Skip to content
2000
Volume 21, Issue 11
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

Background

Breviscapine (BVP) is one of the extracts of several flavonoids of Erigeron breviscapus, which has been widely used in the treatment of cerebral infarction and its sequelae, cerebral thrombus, coronary heart disease, and angina pectoris. But BVP has poor solubility.

Objective

The objective of the study is to develop mesoporous silica nanoparticles (MSNs) that can be loaded with a drug with poor water solubility. The MSNs, which were designed for oral administration, enhanced both the dissolution rate and drug loading capacity.

Methods

The use of MSNs as an oral drug delivery system was investigated by SEM, TEM, BET-BJH, XRD, FT-IR, and HPLC. Additionally, we examined the oral bioavailability of BVP loaded onto MSNs and examined the cellular cytotoxicity of MSNs.

Results

The results indicate that the oral bioavailability of BVP after loading onto MSNs was greater than that of a marketed product. Furthermore, we studied the mechanism by which MSNs enhance the oral absorption of BVP.

Conclusion

MSNs have the potential to enhance the oral bioavailability of poorly water-soluble drugs by accelerating the drug dissolution rate.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/0115672018273792240101062603
2024-12-01
2025-01-24
Loading full text...

Full text loading...

References

  1. KesisoglouF. PanmaiS. WuY. Nanosizing - Oral formulation development and biopharmaceutical evaluation.Adv. Drug Deliv. Rev.200759763164410.1016/j.addr.2007.05.003 17601629
    [Google Scholar]
  2. TakagiT. RamachandranC. BermejoM. YamashitaS. YuL.X. AmidonG.L. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan.Mol. Pharm.20063663164310.1021/mp0600182 17140251
    [Google Scholar]
  3. LipinskiC. Poor aqueous solubility-an industry wide problem in drug discovery.Am. Pharm. Rev.200258285
    [Google Scholar]
  4. JambhrunkarS. QuZ. PopatA. KarmakarS. XuC. YuC. Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles.J. Colloid Interface Sci.201443421822510.1016/j.jcis.2014.08.019 25203914
    [Google Scholar]
  5. VasconcelosT. SarmentoB. CostaP. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs.Drug Discov. Today20071223-241068107510.1016/j.drudis.2007.09.005 18061887
    [Google Scholar]
  6. BarbéC. BartlettJ. KongL. FinnieK. LinH.Q. LarkinM. CallejaS. BushA. CallejaG. Silica particles: A novel drug-delivery system.Adv. Mater.200416211959196610.1002/adma.200400771
    [Google Scholar]
  7. Vallet-RegiM. RámilaA. del RealR.P. Pérez-ParienteJ. A new property of MCM-41: Drug delivery system.Chem. Mater.200113230831110.1021/cm0011559
    [Google Scholar]
  8. RosenholmJ.M. SahlgrenC. LindénM. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles – opportunities & challenges.Nanoscale20102101870188310.1039/c0nr00156b 20730166
    [Google Scholar]
  9. HeQ. ZhangZ. GaoY. ShiJ. LiY. Intracellular localization and cytotoxicity of spherical mesoporous silica nano- and microparticles.Small20095232722272910.1002/smll.200900923 19780070
    [Google Scholar]
  10. LiZ. BarnesJ.C. BosoyA. StoddartJ.F. ZinkJ.I. Mesoporous silica nanoparticles in biomedical applications.Chem. Soc. Rev.20124172590260510.1039/c1cs15246g 22216418
    [Google Scholar]
  11. LeiC. LiuP. ChenB. MaoY. EngelmannH. ShinY. JaffarJ. HellstromI. LiuJ. HellstromK.E. Local release of highly loaded antibodies from functionalized nanoporous support for cancer immunotherapy.J. Am. Chem. Soc.2010132206906690710.1021/ja102414t 20433206
    [Google Scholar]
  12. ZhouY. TanL.L. LiQ.L. QiuX.L. QiA.D. TaoY. YangY.W. Acetylcholine-triggered cargo release from supramolecular nanovalves based on different macrocyclic receptors.Chemistry201420112998300410.1002/chem.201304864 24585543
    [Google Scholar]
  13. YangG. LiZ. WuF. ChenM. WangR. ZhuH. LiQ. YuanY. Improving solubility and bioavailability of breviscapine with mesoporous silica nanoparticles prepared using ultrasound-assisted solution-enhanced dispersion by supercritical fluids method.Int. J. Nanomedicine2020151661167510.2147/IJN.S238337 32210559
    [Google Scholar]
  14. HuL. SunH.R. ZhaoQ.F. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine.Mater. Sci. Eng. C Mater. Biol. Appl201547313324
    [Google Scholar]
  15. KhanK.U. MinhasM.U. BadshahS.F. SuhailM. AhmadA. IjazS. Overview of nanoparticulate strategies for solubility enhancement of poorly soluble drugs.Life Sci.202229112030110.1016/j.lfs.2022.120301 34999114
    [Google Scholar]
  16. JiangX.H. LiS.H. LanK. YangJ.Y. ZhouJ. [Study on the pharmacokinetics of scutellarin in dogs].Yao Xue Xue Bao2003385371373 12958843
    [Google Scholar]
  17. LiuY.M. LinA.H. ChenH. ZengF.D. Study on pharmacokinetics of scutellarin in rabbits.Yao Xue Xue Bao20033810775778 14730903
    [Google Scholar]
  18. GohA.S.W. ChungA.Y.F. LoR.H.G. LauT.N. YuS.W.K. ChngM. SatchithananthamS. LoongS.L.E. NgD.C.E. LimB.C. ConnorS. ChowP.K.H. A novel approach to brachytherapy in hepatocellular carcinoma using a phosphorous32 (32P) brachytherapy delivery device-a first-in-man study.Int. J. Radiat. Oncol. Biol. Phys.200767378679210.1016/j.ijrobp.2006.09.011 17141975
    [Google Scholar]
  19. PacholskiC. SartorM. SailorM.J. CuninF. MiskellyG.M. Biosensing using porous silicon double-layer interferometers: Reflective interferometric Fourier transform spectroscopy.J. Am. Chem. Soc.200512733116361164510.1021/ja0511671 16104739
    [Google Scholar]
  20. GuoL. ZhangY. Al-JamalK.T. Recent progress in nanotechnology-based drug carriers for celastrol delivery.Biomater. Sci.20219196355638010.1039/D1BM00639H 34582530
    [Google Scholar]
  21. PrestidgeC.A. BarnesT.J. Mierczynska-VasilevA. KempsonI. PeddieF. BarnettC. Peptide and protein loading into porous silicon wafers.Phys. Status Solidi., A Appl. Mater. Sci.2008205231131510.1002/pssa.200723113
    [Google Scholar]
  22. SalonenJ. LaitinenL. KaukonenA.M. TuuraJ. BjörkqvistM. HeikkiläT. Vähä-HeikkiläK. HirvonenJ. LehtoV.P. Mesoporous silicon microparticles for oral drug delivery: Loading and release of five model drugs.J. Control. Release20051082-336237410.1016/j.jconrel.2005.08.017 16169628
    [Google Scholar]
  23. AnglinE. ChengL. FreemanW. SailorM. Porous silicon in drug delivery devices and materials.Adv. Drug Deliv. Rev.200860111266127710.1016/j.addr.2008.03.017 18508154
    [Google Scholar]
  24. SunY.L. ZhouY. LiQ.L. YangY.W. Enzyme-responsive supramolecular nanovalves crafted by mesoporous silica nanoparticles and choline-sulfonatocalix[4]arene [2]pseudorotaxanes for controlled cargo release.Chem. Commun.201349799033903510.1039/c3cc45216f 23982479
    [Google Scholar]
  25. VadiaN. RajputS. Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement.Eur. J. Pharm. Sci.2012451-281810.1016/j.ejps.2011.10.016 22067974
    [Google Scholar]
  26. ShenD. YangJ. LiX. ZhouL. ZhangR. LiW. ChenL. WangR. ZhangF. ZhaoD. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres.Nano Lett.201414292393210.1021/nl404316v 24467566
    [Google Scholar]
  27. PengT. XuT. LiuX. Research progress of the engagement of inorganic nanomaterials in cancer immunotherapy.Drug Deliv.20222911914193210.1080/10717544.2022.2086940 35748543
    [Google Scholar]
  28. IbrahimA.H. IbrahimH.M. IsmaelH.R. SamyA.M. Optimization and evaluation of lyophilized fenofibrate nanoparticles with enhanced oral bioavailability and efficacy.Pharm. Dev. Technol.201823435836910.1080/10837450.2017.1295065 29069712
    [Google Scholar]
  29. MalekiA. KettigerH. SchoubbenA. RosenholmJ.M. AmbrogiV. HamidiM. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs.J. Control. Release201726232934710.1016/j.jconrel.2017.07.047 28778479
    [Google Scholar]
  30. MoritzM Geszke-MoritzM Mesoporous materials as adsorbents for biologically active substances.202110010992994
    [Google Scholar]
/content/journals/cdd/10.2174/0115672018273792240101062603
Loading
/content/journals/cdd/10.2174/0115672018273792240101062603
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Breviscapine; BVP; drug delivery; mesoporous silica nanoparticles; poor solubility; tablet
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test