget.13304 27845910
    [Google Scholar]
  112. ŽivanićM. Espona-NogueraA. LinA. CanalC. Current state of cold atmospheric plasma and cancer‐immunity cycle: Therapeutic relevance and overcoming clinical limitations using hydrogels.Adv. Sci.2023108220580310.1002/advs.202205803 36670068
    [Google Scholar]
  113. AbdollahimajdF. Cold plasma as a potential adjunctive therapy in COVID-19: Report of three cases.Authorea Preprints2021, 20219851527310.22541/au.160864749.98515273/v3
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018268207231124014915
Loading
/content/journals/cdd/10.2174/0115672018268207231124014915
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cold atmosphere plasma; control release; delivery; electrons; plasma treatment; RONS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test