Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2018
  • E-ISSN: 1875-5704

Abstract

The blood-prostate barrier (BPB), a non-static physical barrier, stands as an obstacle between the prostate stroma and the lumen of the prostate gland tube. The barrier has the ability to dynamically regulate and strictly control the mass exchange between the blood and the prostate, thereby limiting drug penetration into the prostate. The basement membrane, fibrous stromal layer, capillary endothelial cell, prostatic ductal epithelial cell, lipid layer, ., have been confirmed to be involved in the composition of the barrier structure and altered membrane permeability mainly by regulating the size of paracellular ion pores. Various studies have been conducted to improve the efficiency of drug therapy for prostate diseases by changing the administration approaches, improving barrier permeability and increasing drug penetration. To gain a full understanding of BPB, the composition of BPB, the methodology for evaluating the permeability of BPB and alterations in barrier function under pathological conditions are summarized in this review. To find a shortcut for drug delivery across BPB, the biodistribution of drugs in the prostate and different methods of improving drug penetration across BPB are outlined. This review offers an applied perspective on recent advances in drug delivery across BPB.

Loading

Article metrics loading...

/content/journals/cdd/10.2174/1567201821666230807152520
2023-08-16
2025-05-04
Loading full text...

Full text loading...

References

  1. das NevesJ. Sverdlov ArziR. SosnikA. Molecular and cellular cues governing nanomaterial-mucosae interactions: From nanomedicine to nanotoxicology.Chem. Soc. Rev.202049145058510010.1039/C8CS00948A 32538405
    [Google Scholar]
  2. ShangY. DongX. HanG. LiJ. CuiD. LiuC. LiL. YiS. The roles of tight junctions and claudin-1 in the microbubble-mediated ultrasound-induced enhancement of drug concentrations in rat prostate.J. Membr. Biol.201524861167117310.1007/s00232‑015‑9834‑5 26289600
    [Google Scholar]
  3. OtaniT. FuruseM. Tight junction structure and function revisited.Trends Cell Biol.2020301080581710.1016/j.tcb.2020.08.004 32891490
    [Google Scholar]
  4. NeesseA. HahnenkampA. GriesmannH. BuchholzM. HahnS.A. MaghnoujA. FendrichV. RingJ. SiposB. TuvesonD.A. BremerC. GressT.M. MichlP. Claudin-4-targeted optical imaging detects pancreatic cancer and its precursor lesions.Gut20136271034104310.1136/gutjnl‑2012‑302577 22677720
    [Google Scholar]
  5. Hryniewicz-JankowskaA. AugoffK. SikorskiA.F. The role of cholesterol and cholesterol-driven membrane raft domains in prostate cancer.Exp. Biol. Med.2019244131053106110.1177/1535370219870771 31573840
    [Google Scholar]
  6. MazurekM.P. PrasadP.D. GopalE. FraserS.P. BoltL. RizanerN. PalmerC.P. FosterC.S. PalmieriF. GanapathyV. StühmerW. DjamgozM.B.A. MycielskaM.E. Molecular origin of plasma membrane citrate transporter in human prostate epithelial cells.EMBO Rep.201011643143710.1038/embor.2010.51 20448665
    [Google Scholar]
  7. CuiD. ShangY.G. HanG.W. LiuC.C. YiS.H. Rat prostate glandular epithelial cells cultured in vitro and their barrier function.Zhonghua Nan Ke Xue2016222133137 26939397
    [Google Scholar]
  8. YangC. HeB. DaiW. ZhangH. ZhengY. WangX. ZhangQ. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems.Acta Pharm. Sin. B202111496197710.1016/j.apsb.2020.11.020 33996409
    [Google Scholar]
  9. GandelliniP. ProfumoV. CasamicheleA. FendericoN. BorrelliS. PetrovichG. SantilliG. CallariM. ColecchiaM. PozziS. De CesareM. FoliniM. ValdagniR. MantovaniR. ZaffaroniN. miR-205 regulates basement membrane deposition in human prostate: Implications for cancer development.Cell Death Differ.201219111750176010.1038/cdd.2012.56 22555458
    [Google Scholar]
  10. XuL. NirwaneA. YaoY. Basement membrane and blood-brain barrier.Stroke Vasc. Neurol.201942788210.1136/svn‑2018‑000198 31338215
    [Google Scholar]
  11. LiT. LiuG. LiJ. WangX. LiuQ. LiuZ. DuW. Mechanisms of prostate permeability triggered by microbubble-mediated acoustic cavitation.Cell Biochem. Biophys.201264214715310.1007/s12013‑012‑9383‑9 22722876
    [Google Scholar]
  12. McMillinM.A. FramptonG.A. SeiwellA.P. PatelN.S. JacobsA.N. DeMorrowS. TGFβ1 exacerbates blood–brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5.Lab. Invest.201595890391310.1038/labinvest.2015.70 26006017
    [Google Scholar]
  13. ChenH. WuS. LuR. ZhangY. ZhengY. SunJ. Pulmonary permeability assessed by fluorescent-labeled dextran instilled intranasally into mice with LPS-induced acute lung injury.PLoS One201497e10192510.1371/journal.pone.0101925 25007191
    [Google Scholar]
  14. KadryH. NooraniB. CuculloL. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity.Fluids Barriers CNS20201716910.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  15. LiF. PascalL.E. WangK. ZhouY. BalasubramaniG.K. O’MalleyK.J. DhirR. HeK. StolzD. DeFrancoD.B. YoshimuraN. NelsonJ.B. ChongT. GuoP. HeD. WangZ. Transforming growth factor beta 1 impairs benign prostatic luminal epithelial cell monolayer barrier function.Am. J. Clin. Exp. Urol.202081917 32211449
    [Google Scholar]
  16. SteensmaA. NotebornH.P.J.M. KuiperH.A. Comparison of Caco-2, IEC-18 and HCEC cell lines as a model for intestinal absorption of genistein, daidzein and their glycosides.Environ. Toxicol. Pharmacol.200416313113910.1016/j.etap.2003.11.008 21782699
    [Google Scholar]
  17. OshimaT. GeddaK. KosekiJ. ChenX. HusmarkJ. WatariJ. MiwaH. PierrouS. Establishment of esophageal-like non-keratinized stratified epithelium using normal human bronchial epithelial cells.Am. J. Physiol. Cell Physiol.20113006C1422C142910.1152/ajpcell.00376.2010 21307344
    [Google Scholar]
  18. HoffmannA. BrednoJ. WendlandM. DeruginN. OharaP. WintermarkM. High and low molecular weight fluorescein isothiocyanate (FITC)–dextrans to assess blood-brain barrier disruption: Technical Considerations.Transl. Stroke Res.20112110611110.1007/s12975‑010‑0049‑x 21423333
    [Google Scholar]
  19. LiF. PascalL.E. StolzD.B. WangK. ZhouY. ChenW. XuY. ChenY. DhirR. ParwaniA.V. NelsonJ.B. DeFrancoD.B. YoshimuraN. BalasubramaniG.K. GingrichJ.R. MaranchieJ.K. JacobsB.L. DaviesB.J. HrebinkoR.L. BigleyJ.D. McBrideD. GuoP. HeD. WangZ. E‐cadherin is downregulated in benign prostatic hyperplasia and required for tight junction formation and permeability barrier in the prostatic epithelial cell monolayer.Prostate201979111226123710.1002/pros.23806 31212363
    [Google Scholar]
  20. SindhwaniP. WilsonC.M. Prostatitis and serum prostate-specific antigen.Curr. Urol. Rep.20056430731210.1007/s11934‑005‑0029‑y 15978235
    [Google Scholar]
  21. XiangB. DongD.W. ShiN.Q. GaoW. YangZ.Z. CuiY. CaoD.Y. QiX.R. PSA-responsive and PSMA-mediated multifunctional liposomes for targeted therapy of prostate cancer.Biomaterials201334286976699110.1016/j.biomaterials.2013.05.055 23777916
    [Google Scholar]
  22. IraniJ. LevillainP. GoujonJ.M. BonD. DoréB. AubertJ. Inflammation in benign prostatic hyperplasia: Correlation with prostate specific antigen value.J. Urol.199715741301130310.1016/S0022‑5347(01)64957‑7 9120926
    [Google Scholar]
  23. GleaveM.E. HsiehJ.T. WuH.C. von EschenbachA.C. ChungL.W. Serum prostate specific antigen levels in mice bearing human prostate LNCaP tumors are determined by tumor volume and endocrine and growth factors.Cancer Res.199252615981605 1371718
    [Google Scholar]
  24. MoonT.D. NealD.E. ClejanS. Prostate specific antigen and prostatitis II. PSA production and release kinetics in vitro.Prostate199220211311610.1002/pros.2990200206 1372427
    [Google Scholar]
  25. HasuiY. MarutsukaK. AsadaY. IdeH. NishiS. OsadaY. Relationship between serum prostate specific antigen and histological prostatitis in patients with benign prostatic hyperplasia.Prostate1994252919610.1002/pros.2990250206 7518599
    [Google Scholar]
  26. O’MalleyK.J. EisermannK. PascalL.E. ParwaniA.V. MajimaT. GrahamL. HrebinkoK. AcquafondataM. StewartN.A. NelsonJ.B. YoshimuraN. WangZ. Proteomic analysis of patient tissue reveals PSA protein in the stroma of benign prostatic hyperplasia.Prostate201474889290010.1002/pros.22807 24711254
    [Google Scholar]
  27. GümüşB.H. NeşeN. GündüzM.I. KandiloğluA.R. CeylanY. BüyüksuC. Does asymptomatic inflammation increase PSA? A histopathological study comparing benign and malignant tissue biopsy specimens.Int. Urol. Nephrol.200436454955310.1007/s11255‑004‑0845‑x 15787334
    [Google Scholar]
  28. Ismail AH.R. LandryF. AprikianA.G. ChevalierS. Androgen ablation promotes neuroendocrine cell differentiation in dog and human prostate.Prostate200251211712510.1002/pros.10066 11948966
    [Google Scholar]
  29. Ryman-TubbT. Lothion-RoyJ.H. MetzlerV.M. HarrisA.E. RobinsonB.D. RizvanovA.A. JeyapalanJ.N. JamesV.H. EnglandG. RutlandC.S. PerssonJ.L. KennerL. RubinM.A. MonganN.P. BrotS. Comparative pathology of dog and human prostate cancer.Vet. Med. Sci.20228111012010.1002/vms3.642 34628719
    [Google Scholar]
  30. El-AlfyM. PelletierG. HermoL.S. LabrieF. Unique features of the basal cells of human prostate epithelium.Microsc. Res. Tech.200051543644610.1002/1097‑0029(20001201)51:5<436::AID‑JEMT6>3.0.CO;2‑T 11074614
    [Google Scholar]
  31. ChungI. HanG. SeshadriM. GillardB.M. YuW. FosterB.A. TrumpD.L. JohnsonC.S. Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo.Cancer Res.200969396797510.1158/0008‑5472.CAN‑08‑2307 19141646
    [Google Scholar]
  32. BhujwallaZ.M. ArtemovD. NatarajanK. AckerstaffE. SolaiyappanM. Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts.Neoplasia20013214315310.1038/sj.neo.7900129 11420750
    [Google Scholar]
  33. SetchellB.P. VoglmayrJ.K. WaitesG.M.H. A blood-testis barrier restricting passage from blood into rete testis fluid but not into lymph.J. Physiol.19692001738510.1113/jphysiol.1969.sp008682 4973530
    [Google Scholar]
  34. FulmerB.R. TurnerT.T. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium.J. Urol.200016351591159410.1016/S0022‑5347(05)67685‑9 10751894
    [Google Scholar]
  35. XiaH. YangD. HeW. ZhuX. YanY. LiuZ. LiuT. YangJ. TanS. JiangJ. HouX. GaoH. NiL. LuJ. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier.Transl. Oncol.2021141010117710.1016/j.tranon.2021.101177 34271256
    [Google Scholar]
  36. SharerW.C. FairW.R. The pharmacokinetics of antibiotic diffusion in chronic bacterial prostatitis.Prostate19823213914810.1002/pros.2990030206 7045835
    [Google Scholar]
  37. CharalabopoulosK. KarachaliosG. BaltogiannisD. CharalabopoulosA. GiannakopoulosX. SofikitisN. Penetration of antimicrobial agents into the prostate.Chemotherapy200349626927910.1159/000074526 14671426
    [Google Scholar]
  38. OuT. LillyM. JiangW. The pathologic role of toll-like receptor 4 in prostate cancer.Front. Immunol.20189118810.3389/fimmu.2018.01188 29928275
    [Google Scholar]
  39. MillienV.O. LuW. ShawJ. YuanX. MakG. RobertsL. SongL.Z. KnightJ.M. CreightonC.J. LuongA. KheradmandF. CorryD.B. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.Science2013341614779279610.1126/science.1240342 23950537
    [Google Scholar]
  40. FangH. WuY. HuangX. WangW. AngB. CaoX. WanT. Toll-like receptor 4 (TLR4) is essential for Hsp70-like protein 1 (HSP70L1) to activate dendritic cells and induce Th1 response.J. Biol. Chem.201128635303933040010.1074/jbc.M111.266528 21730052
    [Google Scholar]
  41. AkiraS. TakedaK. KaishoT. Toll-like receptors: Critical proteins linking innate and acquired immunity.Nat. Immunol.20012867568010.1038/90609 11477402
    [Google Scholar]
  42. FitzgeraldK.A. KaganJ.C. Toll-like receptors and the control of immunity.Cell202018061044106610.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  43. Mackern-ObertiJ.P. MaccioniM. BreserM.L. EleyA. MiethkeT. RiveroV.E. Innate immunity in the male genital tract: Chlamydia trachomatis induces keratinocyte-derived chemokine production in prostate, seminal vesicle and epididymis/vas deferens primary cultures.J. Med. Microbiol.201160330731610.1099/jmm.0.024877‑0 21109628
    [Google Scholar]
  44. DesaiK.V. MichalowskaA.M. KondaiahP. WardJ.M. ShihJ.H. GreenJ.E. Gene expression profiling identifies a unique androgen-mediated inflammatory/immune signature and a PTEN (phosphatase and tensin homolog deleted on chromosome 10)-mediated apoptotic response specific to the rat ventral prostate.Mol. Endocrinol.200418122895290710.1210/me.2004‑0033 15358834
    [Google Scholar]
  45. BeneM.C. StuderA. FaureG. Immunoglobulin-producing cells in human prostate.Prostate198812211311710.1002/pros.2990120202 3368401
    [Google Scholar]
  46. SilvaJ.A.F. BiancardiM.F. Stach-MachadoD.R. ReisL.O. Sant’AnnaO.A. CarvalhoH.F. The origin of prostate gland-secreted IgA and IgG.Sci. Rep.2017711648810.1038/s41598‑017‑16717‑3 29184147
    [Google Scholar]
  47. SilvaJ.A.F. CalmasiniF. Siqueira-BertiA. Moraes-VieiraP.M.M. QuintarA. CarvalhoH.F. Prostate immunology: A challenging puzzle.J. Reprod. Immunol.202014210319010.1016/j.jri.2020.103190 32853844
    [Google Scholar]
  48. LudwigM. KümmelC. Schroeder-PrintzenI. RingertR.H. WeidnerW. Evaluation of seminal plasma parameters in patients with chronic prostatitis or leukocytospermia.Andrologia199830S1414710.1111/j.1439‑0272.1998.tb02825.x 9629442
    [Google Scholar]
  49. ManningM.L. WilliamsS.A. JelinekC.A. KostovaM.B. DenmeadeS.R. Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma.J. Immunol.201319062567257410.4049/jimmunol.1200856 23401592
    [Google Scholar]
  50. FairW.R. ParrishR.F. Antibacterial substances in prostatic fluid.Prog. Clin. Biol. Res.198175A247264 7041133
    [Google Scholar]
  51. ChampyC.M. PhéV. DrouinS.J. ComperatE. ParraJ. VaessenC. MozerP. BitkerM.O. RouprêtM. Prognostic influence of prostate gland invasion by bladder tumour and/or prostate cancer in cystoprostatectomy specimen: A review.Prog. Urol.201323316517010.1016/j.purol.2012.11.003 23446280
    [Google Scholar]
  52. WangM. NagleR.B. KnudsenB.S. RogersG.C. CressA.E. A basal cell defect promotes budding of prostatic intraepithelial neoplasia.J. Cell Sci.20171301104110 27609833
    [Google Scholar]
  53. AngelucciC. LamaG. IacopinoF. SicaG. Leuprorelin acetate affects adhesion molecule expression in human prostate cancer cells.Int. J. Oncol.201138615011509 21479359
    [Google Scholar]
  54. LongH. CreanC.D. LeeW.H. CummingsO.W. GabigT.G. Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium.Cancer Res.2001612178787881 11691807
    [Google Scholar]
  55. KrauseG. WinklerL. MuellerS.L. HaseloffR.F. PiontekJ. BlasigI.E. Structure and function of claudins.Biochim. Biophys. Acta Biomembr.20081778363164510.1016/j.bbamem.2007.10.018 18036336
    [Google Scholar]
  56. YeX. ZhaoL. KangJ. Expression and significance of PTEN and Claudin 3 in prostate cancer.Oncol. Lett.20191765628563410.3892/ol.2019.10212 31186785
    [Google Scholar]
  57. RadiD.A. Abd-ElazeemM.A. Prognostic significance of lymphatic vessel density detected by D2-40 and its relation to claudin-4 expression in prostatic adenocarcinoma.Int. J. Surg. Pathol.201624321922610.1177/1066896915611488 26464161
    [Google Scholar]
  58. MartinT.A. JiangW.G. Loss of tight junction barrier function and its role in cancer metastasis.Biochim. Biophys. Acta. Biomembr.20091788487289110.1016/j.bbamem.2008.11.005 19059202
    [Google Scholar]
  59. Oh-HohenhorstS.J. LangeT. Role of metastasis-related microRNAs in prostate cancer progression and treatment.Cancers20211317449210.3390/cancers13174492 34503302
    [Google Scholar]
  60. ZaravinosA. The regulatory role of MicroRNAs in EMT and cancer.J. Oncol.2015201511310.1155/2015/865816 25883654
    [Google Scholar]
  61. Paolo D’AvinoP. How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins.J. Cell Sci.200912281071107910.1242/jcs.034785 19339546
    [Google Scholar]
  62. PieknyA.J. MaddoxA.S. The myriad roles of Anillin during cytokinesis.Semin. Cell Dev. Biol.201021988189110.1016/j.semcdb.2010.08.002 20732437
    [Google Scholar]
  63. WangD. ChadhaG.K. FeyginA. IvanovA.I. F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells.Cell. Mol. Life Sci.201572163185320010.1007/s00018‑015‑1890‑6 25809162
    [Google Scholar]
  64. LiuK. CuiL. LiC. TangC. NiuY. HaoJ. BuY. ChenB. Pan-cancer analysis of the prognostic and immunological role of ANLN: An onco-immunological biomarker.Front. Genet.20221392247210.3389/fgene.2022.922472 35991576
    [Google Scholar]
  65. FolbergR. ManiotisA.J. Vasculogenic mimicry.Acta Pathol. Microbiol. Scand. Suppl.20041127-850852510.1111/j.1600‑0463.2004.apm11207‑0810.x 15563313
    [Google Scholar]
  66. WangH. LinH. PanJ. MoC. ZhangF. HuangB. WangZ. ChenX. ZhuangJ. WangD. QiuS. Vasculogenic mimicry in prostate cancer: The roles of EphA2 and PI3K.J. Cancer2016791114112410.7150/jca.14120 27326255
    [Google Scholar]
  67. LiuC. HuangH. DoñateF. DickinsonC. SantucciR. El-SheikhA. VessellaR. EdgingtonT.S. Prostate-specific membrane antigen directed selective thrombotic infarction of tumors.Cancer Res.2002621954705475 12359755
    [Google Scholar]
  68. ChenY.S. ChenZ.P. Vasculogenic mimicry: A novel target for glioma therapy.Chin. J. Cancer2014332747910.5732/cjc.012.10292 23816560
    [Google Scholar]
  69. NiżańskiW. LevyX. OchotaM. PasikowskaJ. Pharmacological treatment for common prostatic conditions in dogs - benign prostatic hyperplasia and prostatitis: An update.Reprod. Domest. Anim.201449Suppl. 281510.1111/rda.12297 24947855
    [Google Scholar]
  70. WangK. PascalL.E. LiF. ChenW. DhirR. BalasubramaniG.K. DeFrancoD.B. YoshimuraN. HeD. WangZ. Tight junction protein claudin‐1 is downregulated by TGF‐β1 via MEK signaling in benign prostatic epithelial cells.Prostate202080141203121510.1002/pros.24046 32692865
    [Google Scholar]
  71. MarconiM. PilatzA. WagenlehnerF. DiemerT. WeidnerW. Impact of infection on the secretory capacity of the male accessory glands.Int. Braz. J. Urol.200935329930910.1590/S1677‑55382009000300006 19538765
    [Google Scholar]
  72. NaberK.G. WeigelD. KinzigM. SörgelF. Penetration of ofloxacin into prostatic fluid, ejaculate and seminal fluid.Infection19932129810010.1007/BF01710740 8491527
    [Google Scholar]
  73. DanM. GolombJ. GoreaA. LindnerA. BergerS.A. Penetration of norfloxacin into human prostatic tissue following single-dose oral administration.Chemotherapy198733424024210.1159/000238501 3608623
    [Google Scholar]
  74. NakamuraK. IkawaK. NishikawaG. KobayashiI. TobiumeM. SugieM. MuramatsuH. MorinagaS. KajikawaK. WatanabeM. KanaoK. OnitaT. MorikawaN. Clinical pharmacokinetics of flomoxef in prostate tissue and dosing considerations for prostatitis based on site-specific pharmacodynamic target attainment.J. Infect. Chemother.202026223624110.1016/j.jiac.2019.08.019 31822449
    [Google Scholar]
  75. KuiperS.G. LeegwaterE. WilmsE.B. van NieuwkoopC. Evaluating imipenem + cilastatin + relebactam for the treatment of complicated urinary tract infections.Expert Opin. Pharmacother.202021151805181110.1080/14656566.2020.1790525 32820669
    [Google Scholar]
  76. GotoT. MakinoseS. OhiY. YamauchiD. KayajimaT. NagayamaK. HayamiH. Diffusion of piperacillin, cefotiam, minocycline, amikacin and ofloxacin into the prostate.Int. J. Urol.19985324324610.1111/j.1442‑2042.1998.tb00597.x 9624555
    [Google Scholar]
  77. SmithR.P. WilburH.J. BasseyC. BaltchA.L. Azlocillin and mezlocillin concentration in human prostatic tissue.Chemotherapy198834426727110.1159/000238579 3208544
    [Google Scholar]
  78. NaberK.G. AdamD. Tissue concentrations of mezlocillin in benign hypertrophy of the prostate following intravenous bolus injection versus infusion.J. Antimicrob. Chemother.198311suppl. C1723
    [Google Scholar]
  79. SchaefferA.J. DarrasF.S. The efficacy of norfloxacin in the treatment of chronic bacterial prostatitis refractory to trimethoprim-sulfamethoxazole and/or carbenicillin.J. Urol.1990144369069310.1016/S0022‑5347(17)39556‑3 2201796
    [Google Scholar]
  80. DenisL. MurphyG.P. Overview of phase III trials on combined androgen treatment in patients with metastatic prostate cancer.Cancer199372S123888389510.1002/1097‑0142(19931215)72:12+<3888::AID‑CNCR2820721726>3.0.CO;2‑B 8252511
    [Google Scholar]
  81. CleggN.J. WongvipatJ. JosephJ.D. TranC. OukS. DilhasA. ChenY. GrillotK. BischoffE.D. CaiL. AparicioA. DorowS. AroraV. ShaoG. QianJ. ZhaoH. YangG. CaoC. SensintaffarJ. WasielewskaT. HerbertM.R. BonnefousC. DarimontB. ScherH.I. Smith-JonesP. KlangM. SmithN.D. De StanchinaE. WuN. OuerfelliO. RixP.J. HeymanR.A. JungM.E. SawyersC.L. HagerJ.H. ARN-509: A novel antiandrogen for prostate cancer treatment.Cancer Res.20127261494150310.1158/0008‑5472.CAN‑11‑3948 22266222
    [Google Scholar]
  82. ThallerC. ShalevM. FrolovA. EicheleG. ThompsonT.C. WilliamsR.H. DillioglugilO. KadmonD. Fenretinide therapy in prostate cancer: Effects on tissue and serum retinoid concentration.J. Clin. Oncol.200018223804380810.1200/JCO.2000.18.22.3804 11078493
    [Google Scholar]
  83. TorrisiR. DecensiA. Fenretinide and cancer prevention.Curr. Oncol. Rep.20002326327010.1007/s11912‑000‑0077‑x 11122852
    [Google Scholar]
  84. ChenH.J. ChenZ.J. DuG.L. Correlation of aldo-keto reductases with prostate cancer and intervention with traditional Chinese medicine.Zhonghua Nan Ke Xue2019258734738 32227718
    [Google Scholar]
  85. Yavaşçaoğluİ. ÇamlıkıyıH. OktayB. ŞimşekÜ. ÖzyurtM. Percutaneous suprapubic transvesical route: A new and comfortable method of intraprostatic injection.Urol. Int.199860422923410.1159/000030261 9701736
    [Google Scholar]
  86. WangH.X. WangX.F. HeJ. ZhaiL.S. WangH.R. Determination of drug concentration and clinical significance after topical administration of gentamicin to the prostate.Zhongguo Yiyuan Yaoxue Zazhi19899081314
    [Google Scholar]
  87. EversJ. KerkmeijerL.G.W. van den BerghR.C.N. van der SangenM.J.C. HulshofM.C.C.M. BloemersM.C.W.M. SieslingS. AartsM.J. AbenK.K.H. StruikmansH. Trends and variation in the use of radiotherapy in non-metastatic prostate cancer: A 12-year nationwide overview from the Netherlands.Radiother. Oncol.202217713414210.1016/j.radonc.2022.10.028 36328090
    [Google Scholar]
  88. JiaY.S. WangY.T. WangY.G. YangJ.Z. DaiH.L. A preliminary study on the content of ice chips and its pharmacokinetic changes after rectal instillation of Wusexan in rats.Proceedings of the 2008 Annual Academic Conference of Traditional Chinese Medicine Surgery.1 Apr2008384388
    [Google Scholar]
  89. LiuY. LiuZ. LiT. YeG. Ultrasonic sonoporation can enhance the prostate permeability.Med. Hypotheses201074344945110.1016/j.mehy.2009.09.052 19897315
    [Google Scholar]
  90. KomarovaY. MalikA.B. Regulation of endothelial permeability via paracellular and transcellular transport pathways.Annu. Rev. Physiol.201072146349310.1146/annurev‑physiol‑021909‑135833 20148685
    [Google Scholar]
  91. WangZ. MalikA.B. Nanoparticles squeezing across the blood-endothelial barrier via caveolae.Ther. Deliv.20134213113310.4155/tde.12.140 23343150
    [Google Scholar]
  92. LiuY. YiS. ZhangJ. FangZ. ZhouF. JiaW. LiuZ. YeG. Effect of microbubble-enhanced ultrasound on prostate permeability: A potential therapeutic method for prostate disease.Urology2013814921.e1921.e710.1016/j.urology.2012.12.022 23414693
    [Google Scholar]
  93. MengZ. ZhangY. ShenE. LiW. WangY. SathiyamoorthyK. GaoW. C KoliosM. BaiW. HuB. WangW. ZhengY. Marriage of virus-mimic surface topology and microbubble-assisted ultrasound for enhanced intratumor accumulation and improved cancer theranostics.Adv. Sci.2021813200467010.1002/advs.202004670 34258156
    [Google Scholar]
  94. HowardsS.S. JesseeS.J. JohnsonA.L. Micropuncture studies of the blood-seminiferous tubule barrier.Biol. Reprod.197614326426910.1095/biolreprod14.3.264 1252561
    [Google Scholar]
  95. YiS. CuiD. YiS. Opening tight junctions may be key to opening the blood-prostate barrier.Med. Sci. Monit.2014202504250710.12659/MSM.890902 25448323
    [Google Scholar]
  96. GaoW. WangZ. LvL. YinD. ChenD. HanZ. MaY. ZhangM. YangM. GuY. Photodynamic therapy induced enhancement of tumor vasculature permeability using an upconversion nanoconstruct for improved intratumoral nanoparticle delivery in deep tissues.Theranostics2016681131114410.7150/thno.15262 27279907
    [Google Scholar]
  97. Al-KafajiG. SaidH. AlamM. Al NaiebZ. Blood based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer risk stratification.Oncol. Lett.20181611357136510.3892/ol.2018.8778 30061955
    [Google Scholar]
  98. BhowmickS. SwanlundD.J. BischofJ.C. Supraphysiological thermal injury in Dunning AT-1 prostate tumor cells.J. Biomech. Eng.20001221515910.1115/1.429627 10790830
    [Google Scholar]
  99. ShenoiM.M. IltisI. ChoiJ. KoonceN.A. MetzgerG.J. GriffinR.J. BischofJ.C. Nanoparticle delivered vascular disrupting agents (VDAs): Use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy.Mol. Pharm.20131051683169410.1021/mp300505w 23544801
    [Google Scholar]
  100. RamnaraignB. SartorO. PSMA-targeted radiopharmaceuticals in prostate cancer: Current data and new trials.Oncologist202328539240110.1093/oncolo/oyac279 36806966
    [Google Scholar]
  101. LucaroniL. GeorgievT. ProdiE. PuglioliS. PellegrinoC. FavalliN. PratiL. ManzM.G. CazzamalliS. NeriD. OehlerS. BassiG. Cross-reactivity to glutamate carboxypeptidase III causes undesired salivary gland and kidney uptake of PSMA-targeted small-molecule radionuclide therapeutics.Eur. J. Nucl. Med. Mol. Imaging202350395796110.1007/s00259‑022‑05982‑8 36184692
    [Google Scholar]
  102. KellyJ.M. Amor-CoarasaA. NikolopoulouA. WüstemannT. BarelliP. KimD. WilliamsC.Jr ZhengX. BiC. HuB. WarrenJ.D. HageD.S. DiMagnoS.G. BabichJ.W. Dual-target binding ligands with modulated pharmacokinetics for endoradiotherapy of prostate cancer.J. Nucl. Med.20175891442144910.2967/jnumed.116.188722 28450562
    [Google Scholar]
  103. JiangY. WenW. YangF. HanD. ZhangW. QinW. Prospect of prostate cancer treatment: Armed CAR-T or combination therapy.Cancers202214496710.3390/cancers14040967 35205714
    [Google Scholar]
  104. GünzelD. YuA.S.L. Claudins and the modulation of tight junction permeability.Physiol. Rev.201393252556910.1152/physrev.00019.2012 23589827
    [Google Scholar]
  105. OtaT. FujiiM. SugizakiT. IshiiM. MiyazawaK. AburataniH. MiyazonoK. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-? in human umbilical vein endothelial cells.J. Cell. Physiol.2002193329931810.1002/jcp.10170 12384983
    [Google Scholar]
  106. BelloneM. MondinoA. CortiA. Vascular targeting, chemotherapy and active immunotherapy: Teaming up to attack cancer.Trends Immunol.200829523524110.1016/j.it.2008.02.003 18375183
    [Google Scholar]
  107. AmashehM. FrommA. KrugS.M. AmashehS. AndresS. ZeitzM. FrommM. SchulzkeJ.D. TNFα-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFκB signaling.J. Cell Sci.2010123234145415510.1242/jcs.070896 21062898
    [Google Scholar]
  108. BurekM. FörsterC.Y. Cloning and characterization of the murine claudin-5 promoter.Mol. Cell. Endocrinol.20092981-2192410.1016/j.mce.2008.09.041 18996436
    [Google Scholar]
  109. BrownR.C. MarkK.S. EgletonR.D. HuberJ.D. BurroughsA.R. DavisT.P. Protection against hypoxia-induced increase in blood-brain barrier permeability: Role of tight junction proteins and NFκB.J. Cell Sci.2003116469370010.1242/jcs.00264 12538770
    [Google Scholar]
  110. SakaiN. ChibaH. FujitaH. AkashiY. OsanaiM. KojimaT. SawadaN. Expression patterns of claudin family of tight-junction proteins in the mouse prostate.Histochem. Cell Biol.2007127445746210.1007/s00418‑007‑0269‑7 17260152
    [Google Scholar]
  111. ZhengB. LiuZ. WangH. SunL. LaiW.F. ZhangH. WangJ. LiuY. QinX. QiX. WangS. ShenY. ZhangP. ZhangD. R11 modified tumor cell membrane nanovesicle-camouflaged nanoparticles with enhanced targeting and mucus-penetrating efficiency for intravesical chemotherapy for bladder cancer.J. Control. Release202235183484610.1016/j.jconrel.2022.09.055 36191674
    [Google Scholar]
  112. ZhangP. WuG. ZhangD. LaiW.F. Mechanisms and strategies to enhance penetration during intravesical drug therapy for bladder cancer.J. Control. Release2023354697910.1016/j.jconrel.2023.01.001 36603810
    [Google Scholar]
  113. ZhangP. ZhangH. ZhengB. WangH. QiX. WangS. LiuZ. SunL. LiuY. QinX. FanW. MaM. LaiW.F. ZhangD. Combined self-assembled hendeca-arginine nanocarriers for effective targeted gene delivery to bladder cancer.Int. J. Nanomedicine2022174433444810.2147/IJN.S379356 36172006
    [Google Scholar]
  114. MehtaD. MalikA.B. Signaling mechanisms regulating endothelial permeability.Physiol. Rev.200686127936710.1152/physrev.00012.2005 16371600
    [Google Scholar]
  115. ChuD. ZhaoQ. YuJ. ZhangF. ZhangH. WangZ. Nanoparticle targeting of neutrophils for improved cancer immunotherapy.Adv. Healthc. Mater.2016591088109310.1002/adhm.201500998 26989887
    [Google Scholar]
  116. PartonR.G. SimonsK. The multiple faces of caveolae.Nat. Rev. Mol. Cell Biol.20078318519410.1038/nrm2122 17318224
    [Google Scholar]
  117. PelkmansL. KartenbeckJ. HeleniusA. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER.Nat. Cell Biol.20013547348310.1038/35074539 11331875
    [Google Scholar]
  118. AnkrumJ.A. MirandaO.R. NgK.S. SarkarD. XuC. KarpJ.M. Engineering cells with intracellular agent–loaded microparticles to control cell phenotype.Nat. Protoc.20149223324510.1038/nprot.2014.002 24407352
    [Google Scholar]
  119. ZhaoD. ZhaoX. ZuY. LiJ. ZhangY. JiangR. ZhangZ. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles.Int. J. Nanomedicine20105669677 20957218
    [Google Scholar]
  120. MaX.X. GaoH. ZhangY.X. JiaY.Y. LiC. ZhouS.Y. ZhangB.L. Construction and evaluation of BSA–CaP nanomaterials with enhanced transgene performance via biocorona-inspired caveolae-mediated endocytosis.Nanotechnology201829808510110.1088/1361‑6528/aaa2b2 29256442
    [Google Scholar]
  121. JiangY. SverdlovM.S. TothP.T. HuangL.S. DuG. LiuY. NatarajanV. MinshallR.D. Phosphatidic acid produced by RalA-activated PLD2 stimulates caveolae-mediated endocytosis and trafficking in endothelial cells.J. Biol. Chem.201629139207292073810.1074/jbc.M116.752485 27510034
    [Google Scholar]
  122. ChaudagarK.K. Landon-BraceN. SolankiA. HieromnimonH.M. HegermillerE. LiW. ShaoY. JosephJ. WilkinsD.J. BynoeK.M. LiX.L. ClohessyJ.G. UllasS. KarpJ.M. PatnaikA. Cabozantinib unlocks efficient in vivo targeted delivery of neutrophil-loaded nanoparticles into murine prostate tumors.Mol. Cancer Ther.202120243844910.1158/1535‑7163.MCT‑20‑0167 33277441
    [Google Scholar]
  123. BennyO. MenonL.G. ArielG. GorenE. KimS.K. StewmanC. BlackP.M. CarrollR.S. MachlufM. Local delivery of poly lactic-co-glycolic acid microspheres containing imatinib mesylate inhibits intracranial xenograft glioma growth.Clin. Cancer Res.20091541222123110.1158/1078‑0432.CCR‑08‑1316 19190128
    [Google Scholar]
  124. TurkogluO.F. ErogluH. GurcanO. BodurE. SargonM.F. ÖnerL. BeskonakliE. Local administration of chitosan microspheres after traumatic brain injury in rats: A new challenge for cyclosporine - a delivery.Br. J. Neurosurg.201024557858310.3109/02688697.2010.487126 20868245
    [Google Scholar]
  125. Tabatabaei MirakabadF.S. Nejati-KoshkiK. AkbarzadehA. YamchiM.R. MilaniM. ZarghamiN. ZeighamianV. RahimzadehA. AlimohammadiS. HanifehpourY. JooS.W. PLGA-based nanoparticles as cancer drug delivery systems.Asian Pac. J. Cancer Prev.201415251753510.7314/APJCP.2014.15.2.517 24568455
    [Google Scholar]
  126. PanyamJ. ZhouW.Z. PrabhaS. SahooS.K. LabhasetwarV. Rapid endo‐lysosomal escape of poly(DL‐lactide‐ co glycolide) nanoparticles: Implications for drug and gene delivery.FASEB J.200216101217122610.1096/fj.02‑0088com 12153989
    [Google Scholar]
  127. HadiM.M. NesbittH. MasoodH. SciscioneF. PatelS. RameshB.S. EmbertonM. CallanJ.F. MacRobertA. McHaleA.P. NomikouN. Investigating the performance of a novel pH and cathepsin B sensitive, stimulus-responsive nanoparticle for optimised sonodynamic therapy in prostate cancer.J. Control. Release2021329768610.1016/j.jconrel.2020.11.040 33245955
    [Google Scholar]
  128. YinL. DingJ. HeC. CuiL. TangC. YinC. Drug permeability and mucoadhesion properties of thiolated trimethyl chitosan nanoparticles in oral insulin delivery.Biomaterials200930295691570010.1016/j.biomaterials.2009.06.055 19615735
    [Google Scholar]
  129. MiklavžinA. CegnarM. KerčJ. KristlJ. Effect of surface hydrophobicity of therapeutic protein loaded in polyelectrolyte nanoparticles on transepithelial permeability.Acta Pharm.201868327529310.2478/acph‑2018‑0032 31259701
    [Google Scholar]
  130. PatelA.J. GardeS. Efficient method to characterize the context-dependent hydrophobicity of proteins.J. Phys. Chem. B201411861564157310.1021/jp4081977 24397378
    [Google Scholar]
  131. VaageJ. Barberá-GuillemE. AbraR. HuangA. WorkingP. Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts.Cancer19947351478148410.1002/1097‑0142(19940301)73:5<1478::AID‑CNCR2820730526>3.0.CO;2‑1 8111716
    [Google Scholar]
  132. SunW. ZouY. GuoY. WangL. XiaoX. SunR. ZhaoK. Construction and characterization of curcumin nanoparticles system.J. Nanopart. Res.2014163231710.1007/s11051‑014‑2317‑2
    [Google Scholar]
  133. FengT. WeiY. LeeR. ZhaoL. Liposomal curcumin and its application in cancer.Int. J. Nanomedicine2017126027604410.2147/IJN.S132434 28860764
    [Google Scholar]
  134. HouL. ChenD. HaoL. TianC. YanY. ZhuL. ZhangH. ZhangY. ZhangZ. Transformable nanoparticles triggered by cancer-associated fibroblasts for improving drug permeability and efficacy in desmoplastic tumors.Nanoscale20191142200302004410.1039/C9NR06438A 31612175
    [Google Scholar]
  135. HuK. MiaoL. GoodwinT.J. LiJ. LiuQ. HuangL. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles.ACS Nano20171154916492510.1021/acsnano.7b01522 28414916
    [Google Scholar]
  136. ChowdhuryP. RobertsA.M. KhanS. HafeezB.B. ChauhanS.C. JaggiM. YallapuM.M. Magnetic nanoformulations for prostate cancer.Drug Discov. Today20172281233124110.1016/j.drudis.2017.04.018 28526660
    [Google Scholar]
  137. JohannsenM. ThiesenB. JordanA. TaymoorianK. GneveckowU. WaldöfnerN. ScholzR. KochM. LeinM. JungK. LoeningS.A. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.Prostate200564328329210.1002/pros.20213 15726645
    [Google Scholar]
  138. Mackern ObertiJ.P. BreserM.L. NuñezN. MaccioniM. RodríguezN. WantiaN. ErtlT. MiethkeT. RiveroV.E. Chemokine response induced by Chlamydia trachomatis in prostate derived CD45+ and CD45- cells.Reproduction2011142342743710.1530/REP‑11‑0163 21730112
    [Google Scholar]
  139. ZhaoQ. ChengY. XiongY. LTF Regulates the Immune Microenvironment of Prostate Cancer Through JAK/STAT3 pathway.Front. Oncol.20211169211710.3389/fonc.2021.692117 34868909
    [Google Scholar]
  140. RagdeH. CavanaghW.A. TjoaB.A. Dendritic cell based vaccines: Progress in immunotherapy studies for prostate cancer.J. Urol.20041726 Part 22532253810.1097/01.ju.0000144211.51111.e4 15538202
    [Google Scholar]
  141. ChenB. PogueB.W. LunaJ.M. HardmanR.L. HoopesP.J. HasanT. Tumor vascular permeabilization by vascular-targeting photosensitization: Effects, mechanism, and therapeutic implications.Clin. Cancer Res.200612391792310.1158/1078‑0432.CCR‑05‑1673 16467106
    [Google Scholar]
  142. DebefveE. MithieuxF. PerentesJ.Y. WangY. ChengC. SchaeferS.C. RuffieuxC. BalliniJ.P. GonzalezM. van den BerghH. RisH.B. LehrH.A. KruegerT. Leukocyte-endothelial cell interaction is necessary for photodynamic therapy induced vascular permeabilization.Lasers Surg. Med.201143769670410.1002/lsm.21115 22057497
    [Google Scholar]
  143. WangQ. AlshakerH. BöhlerT. SrivatsS. ChaoY. CooperC. PchejetskiD. Core shell lipid-polymer hybrid nanoparticles with combined docetaxel and molecular targeted therapy for the treatment of metastatic prostate cancer.Sci. Rep.201771590110.1038/s41598‑017‑06142‑x 28724986
    [Google Scholar]
/content/journals/cdd/10.2174/1567201821666230807152520
Loading
/content/journals/cdd/10.2174/1567201821666230807152520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test