Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Although the brain is very accessible to nutrition and oxygen, it can be difficult to deliver medications to malignant brain tumours. To get around some of these issues and enable the use of therapeutic pharmacological substances that wouldn't typically cross the blood-brain barrier (BBB), convection-enhanced delivery (CED) has been developed. It is a cutting-edge strategy that gets beyond the blood-brain barrier and enables targeted drug administration to treat different neurological conditions such as brain tumours, Parkinson's disease, and epilepsy. Utilizing pressure gradients to spread the medicine across the target area is the main idea behind this diffusion mechanism. Through one to several catheters positioned stereotactically directly within the tumour mass, around the tumour, or in the cavity created by the resection, drugs are given. This method can be used in a variety of drug classes, including traditional chemotherapeutics and cutting-edge investigational targeted medications by using positive-pressure techniques. The drug delivery volume must be optimized for an effective infusion while minimizing backflow, which causes side effects and lowers therapeutic efficacy. Therefore, this technique provides a promising approach for treating disorders of the central nervous system (CNS).

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018266501231207095127
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. BrethourM.K. NyströmK.V. BroughtonS. KiernanT.E. PerezA. HandlerD. SwatzellV. YangJ.J. StarrM. SeagravesK.B. CudlipF. BibyS. ToccoS. OwensP. AlexandrovA.W. Controversies in acute stroke treatment.AACN Adv. Crit. Care201223215817210.4037/NCI.0b013e31824fe1b6 22543489
    [Google Scholar]
  2. GabathulerR. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases.Neurobiol. Dis.2010371485710.1016/j.nbd.2009.07.028 19664710
    [Google Scholar]
  3. PathanS. IqbalZ. ZaidiS. TalegaonkarS. VohraD. JainG. AzeemA. JainN. LalaniJ. KharR. AhmadF. CNS drug delivery systems: Novel approaches.Recent Pat. Drug Deliv. Formul.200931718910.2174/187221109787158355 19149731
    [Google Scholar]
  4. D’AmicoR.S. AghiM.K. VogelbaumM.A. BruceJ.N. Convection-enhanced drug delivery for glioblastoma: a review.J. Neurooncol.2021151341542710.1007/s11060‑020‑03408‑9 33611708
    [Google Scholar]
  5. ZlokovicB.V. The blood-brain barrier in health and chronic neurodegenerative disorders.Neuron200857217820110.1016/j.neuron.2008.01.003 18215617
    [Google Scholar]
  6. DanemanR. The blood–brain barrier in health and disease.Ann. Neurol.201272564867210.1002/ana.23648 23280789
    [Google Scholar]
  7. MulvihillJ.J.E. CunnaneE.M. RossA.M. DuskeyJ.T. TosiG. GrabruckerA.M. Drug delivery across the blood–brain barrier: Recent advances in the use of nanocarriers.Nanomedicine202015220521410.2217/nnm‑2019‑0367 31916480
    [Google Scholar]
  8. DhanawatM. GuptaS. MehtaD.K. DasR. Design, synthesis and enhanced bbb penetration studies of l-serine-tethered nipecotic acid-prodrug.Drug Res.20217129410310.1055/a‑1290‑0119 33241549
    [Google Scholar]
  9. DhanawatM. GuptaS. DasR. MehtaD.K. Lat1: A potential cerebrovascular target to breach Bbb.Indian Drugs202259310.53879/id.59.03.12953
    [Google Scholar]
  10. PatelM.M. PatelB.M. Crossing the blood–brain barrier: Recent advances in drug delivery to the brain.CNS Drugs201731210913310.1007/s40263‑016‑0405‑9 28101766
    [Google Scholar]
  11. DanemanR. PratA. The blood-brain barrier.Cold Spring Harb. Perspect. Biol.201571a02041210.1101/cshperspect.a020412 25561720
    [Google Scholar]
  12. PardridgeW.M. Drug transport in brain via the cerebrospinal fluid.Fluids Barriers CNS201181710.1186/2045‑8118‑8‑7 21349155
    [Google Scholar]
  13. LeeceR. XuJ. OstromQ.T. ChenY. KruchkoC. Barnholtz-SloanJ.S. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007.Neuro-oncol.201719111553156410.1093/neuonc/nox091 28482030
    [Google Scholar]
  14. DeAngelisL.M. Chemotherapy for brain tumors—a new beginning.Mass Medical Soc.200510361038
    [Google Scholar]
  15. SampsonJ.H. MausM.V. JuneC.H. Immunotherapy for brain tumors.J. Clin. Oncol.201735212450245610.1200/JCO.2017.72.8089 28640704
    [Google Scholar]
  16. BurnsM.J. WeissW. Targeted therapy of brain tumors utilizing neural stem and progenitor cells.Front. Biosci.20038595310.2741/953 12456351
    [Google Scholar]
  17. BoboR.H. LaskeD.W. AkbasakA. MorrisonP.F. DedrickR.L. OldfieldE.H. Convection-enhanced delivery of macromolecules in the brain.Proc. Natl. Acad. Sci.19949162076208010.1073/pnas.91.6.2076 8134351
    [Google Scholar]
  18. MorrisonP.F. LaskeD.W. BoboH. OldfieldE.H. DedrickR.L. High-flow microinfusion: Tissue penetration and pharmacodynamics.Am. J. Physiol.19942661 Pt 2R292R305 8304553
    [Google Scholar]
  19. LonserR.R. WalbridgeS. GarmestaniK. ButmanJ.A. WaltersH.A. VortmeyerA.O. MorrisonP.F. BrechbielM.W. OldfieldE.H. Successful and safe perfusion of the primate brainstem: In vivo magnetic resonance imaging of macromolecular distribution during infusion.J. Neurosurg.200297490591310.3171/jns.2002.97.4.0905 12405380
    [Google Scholar]
  20. NguyenT.T. PannuY.S. SungC. DedrickR.L. WalbridgeS. BrechbielM.W. GarmestaniK. BeitzelM. YordanovA.T. OldfieldE.H. Convective distribution of macromolecules in the primate brain demonstrated using computerized tomography and magnetic resonance imaging.J. Neurosurg.200398358459010.3171/jns.2003.98.3.0584 12650432
    [Google Scholar]
  21. BaruaN.U. GillS.S. LoveS. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations.Brain Pathol.201424211712710.1111/bpa.12082 23944716
    [Google Scholar]
  22. Corem-SalkmonE. RamZ. DanielsD. PerlsteinB. LastD. SalomonS. TamarG. ShneorR. GuezD. MargelS. MardorY. Convection-enhanced delivery of methotrexate-loaded maghemite nanoparticles.Int. J. Nanomedicine2011615951602 21904449
    [Google Scholar]
  23. MehtaA.M. SonabendA.M. BruceJ.N. Convection-enhanced delivery.Neurotherapeutics201714235837110.1007/s13311‑017‑0520‑4 28299724
    [Google Scholar]
  24. HeissJ.D. WalbridgeS. MorrisonP. HamptonR.R. SatoS. VortmeyerA. ButmanJ.A. O’MalleyJ. VidwanP. DedrickR.L. OldfieldE.H. Local distribution and toxicity of prolonged hippocampal infusion of muscimol.J. Neurosurg.200510361035104510.3171/jns.2005.103.6.1035 16381190
    [Google Scholar]
  25. LiebermanD.M. LaskeD.W. MorrisonP.F. BankiewiczK.S. OldfieldE.H. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion.J. Neurosurg.19958261021102910.3171/jns.1995.82.6.1021 7539062
    [Google Scholar]
  26. KsendzovskyA. WalbridgeS. SaundersR.C. AsthagiriA.R. HeissJ.D. LonserR.R. Convection-enhanced delivery of M13 bacteriophage to the brain.J. Neurosurg.2012117219720310.3171/2012.4.JNS111528 22606981
    [Google Scholar]
  27. BarkerF.G.II ChangS.M. GutinP.H. MalecM.K. McDermottM.W. PradosM.D. WilsonC.B. Survival and functional status after resection of recurrent glioblastoma multiforme.Neurosurgery199842470971910.1097/00006123‑199804000‑00013 9574634
    [Google Scholar]
  28. RaghavanR. BradyM.L. Rodríguez-PonceM.I. HartlepA. PedainC. SampsonJ.H. Convection-enhanced delivery of therapeutics for brain disease, and its optimization.Neurosurg. Focus2006204E1210.3171/foc.2006.20.4.7 16709017
    [Google Scholar]
  29. YunJ. RothrockR.J. CanollP. BruceJ.N. Convection-enhanced delivery for targeted delivery of antiglioma agents: The translational experience.J. Drug Deliv.2013201310757310.1155/2013/107573
    [Google Scholar]
  30. MuradG.J.A. WalbridgeS. MorrisonP.F. SzerlipN. ButmanJ.A. OldfieldE.H. LonserR.R. Image-guided convection-enhanced delivery of gemcitabine to the brainstem.J. Neurosurg.2007106235135610.3171/jns.2007.106.2.351 17410722
    [Google Scholar]
  31. AsthagiriA.R. WalbridgeS. HeissJ.D. LonserR.R. Effect of concentration on the accuracy of convective imaging distribution of a gadolinium-based surrogate tracer.J. Neurosurg.2011115346747310.3171/2011.3.JNS101381 21619409
    [Google Scholar]
  32. HuynhN.T. PassiraniC. Allard-VannierE. LemaireL. RouxJ. GarcionE. VessieresA. BenoitJ.P. Administration-dependent efficacy of ferrociphenol lipid nanocapsules for the treatment of intracranial 9L rat gliosarcoma.Int. J. Pharm.20124231556210.1016/j.ijpharm.2011.04.037 21536115
    [Google Scholar]
  33. RaghavanR. BradyM.L. SampsonJ.H. Delivering therapy to target: Improving the odds for successful drug development.Ther. Deliv.20167745748110.4155/tde‑2016‑0016 27403630
    [Google Scholar]
  34. UngT.H. MaloneH. CanollP. BruceJ.N. Convection-enhanced delivery for glioblastoma: Targeted delivery of antitumor therapeutics.CNS Oncol.20154422523410.2217/cns.15.12 26103989
    [Google Scholar]
  35. WolfK.J. ChenJ. CoombesJ.D. AghiM.K. KumarS. Dissecting and rebuilding the glioblastoma microenvironment with engineered materials.Nat. Rev. Mater.201941065166810.1038/s41578‑019‑0135‑y 32647587
    [Google Scholar]
  36. SonabendA.M. StuartR.M. YunJ. YanagiharaT. MohajedH. DashnawS. BruceS.S. BrownT. RomanovA. SebastianM. Arias-MendozaF. BagiellaE. CanollP. BruceJ.N. Prolonged intracerebral convection-enhanced delivery of topotecan with a subcutaneously implantable infusion pump.Neuro-oncol.201113888689310.1093/neuonc/nor051 21750007
    [Google Scholar]
  37. LonserR.R. SarntinoranontM. MorrisonP.F. OldfieldE.H. Convection-enhanced delivery to the central nervous system.J. Neurosurg.2015122369770610.3171/2014.10.JNS14229 25397365
    [Google Scholar]
  38. CasanovaF. CarneyP.R. SarntinoranontM. Effect of needle insertion speed on tissue injury, stress, and backflow distribution for convection-enhanced delivery in the rat brain.PLoS One201494e9491910.1371/journal.pone.0094919 24776986
    [Google Scholar]
  39. SillayK.A. McClatchyS.G. ShepherdB.A. VenableG.T. FuehrerT.S. Image-guided convection-enhanced delivery into agarose gel models of the brain.J. Vis. Exp.201487e51466[Journal of Visualized Experiments]. 24894268
    [Google Scholar]
  40. JainR.K. BaxterL.T. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure.Cancer Res.19884824 Pt 170227032 3191477
    [Google Scholar]
  41. GroothuisD.R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery.Neuro-oncol.200021455910.1093/neuonc/2.1.45 11302254
    [Google Scholar]
  42. GroothuisD.R. WardS. ItskovichA.C. DobrescuC. AllenC.V. DillsC. LevyR.M. Comparison of 14C-sucrose delivery to the brain by intravenous, intraventricular, and convection-enhanced intracerebral infusion.J. Neurosurg.199990232133110.3171/jns.1999.90.2.0321 9950504
    [Google Scholar]
  43. WarrenK.E. Beyond the blood:brain barrier: The importance of central nervous system (cns) pharmacokinetics for the treatment of cns tumors, including diffuse intrinsic pontine glioma.Front. Oncol.2018823910.3389/fonc.2018.00239 30018882
    [Google Scholar]
  44. TosiU. SouweidaneM. Convection enhanced delivery for diffuse intrinsic pontine glioma: Review of a single institution experience.Pharmaceutics202012766010.3390/pharmaceutics12070660 32674336
    [Google Scholar]
  45. ChenP.Y. OzawaT. DrummondD.C. KalraA. FitzgeraldJ.B. KirpotinD.B. WeiK.C. ButowskiN. PradosM.D. BergerM.S. ForsayethJ.R. BankiewiczK. JamesC.D. Comparing routes of delivery for nanoliposomal irinotecan shows superior anti-tumor activity of local administration in treating intracranial glioblastoma xenografts.Neuro-oncol.201315218919710.1093/neuonc/nos305 23262509
    [Google Scholar]
  46. ChenM.Y. LonserR.R. MorrisonP.F. GovernaleL.S. OldfieldE.H. Variables affecting convection-enhanced delivery to the striatum: a systematic examination of rate of infusion, cannula size, infusate concentration, and tissue—cannula sealing time.J. Neurosurg.199990231532010.3171/jns.1999.90.2.0315 9950503
    [Google Scholar]
  47. MorrisonP.F. ChenM.Y. ChadwickR.S. LonserR.R. OldfieldE.H. Focal delivery during direct infusion to brain: role of flow rate, catheter diameter, and tissue mechanics.Am. J. Physiol.19992774R1218R1229 10516265
    [Google Scholar]
  48. StineC.A. MunsonJ.M. Convection-enhanced delivery: Connection to and impact of interstitial fluid flow.Front. Oncol.2019996610.3389/fonc.2019.00966 31632905
    [Google Scholar]
  49. FiandacaM.S. ForsayethJ.R. DickinsonP.J. BankiewiczK.S. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases.Neurotherapeutics20085112312710.1016/j.nurt.2007.10.064 18164491
    [Google Scholar]
  50. ZhouZ. SinghR. SouweidaneM.M. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment.Curr. Neuropharmacol.201715111612810.2174/1570159X14666160614093615 27306036
    [Google Scholar]
  51. BidrosD.S. LiuJ.K. VogelbaumM.A. Future of convection-enhanced delivery in the treatment of brain tumors.Future Oncol.20106111712510.2217/fon.09.135 20021213
    [Google Scholar]
  52. OlsonJ.J. ZhangZ. DillehayD. StubbsJ. Assessment of a balloon-tipped catheter modified for intracerebral convection-enhanced delivery.J. Neurooncol.200889215916810.1007/s11060‑008‑9612‑7 18458816
    [Google Scholar]
  53. OliviA. GrossmanS.A. TatterS. BarkerF. JudyK. OlsenJ. BruceJ. HiltD. FisherJ. PiantadosiS. Dose escalation of carmustine in surgically implanted polymers in patients with recurrent malignant glioma: A new approaches to brain tumor therapy CNS consortium trial.J. Clin. Oncol.20032191845184910.1200/JCO.2003.09.041 12721262
    [Google Scholar]
  54. SampsonH. RaghavanR. BradyM.L. ProvenzaleM. HerndonE.I.I. CroteauD. FriedmanA.H. ReardonD.A. ColemanR.E. WongT. BignerD.D. PastanI. Rodríguez-PonceM.I. TannerP. PuriR. PedainC. Clinical utility of a patient-specific algorithm for simulating intracerebral drug infusions.Neuro-oncol.20079334335310.1215/15228517‑2007‑007 17435179
    [Google Scholar]
  55. VogelbaumM.A. BrewerC. BarnettG.H. MohammadiA.M. PeereboomD.M. AhluwaliaM.S. GaoS. First-in-human evaluation of the cleveland multiport catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: Results of pilot trial 1.J. Neurosurg.2018130211010.3171/2017.10.JNS171845 29652233
    [Google Scholar]
  56. SpinazziE.F. ArgenzianoM.G. UpadhyayulaP.S. BanuM.A. NeiraJ.A. HigginsD.M.O. WuP.B. PereiraB. MahajanA. HumalaN. Al-DalahmahO. ZhaoW. SaveA.V. GillB.J.A. BoyettD.M. MarieT. FurnariJ.L. SudhakarT.D. StopkaS.A. ReganM.S. CataniaV. GoodL. ZacharoulisS. BehlM. PetridisP. JambawalikarS. MintzA. LignelliA. AgarN.Y.R. SimsP.A. WelchM.R. LassmanA.B. IwamotoF.M. D’AmicoR.S. GrinbandJ. CanollP. BruceJ.N. Chronic convection-enhanced delivery of topotecan for patients with recurrent glioblastoma: A first-in-patient, single-centre, single-arm, phase 1b trial.Lancet Oncol.202223111409141810.1016/S1470‑2045(22)00599‑X 36243020
    [Google Scholar]
  57. EllingsonB.M. SampsonJ. AchrolA.S. AghiM.K. BankiewiczK. WangC. BexonM. BremS. BrennerA. ChowdharyS. FloydJ.R. HanS. KesariS. RandazzoD. VogelbaumM.A. VrionisF. ZabekM. ButowskiN. CoelloM. MerchantN. MerchantF. Modified RANO, Immunotherapy RANO, and Standard RANO Response to Convection-Enhanced Delivery of IL4R-Targeted Immunotoxin MDNA55 in Recurrent Glioblastoma.Clin. Cancer Res.202127143916392510.1158/1078‑0432.CCR‑21‑0446 33863808
    [Google Scholar]
  58. ZhanW. WangC.H. Convection enhanced delivery of chemotherapeutic drugs into brain tumour.J. Control. Release2018271748710.1016/j.jconrel.2017.12.020 29274437
    [Google Scholar]
  59. ZhanW. Convection enhanced delivery of anti-angiogenic and cytotoxic agents in combination therapy against brain tumour.Eur. J. Pharm. Sci.202014110509410.1016/j.ejps.2019.105094 31626962
    [Google Scholar]
  60. ZhanW. WangC.H. Convection enhanced delivery of liposome encapsulated doxorubicin for brain tumour therapy.J. Control. Release201828521222910.1016/j.jconrel.2018.07.006 30009891
    [Google Scholar]
  61. ZhangC. NanceE.A. MastorakosP. ChisholmJ. BerryS. EberhartC. TylerB. BremH. SukJ.S. HanesJ. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats.J. Control. Release201726311211910.1016/j.jconrel.2017.03.007 28279797
    [Google Scholar]
  62. WeiH.-J. UpadhyayulaP.S. PouliopoulosA.N. EnglanderZ.K. ZhangX. JanC.-I. GuoJ. MelaA. ZhangZ. WangT.J. Focused ultrasound-mediated blood-brain barrier opening increases delivery and efficacy of etoposide for glioblastoma treatment.International Journal of Radiation Oncology* Biology* Physics2021110253955010.1016/j.ijrobp.2020.12.019
    [Google Scholar]
  63. BhandariA. JaiswalK. SinghA. ZhanW. Convection-enhanced delivery of antiangiogenic drugs and liposomal cytotoxic drugs to heterogeneous brain tumor for combination therapy.Cancers20221417417710.3390/cancers14174177 36077714
    [Google Scholar]
  64. YoungJ.S. BernalG. PolsterS.P. NunezL. LarsenG.F. MansourN. PodellM. YaminiB. Convection-enhanced delivery of polymeric nanoparticles encapsulating chemotherapy in canines with spontaneous supratentorial tumors.World Neurosurg.2018117e698e70410.1016/j.wneu.2018.06.114 29960096
    [Google Scholar]
  65. Nordling-DavidM.M. YaffeR. GuezD. MeirowH. LastD. GradE. SalomonS. SharabiS. Levi-KalismanY. GolombG. MardorY. Liposomal temozolomide drug delivery using convection enhanced delivery.J. Control. Release201726113814610.1016/j.jconrel.2017.06.028 28666727
    [Google Scholar]
  66. ChenE.M. QuijanoA.R. SeoY.E. JacksonC. JosowitzA.D. NoorbakhshS. MerlettiniA. SundaramR.K. FocareteM.L. JiangZ. BindraR.S. SaltzmanW.M. Biodegradable PEG-poly(ω-pentadecalactone-co-p-dioxanone) nanoparticles for enhanced and sustained drug delivery to treat brain tumors.Biomaterials201817819320310.1016/j.biomaterials.2018.06.024 29936153
    [Google Scholar]
  67. ChaudharyR. RohillaM. ChauhanS. SainiM. AmanS. SinglaH. AhmedS. ShriwastavS. KaurN. DevJ. ChalotraR. The pandemic’s unseen wounds: COVID-19’s profound effects on mental health.Ann. Med. Surg.202385104954496310.1097/MS9.0000000000001223
    [Google Scholar]
  68. DebinskiW. TatterS.B. Convection-enhanced delivery for the treatment of brain tumors.Expert Rev. Neurother.20099101519152710.1586/ern.09.99 19831841
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018266501231207095127
Loading
/content/journals/cdd/10.2174/0115672018266501231207095127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test