Skip to content
2000
image of Breast Cancer: Epidemiology, Symptoms, Risk Factors, Pathogenesis, Classification, Current Treatments and Various Approaches in Nano-formulations

Abstract

Globally, breast cancer is still a major health concern because of its complex epidemiology, a wide range of symptoms, and a multitude of causes It is mainly caused by the uncontrolled growth of breast tissue cells and a variety of factors influence breast cancer, including hormones, lifestyle decisions, genetic predispositions, and environmental exposures. Breast cancer is classified based on molecular subtypes and their location. Many current treatments, such as surgery, chemotherapy, radiation therapy, hormone therapy, and targeted therapies, are used to improve the health of patients. However, drug resistance and systemic toxicity may restrict therapeutic efficacy despite advancements in therapy. In pursuit of these unmet challenges, nanotechnology has been employed to serve as drug carriers, aiming to optimize therapeutic efficacy and minimize side effects. These nanoparticulate formulations can be customized for targeted delivery, resulting in accurate drug localization in tumor tissues while protecting healthy cells at the same time. Additionally, they regulate the release of the drug, prolonging its circulation duration and improving its bioavailability. This review addresses various approaches to nano-formulations, such as liposomes, polymeric nanoparticles, solid lipid nanoparticles, carbon nanotubes, dendrimers, polymeric micelles, gold nanoparticles, and quantum dots that can be utilized to overcome treatment obstacles and enhance drug distribution.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947344495250131171240
2024-11-10
2025-06-12
Loading full text...

Full text loading...

References

  1. Seely J.M. Alhassan T. Screening for breast cancer in 2018-what should we be doing today? Curr. Oncol. 2018 25 11 Suppl. 1 115 124 10.3747/co.25.3770 29910654
    [Google Scholar]
  2. Sharma R. Global, regional, national burden of breast cancer in 185 countries: evidence from GLOBOCAN 2018. Breast Cancer Res. Treat. 2021 187 2 557 567 10.1007/s10549‑020‑06083‑6 33515396
    [Google Scholar]
  3. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  4. Tao Z. Shi A. Lu C. Song T. Zhang Z. Zhao J. Breast cancer: Epidemiology and etiology. Cell Biochem. Biophys. 2015 72 2 333 338 10.1007/s12013‑014‑0459‑6 25543329
    [Google Scholar]
  5. Wang B. Shen J. Wang Z. Liu J. Ning Z. Hu M. Isomangiferin, a novel potent vascular endothelial growth factor receptor 2 kinase inhibitor, suppresses breast cancer growth, metastasis and angiogenesis. J. Breast Cancer 2018 21 1 11 20 10.4048/jbc.2018.21.1.11 29628979
    [Google Scholar]
  6. Thomson A.K. Heyworth J.S. Girschik J. Slevin T. Saunders C. Fritschi L. Beliefs and perceptions about the causes of breast cancer: A case-control study. BMC Res. Notes 2014 7 1 558 10.1186/1756‑0500‑7‑558 25146725
    [Google Scholar]
  7. Smolarz B. Nowak A.Z. Romanowicz H. Breast cancer—epidemiology, classification, pathogenesis and treatment (review of literature). Cancers 2022 14 10 2569 10.3390/cancers14102569 35626173
    [Google Scholar]
  8. Das K Paul S Ghosh A Gupta S Mukherjee T Shankar P Sharma A Keshava S Chauhan SC Kashyap VK Parashar D Extracellular vesicles in triple–negative breast cancer: Immune regulation, biomarkers, and immunotherapeutic potential. Cancers 2023 15 19 4879
    [Google Scholar]
  9. Ma Y. Temkin S.M. Hawkridge A.M. Guo C. Wang W. Wang X.Y. Fang X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett. 2018 435 435 92 100 10.1016/j.canlet.2018.08.006 30102953
    [Google Scholar]
  10. Koo M.M. von Wagner C. Abel G.A. McPhail S. Rubin G.P. Lyratzopoulos G. Typical and atypical presenting symptoms of breast cancer and their associations with diagnostic intervals: Evidence from a national audit of cancer diagnosis. Cancer. Epidemiol. 2017 48 140 146 10.1016/j.canep.2017.04.010 28549339
    [Google Scholar]
  11. Walker S Hyde C Hamilton W Risk of breast cancer in symptomatic women in primary care: A case-control study using electronic records. Br J. Gen Pract. 2014 64 679 e788 10.3399/bjgp14X682873.
    [Google Scholar]
  12. Yang G. Zhou D. Li J. Wang W. Zhong W. Fan W. Yu M. Cheng H. VDAC1 is regulated by BRD4 and contributes to JQ1 resistance in breast cancer. Oncol. Lett. 2019 18 3 2340 2347 10.3892/ol.2019.10534 31452730
    [Google Scholar]
  13. Picon-ruiz M Morata-tarifa C Valle-goffin JJ Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer. J. Clin. 2017 67 5 378 397
    [Google Scholar]
  14. Troisi R. Hatch E.E. Titus L. Strohsnitter W. Gail M.H. Huo D. Adam E. Robboy S.J. Hyer M. Hoover R.N. Palmer J.R. Prenatal diethylstilbestrol exposure and cancer risk in women. Environ. Mol. Mutagen. 2019 60 5 395 403 10.1002/em.22155 29124779
    [Google Scholar]
  15. Chen C.L. Weiss N.S. Newcomb P. Hormone replacement therapy in relation to breast cancer. JAMA 2002 287 6 734 10.1001/jama.287.6.7345
    [Google Scholar]
  16. Terry MB Zhang FF Kabat G Lifetime alcohol intake and breast cancer risk. Ann Epidemiol. 2005 34 6 10.1016/j.annepidem.2005.06.048.
    [Google Scholar]
  17. Atoum M. Alzoughool F. Vitamin D and breast cancer: Latest evidence and future steps. Breast Cancer (Auckl.) 2017 11 10.1177/1178223417749816 29434472
    [Google Scholar]
  18. Rodgers K.M. Udesky J.O. Rudel R.A. Brody J.G. Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ. Res. 2018 160 160 152 182 10.1016/j.envres.2017.08.045 28987728
    [Google Scholar]
  19. Garcia-Saenz A. de Miguel AS. Espinosa A. Valentin A. Aragonés N. Llorca J. Amiano P. Martín Sánchez V. Guevara M. Capelo R. Tardón A. Peiró-Perez R. Jiménez-Moleón J.J. Roca-Barceló A. Pérez-Gómez B. Dierssen-Sotos T. Fernández-Villa T. Moreno-Iribas C. Moreno V. García-Pérez J. Castaño-Vinyals G. Pollán M. Aubé M. Kogevinas M. Evaluating the association between artificial light-at-night exposure and breast and prostate cancer risk in Spain (Mcc-spain study). Environ. Health Perspect. 2018 126 4 047011 10.1289/EHP1837 29687979
    [Google Scholar]
  20. Fiolet T Srour B Sellem L Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018 360 k322 10.1136/bmj.k322.
    [Google Scholar]
  21. Rodríguez LAG. González-Pérez A. Risk of breast cancer among users of aspirin and other anti-inflammatory drugs. Br. J. Cancer 2004 91 3 525 529 10.1038/sj.bjc.6602003 15226764
    [Google Scholar]
  22. Freedman R.A. Keating N.L. Lin N.U. Winer E.P. Vaz-Luis I. Lii J. Exman P. Barry W.T. Breast cancer‐specific survival by age: Worse outcomes for the oldest patients. Cancer 2018 124 10 2184 2191 10.1002/cncr.31308 29499074
    [Google Scholar]
  23. Key T.J. Appleby P.N. Reeves G.K. Travis R.C. Alberg A.J. Barricarte A. Berrino F. Krogh V. Sieri S. Brinton L.A. Dorgan J.F. Dossus L. Dowsett M. Eliassen A.H. Fortner R.T. Hankinson S.E. Helzlsouer K.J. Hoff man-Bolton J. Comstock G.W. Kaaks R. Kahle L.L. Muti P. Overvad K. Peeters P.H. Riboli E. Rinaldi S. Rollison D.E. Stanczyk F.Z. Trichopoulos D. Tworoger S.S. Vineis P. Endogenous Hormones and Breast Cancer Collaborative Group Sex hormones and risk of breast cancer in premenopausal women: A collaborative reanalysis of individual participant data from seven prospective studies. Lancet Oncol. 2013 14 10 1009 1019 10.1016/S1470‑2045(13)70301‑2 23890780
    [Google Scholar]
  24. Brewer H.R. Jones M.E. Schoemaker M.J. Ashworth A. Swerdlow A.J. Family history and risk of breast cancer: An analysis accounting for family structure. Breast Cancer Res. Treat. 2017 165 1 193 200 10.1007/s10549‑017‑4325‑2 28578505
    [Google Scholar]
  25. Martin L.J. Melnichouk O. Guo H. Family history, mammographic density, and risk of breast cancer. Cancer. Epidemiol. Biomarkers. Prev. 2010 19 456 464 10.1158/1055‑9965.EPI‑09‑0881
    [Google Scholar]
  26. Jernström H. Lubinski J. Lynch H.T. Ghadirian P. Neuhausen S. Isaacs C. Weber B.L. Horsman D. Rosen B. Foulkes W.D. Friedman E. Gershoni-Baruch R. Ainsworth P. Daly M. Garber J. Olsson H. Sun P. Narod S.A. Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J. Natl. Cancer Inst. 2004 96 14 1094 1098 10.1093/jnci/djh211 15265971
    [Google Scholar]
  27. Husby A. Wohlfahrt J. Øyen N. Melbye M. Pregnancy duration and breast cancer risk. Nat. Commun. 2018 9 1 4255 10.1038/s41467‑018‑06748‑3 30353005
    [Google Scholar]
  28. Hirko K.A. Rocque G. Reasor E. Taye A. Daly A. Cutress R.I. Copson E.R. Lee D.W. Lee K.H. Im S.A. Park Y.H. The impact of race and ethnicity in breast cancer—disparities and implications for precision oncology. BMC Med. 2022 20 1 72 10.1186/s12916‑022‑02260‑0 35151316
    [Google Scholar]
  29. Sheikh A. Hussain S.A. Ghori Q. Naeem N. Fazil A. Giri S. Sathian B. Mainali P. Al Tamimi D.M. The spectrum of genetic mutations in breast cancer. Asian Pac. J. Cancer Prev. 2015 16 6 2177 2185 10.7314/APJCP.2015.16.6.2177 25824734
    [Google Scholar]
  30. Olsson H.L. Olsson M.L. The menstrual cycle and risk of breast cancer: A review. Front. Oncol. 2020 10 January 21 10.3389/fonc.2020.00021 32038990
    [Google Scholar]
  31. John E.M. Phipps A.I. Knight J.A. Milne R.L. Dite G.S. Hopper J.L. Andrulis I.L. Southey M. Giles G.G. West D.W. Whittemore A.S. Medical radiation exposure and breast cancer risk: Findings from the breast cancer family registry. Int. J. Cancer 2007 121 2 386 394 10.1002/ijc.22668 17372900
    [Google Scholar]
  32. Pizzamiglio S. De Bortoli M. Taverna E. Signore M. Veneroni S. Cho W. Orlandi R. Verderio P. Bongarzone I. Expression of iron-related proteins differentiate non-cancerous and cancerous breast tumors. Int. J. Mol. Sci. 2017 18 2 410 10.3390/ijms18020410 28216608
    [Google Scholar]
  33. Nazari S.S. Mukherjee P. An overview of mammographic density and its association with breast cancer. Breast Cancer 2018 25 3 259 267 10.1007/s12282‑018‑0857‑5 29651637
    [Google Scholar]
  34. Tarin D. New insights into the pathogenesis of breast cancer metastasis. Breast Dis. 2007-2007 26 1 13 25 10.3233/BD‑2007‑26103 17473363
    [Google Scholar]
  35. Behl T. Kumar A. Vishakha Sehgal A. Singh S. Sharma N. Yadav S. Rashid S. Ali N. Ahmed A.S. Vargas-De-La-Cruz C. Bungau S.G. Khan H. Understanding the mechanistic pathways and clinical aspects associated with protein and gene based biomarkers in breast cancer. Int. J. Biol. Macromol. 2023 253 Pt 1 126595 10.1016/j.ijbiomac.2023.126595 37648139
    [Google Scholar]
  36. Mir MA Khan SU Aisha S Cell cycle dysregulation in breast cancer. Therapeutic potential of cell cycle kinases in breast cancer. Springer Nature Singapore 2023 10.1007/978‑981‑19‑8911‑7_5
    [Google Scholar]
  37. Hu L. Zhu Y.T. Qi C. Zhu Y.J. Identification of Smyd4 as a potential tumor suppressor gene involved in breast cancer development. Cancer Res. 2009 69 9 4067 4072 10.1158/0008‑5472.CAN‑08‑4097 19383909
    [Google Scholar]
  38. Aseervatham J. Dynamic role of exosome microRNAs in cancer cell signaling and their emerging role as noninvasive biomarkers. Biology 2023 12 5 710 10.3390/biology12050710 37237523
    [Google Scholar]
  39. Mai K.T. Yazdi H.M. Perkins D.G. Mammary Paget’s disease: Evidence of diverse origin of the disease with a subgroup of Paget’s disease developing from the superficial portion of lactiferous duct and a discontinuous pattern of tumor spread. Pathol. Int. 1999 49 11 956 961 10.1046/j.1440‑1827.1999.00976.x 10594841
    [Google Scholar]
  40. Weigelt B. Reis-Filho J.S. Histological and molecular types of breast cancer: Is there a unifying taxonomy? Nat. Rev. Clin. Oncol. 2009 6 12 718 730 10.1038/nrclinonc.2009.166 19942925
    [Google Scholar]
  41. Rakha E.A. Tse G.M. Quinn C.M. An update on the pathological classification of breast cancer. Histopathology 2023 82 1 5 16 10.1111/his.14786 36482272
    [Google Scholar]
  42. Rakha E. Toss M. Quinn C. Specific cell differentiation in breast cancer: A basis for histological classification. J. Clin. Pathol. 2022 75 2 76 84 10.1136/jclinpath‑2021‑207487 34321225
    [Google Scholar]
  43. Makki J. Diversity of breast carcinoma: Histological subtypes and clinical relevance. Clin. Med. Insights Pathol. 2015 8 1 CPath.S31563 10.4137/CPath.S31563 26740749
    [Google Scholar]
  44. Rechsteiner A. Dietrich D. Varga Z. Prognostic relevance of mixed histological subtypes in invasive breast carcinoma: A retrospective analysis. J. Cancer Res. Clin. Oncol. 2023 149 8 4967 4978 10.1007/s00432‑022‑04443‑x 36310301
    [Google Scholar]
  45. Mao L. Wang L. Xu J. Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov. 2023 9 1 119 10.1038/s41420‑023‑01417‑x 37037822
    [Google Scholar]
  46. Poirier É. Desbiens C. Poirier B. Boudreau D. Jacob S. Lemieux J. Doyle C. Diorio C. Hogue J.C. Provencher L. Characteristics and long-term survival of patients diagnosed with pure tubular carcinoma of the breast. J. Surg. Oncol. 2018 117 6 1137 1143 10.1002/jso.24944 29205352
    [Google Scholar]
  47. Mo C.H. Ackbarkhan Z. Gu Y.Y. Chen G. Pang Y.Y. Dang Y.W. Feng Z.B. Invasive cribriform carcinoma of the breast: A clinicopathological analysis of 12 cases with review of literature. Int. J. Clin. Exp. Pathol. 2017 10 9 9917 9924 31966881
    [Google Scholar]
  48. Patnayak R. Agrawal S.K. Dasgupta S. Mohapatra D. Devi K. Jena A. Carcinoma with medullary features of breast: Diagnosed in cytology. Med. J. Dr. D.Y. Patil Vidyapeeth 2018 11 2 194 196
    [Google Scholar]
  49. Marrazzo E. Frusone F. Milana F. Sagona A. Gatzemeier W. Barbieri E. Bottini A. Canavese G. Rubino A.O. Eboli M.G. Rossetti C.M. Testori A. Errico V. De Luca A. Tinterri C. Mucinous breast cancer: A narrative review of the literature and a retrospective tertiary single-centre analysis. Breast 2020 49 87 92 10.1016/j.breast.2019.11.002 31783314
    [Google Scholar]
  50. Lavigne M. Menet E. Tille J.C. Lae M. Fuhrmann L. Bonneau C. Deniziaut G. Melaabi S. Ng C.C.K. Marchiò C. Rouzier R. Bièche I. Vincent-Salomon A. Comprehensive clinical and molecular analyses of neuroendocrine carcinomas of the breast. Mod. Pathol. 2018 31 1 68 82 10.1038/modpathol.2017.107 28884749
    [Google Scholar]
  51. Kulka J. Madaras L. Floris G. Lax S.F. Papillary lesions of the breast. Virchows. Archiv. 2022 480 65 84 10.1007/s00428‑021‑03182‑7
    [Google Scholar]
  52. Yang Y.L. Liu B.B. Zhang X. Fu L. Invasive micropapillary carcinoma of the breast: An update. Arch. Pathol. Lab. Med. 2016 140 8 799 805 10.5858/arpa.2016‑0040‑RA 27472238
    [Google Scholar]
  53. Vranic S. Gatalica Z. An Update on the molecular and clinical characteristics of apocrine carcinoma of the breast. Clin. Breast Cancer 2022 22 4 e576 e585 10.1016/j.clbc.2021.12.009 35027319
    [Google Scholar]
  54. Shah D.R. Tseng W.H. Martinez S.R. Treatment options for metaplastic breast cancer. ISRN Oncol. 2012 2012 di 706162 22778998
    [Google Scholar]
  55. Kuniyoshi S. Miki Y. Sasaki A. Iwabuchi E. Ono K. Onodera Y. Hirakawa H. Ishida T. Yoshimi N. Sasano H. The significance of lipid accumulation in breast carcinoma cells through perilipin 2 and its clinicopathological significance. Pathol. Int. 2019 69 8 463 471 10.1111/pin.12831 31273897
    [Google Scholar]
  56. Li D. Xiao X. Yang W. Shui R. Tu X. Lu H. Shi D. Secretory breast carcinoma: A clinicopathological and immunophenotypic study of 15 cases with a review of the literature. Mod. Pathol. 2012 25 4 567 575 10.1038/modpathol.2011.190 22157932
    [Google Scholar]
  57. Itagaki H. Yamamoto T. Hiroi A. Kawanishi K. Noguchi E. Ohchi T. Kamio T. Kameoka S. Oda H. Nagashima Y. Synchronous and bilateral oncocytic carcinoma of the breast: A case report and review of the literature. Oncol. Lett. 2017 13 3 1714 1718 10.3892/ol.2017.5610 28454314
    [Google Scholar]
  58. Binesh F. Akhavan A. Masumi O. Mirvakili A. Behniafard N. Clinicopathological review and survival characteristics of adenoid cystic carcinoma. Indian J. Otolaryngol. Head Neck Surg. 2015 67 S1 Suppl. 1 62 66 10.1007/s12070‑014‑0755‑x 25621256
    [Google Scholar]
  59. Limite G. Di Micco R. Esposito E. Sollazzo V. Cervotti M. Pettinato G. Varone V. Benassai G. Amato B. Pilone V. Luglio G. Vitiello A. Hasani A. Liccardo F. Forestieri P. Acinic cell carcinoma of the breast: Review of the literature. Int. J. Surg. 2014 12 Suppl. 1 S35 S39 10.1016/j.ijsu.2014.05.004 24859406
    [Google Scholar]
  60. Vranic S. Skenderi F. Beslagic V. Gatalica Z. Glycogen-rich clear cell carcinoma of the breast: A comprehensive review. Appl. Immunohistochem. Mol. Morphol. 2020 28 9 655 660 10.1097/PAI.0000000000000850 32167940
    [Google Scholar]
  61. Jayaraj P. Sen S. Evaluation of PD-L1 and PD-1 expression in aggressive eyelid sebaceous gland carcinoma and its clinical significance. Indian J. Ophthalmol. 2019 67 12 1983 1987 10.4103/ijo.IJO_2056_18 31755433
    [Google Scholar]
  62. Tang W. Yusuf A. Jia K. Iskandar Y.H.P. Mangantig E. Mo X. Wei T. Cheng S. Correlates of stigma for patients with breast cancer: A systematic review and meta-analysis. Support. Care Cancer 2023 31 1 55 10.1007/s00520‑022‑07506‑4 36526859
    [Google Scholar]
  63. Eroles P. Bosch A. Pérez-Fidalgo JA. Lluch A. Molecular biology in breast cancer: Intrinsic subtypes and signaling pathways. Cancer Treat. Rev. 2012 38 6 698 707 10.1016/j.ctrv.2011.11.005 22178455
    [Google Scholar]
  64. Roy M. Fowler A.M. Ulaner G.A. Mahajan A. Molecular classification of breast cancer. PET Clin. 2023 18 4 441 458 10.1016/j.cpet.2023.04.002 37268505
    [Google Scholar]
  65. Shahid R. Gulzar R. Saleem O. Molecular subtypes of breast cancer by immunohistochemical profiling. Int. J. Pathol 2019 16 2 46 51
    [Google Scholar]
  66. Rezapour M. Wesolowski R. Gurcan M.N. Identifying key genes involved in axillary lymph node metastasis in breast cancer using advanced RNA-Seq analysis: A methodological approach with GLMQL and MAS. Int. J. Mol. Sci. 2024 25 13 7306 10.3390/ijms25137306 39000413
    [Google Scholar]
  67. Kennecke H. Yerushalmi R. Woods R. Cheang M.C.U. Voduc D. Speers C.H. Nielsen T.O. Gelmon K. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 2010 28 20 3271 3277 10.1200/JCO.2009.25.9820 20498394
    [Google Scholar]
  68. Creighton C. The molecular profile of luminal B breast cancer. Biologics 2012 6 289 297 10.2147/BTT.S29923 22956860
    [Google Scholar]
  69. Johnson K.S. Conant E.F. Soo M.S. Molecular subtypes of breast cancer: A review for breast radiologists. J. Breast Imaging 2021 3 1 12 24 10.1093/jbi/wbaa110 38424845
    [Google Scholar]
  70. de Ruijter T.C. Veeck J. de Hoon J.P.J. van Engeland M. Tjan-Heijnen V.C. Characteristics of triple-negative breast cancer. J. Cancer. Res. Clin. Oncol. 2011 137 2 183 192 10.1007/s00432‑010‑0957‑x 21069385
    [Google Scholar]
  71. Derakhshan F. Reis-Filho J.S. Pathogenesis of triple-negative breast cancer. Annu. Rev. Pathol. 2022 17 1 181 204 10.1146/annurev‑pathol‑042420‑093238 35073169
    [Google Scholar]
  72. Jézéquel P. Loussouarn D. Guérin-Charbonnel C. Campion L. Vanier A. Gouraud W. Lasla H. Guette C. Valo I. Verrièle V. Campone M. Gene-expression molecular subtyping of triple-negative breast cancer tumours: Importance of immune response. Breast Cancer Res. 2015 17 1 43 10.1186/s13058‑015‑0550‑y 25887482
    [Google Scholar]
  73. Chamandi G. Nasr R. Lehmann-Che J. Le Bras M. 71P MicroRNA (miRNA) a putative biomarker to better define the molecular apocrine breast cancer (MABC) subtype. ESMO Open 2023 8 1 101294 10.1016/j.esmoop.2023.101294
    [Google Scholar]
  74. Lehmann-Che J. Hamy A.S. Porcher R. Barritault M. Bouhidel F. Habuellelah H. Leman-Detours S. de Roquancourt A. Cahen-Doidy L. Bourstyn E. de Cremoux P. de Bazelaire C. Albiter M. Giacchetti S. Cuvier C. Janin A. Espié M. de Thé H. Bertheau P. Molecular apocrine breast cancers are aggressive estrogen receptor negative tumors overexpressing either HER2 or GCDFP15. Breast Cancer Res. 2013 15 3 R37 10.1186/bcr3421 23663520
    [Google Scholar]
  75. Cheang M.C.U. Chia S.K. Voduc D. Gao D. Leung S. Snider J. Watson M. Davies S. Bernard P.S. Parker J.S. Perou C.M. Ellis M.J. Nielsen T.O. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J. Natl. Cancer Inst. 2009 101 10 736 750 10.1093/jnci/djp082 19436038
    [Google Scholar]
  76. Prat A. Parker J.S. Karginova O. Fan C. Livasy C. Herschkowitz J.I. He X. Perou C.M. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010 12 5 R68 10.1186/bcr2635 20813035
    [Google Scholar]
  77. Thomas A. Douglas E. Reis-Filho J.S. Gurcan M.N. Wen H.Y. Metaplastic breast cancer: Current understanding and future directions. Clin. Breast Cancer 2023 23 8 775 783 10.1016/j.clbc.2023.04.004 37179225
    [Google Scholar]
  78. Hu Z. Fan C. Oh D.S. Marron J.S. He X. Qaqish B.F. Livasy C. Carey L.A. Reynolds E. Dressler L. Nobel A. Parker J. Ewend M.G. Sawyer L.R. Wu J. Liu Y. Nanda R. Tretiakova M. Orrico A.R. Dreher D. Palazzo J.P. Perreard L. Nelson E. Mone M. Hansen H. Mullins M. Quackenbush J.F. Ellis M.J. Olopade O.I. Bernard P.S. Perou C.M. The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 2006 7 1 96 10.1186/1471‑2164‑7‑96 16643655
    [Google Scholar]
  79. Lakis S. Kotoula V. Eleftheraki A.G. Batistatou A. Bobos M. Koletsa T. Timotheadou E. Chrisafi S. Pentheroudakis G. Koutras A. Zagouri F. Linardou H. Fountzilas G. The androgen receptor as a surrogate marker for molecular apocrine breast cancer subtyping. Breast 2014 23 3 234 243 10.1016/j.breast.2014.02.013 24703723
    [Google Scholar]
  80. Murawa P. Murawa D. Adamczyk B. Połom K. Breast cancer: Actual methods of treatment and future trends. Rep. Pract. Oncol. Radiother. 2014 19 3 165 10.1016/j.rpor.2013.12.003.
    [Google Scholar]
  81. Badwe R. Hawaldar R. Nair N. Kaushik R. Parmar V. Siddique S. Budrukkar A. Mittra I. Gupta S. Locoregional treatment versus no treatment of the primary tumour in metastatic breast cancer: An open-label randomised controlled trial. Lancet Oncol. 2015 16 13 1380 1388 10.1016/S1470‑2045(15)00135‑7 26363985
    [Google Scholar]
  82. Gerges A.S. Sholkamy N.H. Saleh A.M. Pattern of breast cancer in young females in minia governorate. Minia J. Med. Res 2023 34 2 116 124
    [Google Scholar]
  83. Mathelin C Lodi M Narrative review of sentinel lymph node biopsy in breast cancer: A technique in constant evolution with still numerous unresolved questions. Chin. Clin. Oncol. 2021 10 2 0 14 10.21037/cco‑20‑207
    [Google Scholar]
  84. Rai V. Gupta Y. Srivastava S.P. Shukla A. Bano N. Khan S. Targeted Therapies in cancer treatment: Unveiling the latest breakthroughs and promising approaches. J. Res. Appl. Sci. Biotechnol. 2024 2 6 175 183 10.55544/jrasb.2.6.26
    [Google Scholar]
  85. Giuliano M. Schettini F. Rognoni C. Milani M. Jerusalem G. Bachelot T. De Laurentiis M. Thomas G. De Placido P. Arpino G. De Placido S. Cristofanilli M. Giordano A. Puglisi F. Pistilli B. Prat A. Del Mastro L. Venturini S. Generali D. Endocrine treatment versus chemotherapy in postmenopausal women with hormone receptor-positive, HER2-negative, metastatic breast cancer: A systematic review and network meta-analysis. Lancet Oncol. 2019 20 10 1360 1369 10.1016/S1470‑2045(19)30420‑6 31494037
    [Google Scholar]
  86. Zhang X. Molecular classification of breast cancer: Relevance and challenges. Arch. Pathol. Lab. Med. 2023 147 1 46 51 10.5858/arpa.2022‑0070‑RA 36136295
    [Google Scholar]
  87. Robson M.E. Im S.A. Senkus E. Xu B. Domchek S.M. Masuda N. Delaloge S. Tung N. Armstrong A. Dymond M. Fielding A. Allen A. Conte P. OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician’s choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur. J. Cancer 2023 184 39 47 10.1016/j.ejca.2023.01.031 36893711
    [Google Scholar]
  88. Asaoka M. Gandhi S. Ishikawa T. Takabe K. Neoadjuvant chemotherapy for breast cancer: Past, present, and future. Breast Cancer (Auckl.) 2020 14 1178223420980377 10.1177/1178223420980377 33402827
    [Google Scholar]
  89. Sirico M. Angelo A.D. Gianni C. Casadei C. Merloni F. De Giorgi U. Current state and future challenges for PI3K inhibitors in cancer therapy. Cancer 2023 15 3 703 10.3390/cancers15030703
    [Google Scholar]
  90. Chen X. Feng L. Huang Y. Wu Y. Xie N. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer. Cancers 2022 15 1 104 10.3390/cancers15010104 36612100
    [Google Scholar]
  91. Sirhan Z. Thyagarajan A. Sahu R.P. The efficacy of tucatinib-based therapeutic approaches for HER2-positive breast cancer. Mil. Med. Res. 2022 9 1 39 10.1186/s40779‑022‑00401‑3 35820970
    [Google Scholar]
  92. Alasmari M.M. A review of Margetuximab-based therapies in patients with HER2-positive metastatic breast cancer. Cancers 2022 15 1 38 10.3390/cancers15010038 36612034
    [Google Scholar]
  93. Murphree A.L. Future directions. In: Clinical Ophthalmic Oncology with CD-ROM Saunders 2007 501 504
    [Google Scholar]
  94. Ghoneum A. Said N. PI3K-AKT-mTOR and NFkB pathways in ovarian cancer: Implications for targeted therapeutics. Cancers 2019 11 7 949 10.3390/cancers11070949 31284467
    [Google Scholar]
  95. Wang X. Shi Y. Huang D. Guan X. Emerging therapeutic modalities of PARP inhibitors in breast cancer. Cancer Treat. Rev. 2018 68 May 62 68 10.1016/j.ctrv.2018.05.014 29870916
    [Google Scholar]
  96. Bharate S.S. Recent developments in pharmaceutical salts: FDA approvals from 2015 to 2019. Drug Discov. Today 2021 26 2 384 398 10.1016/j.drudis.2020.11.016 33221522
    [Google Scholar]
  97. Collins D.M. Conlon N.T. Kannan S. Verma C.S. Eli L.D. Lalani A.S. Crown J. Preclinical characteristics of the irreversible pan- her kinase inhibitor neratinib compared with lapatinib: Implications for the treatment of HER2- positive and HER2-mutated breast cancer. Cancers 2019 11 6 737 10.3390/cancers11060737 31141894
    [Google Scholar]
  98. Edessa D. Sisay M. Recent advances of cyclin-dependent kinases as potential therapeutic targets in HR+/HER2- metastatic breast cancer: A focus on ribociclib. Breast Cancer (Dove Med. Press) 2017 9 567 579 10.2147/BCTT.S150540 29263697
    [Google Scholar]
  99. Gallanis G.T. Pericas R.I. Riegel A.T. Pohlmann P.R. An evaluation of palbociclib as a breast cancer treatment option: A current update. Expert Opin. Pharmacother. 2021 22 3 281 290 10.1080/14656566.2020.1838485 33198527
    [Google Scholar]
  100. Beaver J.A. Amiri-Kordestani L. Charlab R. Chen W. Palmby T. Tilley A. Zirkelbach J.F. Yu J. Liu Q. Zhao L. Crich J. Chen X.H. Hughes M. Bloomquist E. Tang S. Sridhara R. Kluetz P.G. Kim G. Ibrahim A. Pazdur R. Cortazar P. FDA approval: Palbociclib for the treatment of postmenopausal patients with estrogen receptor-positive, HER2-negative metastatic breast cancer. Clin. Cancer Res. 2015 21 21 4760 4766 10.1158/1078‑0432.CCR‑15‑1185 26324739
    [Google Scholar]
  101. Mollalou BN Anti-cancer mechanism of trastuzumab via blocking nuclear her2 function and epigenetic mechanism of resistance. PHD Thesis University of Alberta 2020
    [Google Scholar]
  102. Polastro L. Aftimos P.G. Awada A. Eribulin Mesylate in the management of metastatic breast cancer and other solid cancers: A drug review. Expert Rev. Anticancer. Ther. 2014 14 6 649 665 10.1586/14737140.2014.920693 24852360
    [Google Scholar]
  103. Chumsri S. Sabnis G. Tkaczuk K. Brodie A. mTOR inhibitors: Changing landscape of endocrine-resistant breast cancer. Future Oncol. 2014 10 3 443 456 10.2217/fon.13.178 24559450
    [Google Scholar]
  104. Sathornsumetee S. Therapeutic strategies to target multiple kinases in glioblastoma. Anticancer. Agents Med. Chem. 2011 11 8 700 711 10.2174/187152011797378661 21707500
    [Google Scholar]
  105. Mani S. Ghalib M. Goel S. Serradell N. Bolós J. Rosa E. Ixabepilone: Antimitotic drug microtubule-stabilizing agent epothilone. Drugs Future 2007 32 12 1033 1039 10.1358/dof.2007.032.12.1157611
    [Google Scholar]
  106. Johnston S.R.D. New strategies in estrogen receptor-positive breast cancer. Clin. Cancer Res. 2010 16 7 1979 1987 10.1158/1078‑0432.CCR‑09‑1823 20332324
    [Google Scholar]
  107. Lombardi P. Exemestane, a new steroidal aromatase inhibitor of clinical relevance. Biochim. Biophys. Acta Mol. Basis Dis. 2002 1587 2-3 326 337 10.1016/S0925‑4439(02)00096‑0 12084475
    [Google Scholar]
  108. Vanderbeeken M.C. Aftimos P.G. Awada A. Topoisomerase inhibitors in metastatic breast cancer: Overview of current practice and future development. Curr. Breast Cancer Rep. 2013 5 1 31 41 10.1007/s12609‑012‑0098‑0
    [Google Scholar]
  109. Vu T. Sliwkowski M.X. Claret F.X. Personalized drug combinations to overcome trastuzumab resistance in HER2-positive breast cancer. Biochim. Biophys. Acta 2014 1846 2 353 365 25065528
    [Google Scholar]
  110. Fujimoto-Ouchi K. Sekiguchi F. Tanaka Y. Antitumor activity of combinations of anti-HER-2 antibody trastuzumab and oral fluoropyrimidines capecitabine/5?-dFUrd in human breast cancer models. Cancer Chemother. Pharmacol. 2002 49 3 211 216 10.1007/s00280‑001‑0401‑7 11935213
    [Google Scholar]
  111. Buzdar A. Douma J. Davidson N. Elledge R. Morgan M. Smith R. Porter L. Nabholtz J. Xiang X. Brady C. Phase III, multicenter, double-blind, randomized study of letrozole, an aromatase inhibitor, for advanced breast cancer versus megestrol acetate. J. Clin. Oncol. 2001 19 14 3357 3366 10.1200/JCO.2001.19.14.3357 11454883
    [Google Scholar]
  112. Howell S.J. Johnston S.R.D. Howell A. The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2004 18 1 47 66 10.1016/j.beem.2003.08.002 14687597
    [Google Scholar]
  113. Brodie A. Njar V.C.O. Aromatase inhibitors and their application in breast cancer treatment⋆. Steroids 2000 65 4 171 179 10.1016/S0039‑128X(99)00104‑X 10713305
    [Google Scholar]
  114. Hagaman D.E. Damasco J.A. Perez J.V.D. Rojo R.D. Melancon M.P. Recent advances in nanomedicine for the diagnosis and treatment of prostate cancer bone metastasis. Molecules 2021 26 2 384 10.3390/molecules26020384 33450939
    [Google Scholar]
  115. Li Y. Hong X. Hussain M. Sarkar S.H. Li R. Sarkar F.H. Gene expression profiling revealed novel molecular targets of docetaxel and estramustine combination treatment in prostate cancer cells. Mol. Cancer Ther. 2005 4 3 389 398 10.1158/1535‑7163.MCT‑04‑0244 15767548
    [Google Scholar]
  116. Moysan E. Bastiat G. Benoit J.P. Gemcitabine versus modified Gemcitabine: A review of several promising chemical modifications. Mol. Pharm. 2013 10 2 430 444 10.1021/mp300370t 22978251
    [Google Scholar]
  117. Jordan V.C. Brodie A.M.H. Development and evolution of therapies targeted to the estrogen receptor for the treatment and prevention of breast cancer. Steroids 2007 72 1 7 25 10.1016/j.steroids.2006.10.009 17169390
    [Google Scholar]
  118. Krause W. Resistance to anti-tubulin agents: From vinca alkaloids to epothilones. Cancer Drug Resist. 2019 2 1 82 106 10.20517/cdr.2019.06 35582143
    [Google Scholar]
  119. Cheer S.M. Plosker G.L. Simpson D. Wagstaff A.J. Goserelin: A review of its use in the treatment of early breast cancer in premenopausal and perimenopausal women. Drugs 2005 65 18 2639 2655 10.2165/00003495‑200565180‑00011 16392882
    [Google Scholar]
  120. Sharifi-Rad J. Sureda A. Tenore G. Daglia M. Sharifi-Rad M. Valussi M. Tundis R. Sharifi-Rad M. Loizzo M. Ademiluyi A. Sharifi-Rad R. Ayatollahi S. Iriti M. Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules 2017 22 1 70 10.3390/molecules22010070
    [Google Scholar]
  121. Srivastav S. Kumar K. Joshi A. Teotia D. Ikram I. An updated review on microspheres: A suitable drug carrier in sustained release drug delivery. Int. j. indig. herbs drugs 2022 4 2 40 48 10.46956/ijihd.v7i2.305
    [Google Scholar]
  122. Gao W. Bohl C.E. Dalton J.T. Chemistry and structural biology of androgen receptor. Chem. Rev. 2005 105 9 3352 3370 10.1021/cr020456u 16159155
    [Google Scholar]
  123. Carrillo E. Navarro S.A. Ramírez A. 5-Fluorouracil derivatives: A patent review Expert. Opin. Ther. Pat. 2015 25 10 1131
    [Google Scholar]
  124. Weber G.F. Molecular Therapies of Cancer. Springer 2015 10.1007/978‑3‑319‑13278‑5
    [Google Scholar]
  125. Molaei P. Mahaki H. Manoochehri H. Tanzadehpanah H. Binding sites of anticancer drugs on human serum albumin (HSA): A review. Protein Pept. Lett. 2022 29 8 651 675 10.2174/0929866529666220426124834 35473541
    [Google Scholar]
  126. Aggarwal S Singh S Aggarwal S Chandra S. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID19. 2020 Available from: https://cdn.who.int/media/docs/default-source/whhd-2021/scientific-citations/2.jhi_5may2021.pdf?sfvrsn=6526a2a5_5
  127. Hohl A. Testosterone From Basic to Clinical Aspects Springer 2017 10.1007/978‑3‑031‑31501‑5
    [Google Scholar]
  128. Maksimovic V. Pavlovic-Popovic Z. Vukmirovic S. Cvejic J. Mooranian A. Al-Salami H. Mikov M. Golocorbin-Kon S. Molecular mechanism of action and pharmacokinetic properties of methotrexate. Mol. Biol. Rep. 2020 47 6 4699 4708 10.1007/s11033‑020‑05481‑9 32415503
    [Google Scholar]
  129. Baskar R. Lee K.A. Yeo R. Yeoh K.W. Cancer and radiation therapy: Current advances and future directions. Int. J. Med. Sci. 2012 9 3 193 199 10.7150/ijms.3635 22408567
    [Google Scholar]
  130. Haffty B.G. Long-term results of hypofractionated radiation therapy for breast cancer. Breast Dis. 2010 21 3 267 268 10.1016/S1043‑321X(10)79594‑1
    [Google Scholar]
  131. Kronowitz SJ Robb GL Radiation therapy and breast reconstruction: A critical review of the literature. N. Engl. J. Med. 2015 21 3 267
    [Google Scholar]
  132. Moran M.S. Advancements and personalization of breast cancer treatment strategies in radiation therapy. Cancer Treat Res. 2018 173 89 119 10.1007/978‑3‑319‑70197‑4_7
    [Google Scholar]
  133. Suntharalingam N Podgorsak EB Tolli H Brachytherapy: Physical and Clinical Aspects. In: Radiation Oncology Physics: A Handbook for Teachers and Students International Atomic Energy Agency 371 396
    [Google Scholar]
  134. Yip C.P. Rhodes A. Estrogen and progesterone receptors in breast cancer. Future Oncol 2014 14 10 2293 2301 10.2217/fon.14.110
    [Google Scholar]
  135. Patel H.K. Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther. 2018 186 1 24 10.1016/j.pharmthera.2017.12.012 29289555
    [Google Scholar]
  136. Schiavon G. Tonini G. Hormone-biological therapy in breast cancer: preclinical evidences, clinical studies and future directions. Curr. Cancer Drug Targets 2010 10 1 3 18 10.2174/156800910790980278 20088791
    [Google Scholar]
  137. Sabnis G. Schayowitz A. Goloubeva O. Macedo L. Brodie A. Trastuzumab reverses letrozole resistance and amplifies the sensitivity of breast cancer cells to estrogen. Cancer Res. 2009 69 4 1416 1428 10.1158/0008‑5472.CAN‑08‑0857 19190349
    [Google Scholar]
  138. García-Becerra R. Santos N. Díaz L. Camacho J. Mechanisms of resistance to endocrine therapy in breast cancer: Focus on signaling pathways, miRNAs and genetically based resistance. Int. J. Mol. Sci. 2012 14 1 108 145 10.3390/ijms14010108 23344024
    [Google Scholar]
  139. Lee Y.T. Tan Y.J. Oon C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018 834 188 196 10.1016/j.ejphar.2018.07.034 30031797
    [Google Scholar]
  140. Shien T. Iwata H. Adjuvant and neoadjuvant therapy for breast cancer. Jpn. J. Clin. Oncol. 2020 50 3 225 229 10.1093/jjco/hyz213 32147701
    [Google Scholar]
  141. Darb-Esfahani S. Loibl S. Müller B.M. Roller M. Denkert C. Komor M. Schlüns K. Blohmer J.U. Budczies J. Gerber B. Noske A. du Bois A. Weichert W. Jackisch C. Dietel M. Richter K. Kaufmann M. von Minckwitz G. Identification of biology-based breast cancer types with distinct predictive and prognostic features: Role of steroid hormone and HER2 receptor expression in patients treated with neoadjuvant anthracycline/taxane-based chemotherapy. Breast. Cancer. Res. 2009 11 5 R69 10.1186/bcr2363 19758440
    [Google Scholar]
  142. Nami B. Maadi H. Wang Z. Mechanisms underlying the action and synergism of trastuzumab and pertuzumab in targeting HER2-positive breast cancer. Cancers 2018 10 10 342 10.3390/cancers10100342 30241301
    [Google Scholar]
  143. Niu Y. Xu J. Sun T. Cyclin-dependent kinases 4/6 inhibitors in breast cancer: Current status, resistance, and combination strategies. J. Cancer 2019 10 22 5504 5517 10.7150/jca.32628 31632494
    [Google Scholar]
  144. Pang L. Gan C. Xu J. Jia Y. Chai J. Huang R. Li A. Ge H. Yu S. Cheng H. Bone metastasis of breast cancer: Molecular Mechanisms and therapeutic strategies. Cancers 2022 14 23 5727 10.3390/cancers14235727 36497209
    [Google Scholar]
  145. Akram M. Iqbal M. Daniyal M. Khan A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017 50 1 33 10.1186/s40659‑017‑0140‑9 28969709
    [Google Scholar]
  146. Chidambaram M. Manavalan R. Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci. 2011 14 1 67 77 10.18433/J30C7D 21501554
    [Google Scholar]
  147. Pérez-Herrero E. Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015 93 March 52 79 10.1016/j.ejpb.2015.03.018 25813885
    [Google Scholar]
  148. Fraguas-Sánchez A.I. Martín-Sabroso C. Fernández-Carballido A. Torres-Suárez A.I. Current status of nanomedicine in the chemotherapy of breast cancer. Cancer Chemother. Pharmacol. 2019 84 4 689 706 10.1007/s00280‑019‑03910‑6 31367789
    [Google Scholar]
  149. Shivani S.G. Singh G. Narwal S. Chopra B. Dhingra A.K. Quercetin-based nanoformulation: A potential approach for cancer treatment. Anticancer. Agents Med. Chem. 2023 23 18 1983 2007 10.2174/1871520623666230817101926 37592797
    [Google Scholar]
  150. Shafei A. El-Bakly W. Sobhy A. Wagdy O. Reda A. Aboelenin O. Marzouk A. El Habak K. Mostafa R. Ali M.A. Ellithy M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother. 2017 95 September 1209 1218 10.1016/j.biopha.2017.09.059 28931213
    [Google Scholar]
  151. Khanam A Singh G Narwal S Chopra B Dhingra AK A review on novel applications of nanotechnology in the management of prostate cancer. Curr. Drug Deliv. 2024 21 9 1161 10.2174/0115672018180695230925113521
    [Google Scholar]
  152. Yu X Sun L Tan L Preparation and characterization of PLGA-PEG-PLGA nanoparticles containing salidroside and tamoxifen for breast cancer therapy. AAPS Pharm. Sci. Tech. 2020 21 3 85 10.1208/s12249‑019‑1523‑8.1
    [Google Scholar]
  153. Mikušová V. Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2021 22 17 9652 10.3390/ijms22179652 34502560
    [Google Scholar]
  154. Esnaashari S.S. Muhammadnejad S. Amanpour S. Amani A. A combinational approach towards treatment of breast cancer: An analysis of noscapine-loaded polymeric nanoparticles and Doxorubicin. AAPS Pharm. Sci. Tech. 2020 21 5 166 10.1208/s12249‑020‑01710‑3 32504144
    [Google Scholar]
  155. Pourgholi A. Dadashpour M. Mousapour A. Amandi AF. Zarghami N. Anticancer potential of silibinin loaded polymeric nanoparticles against breast cancer cells: Insight into the apoptotic genes targets. Asian Pac. J. Cancer Prev. 2021 22 8 2587 2596 10.31557/APJCP.2021.22.8.2587 34452574
    [Google Scholar]
  156. Almoustafa H.A. Alshawsh M.A. Al-Suede F.S.R. Alshehade S.A. Abdul Majid A.M.S. Chik Z. The chemotherapeutic efficacy of hyaluronic acid coated polymeric nanoparticles against breast cancer metastasis in female NCr-Nu/Nu nude mice. Polymers (Basel) 2023 15 2 284 10.3390/polym15020284 36679166
    [Google Scholar]
  157. Ibarra L.E. Camorani S. Agnello L. Pedone E. Pirone L. Chesta C.A. Palacios R.E. Fedele M. Cerchia L. Selective photo-assisted eradication of triple-negative breast cancer cells through aptamer decoration of doped conjugated polymer nanoparticles. Pharmaceutics 2022 14 3 626 10.3390/pharmaceutics14030626 35336001
    [Google Scholar]
  158. Misiak P. Niemirowicz-Laskowska K. Markiewicz K.H. Wielgat P. Kurowska I. Czarnomysy R. Misztalewska-Turkowicz I. Car H. Bielawski K. Wilczewska A.Z. Doxorubicin-loaded polymeric nanoparticles containing ketoester-based block and cholesterol moiety as specific vehicles to fight estrogen-dependent breast cancer. Cancer. Nanotechnol. 2023 14 1 23 10.1186/s12645‑023‑00176‑9
    [Google Scholar]
  159. Gilani S.J. Bin-Jumah M.N. Fatima F. Development of statistically optimized piperine-loaded polymeric nanoparticles for breast cancer: In vitro evaluation and cell culture studies. ACS Omega 2023 8 46 44183 44194
    [Google Scholar]
  160. Paliwal R. Paliwal S.R. Kenwat R. Das Kurmi B. Sahu M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert. Opin. Ther. Pat. 2020 30 3 179 10.1080/13543776.2020.1720649
    [Google Scholar]
  161. Shinde AS Lala RR Mannose-anchored solid lipid nanoparticles loaded with atorvastatin calcium and vinpocetine as targeted therapy for breast cancer. Futur. J. Pharm. Sci. 2023 9 1 10.1186/s43094‑023‑00531‑y
    [Google Scholar]
  162. Ozgenc E. Karpuz M. Arzuk E. Gonzalez-Alvarez M. Sanz M.B. Gundogdu E. Gonzalez-Alvarez I. Radiolabeled Trastuzumab solid lipid nanoparticles for breast cancer cell: In vitro and in vivo studies. ACS Omega 2022 7 34 30015 30027 10.1021/acsomega.2c03023 36061662
    [Google Scholar]
  163. Granja A. Nunes C. Sousa C.T. Reis S. Folate receptor-mediated delivery of mitoxantrone-loaded solid lipid nanoparticles to breast cancer cells. Biomed. Pharmacother. 2022 154 113525 10.1016/j.biopha.2022.113525 36049314
    [Google Scholar]
  164. Granja A. Lima-Sousa R. Alves C.G. de Melo-Diogo D. Nunes C. Sousa C.T. Correia I.J. Reis S. Multifunctional targeted solid lipid nanoparticles for combined photothermal therapy and chemotherapy of breast cancer. Biomaterials Adv. 2023 151 February 213443 10.1016/j.bioadv.2023.213443 37146526
    [Google Scholar]
  165. De A. Roychowdhury P. Bhuyan N.R. Ko Y.T. Singh S.K. Dua K. Kuppusamy G. Folic acid functionalized diallyl trisulfide–solid lipid nanoparticles for targeting triple negative breast cancer. Molecules 2023 28 3 1393 10.3390/molecules28031393 36771058
    [Google Scholar]
  166. Darabi F Saidijam M Nouri F Mahjub R Soleimani M. Anti-CD44 and EGFR dual-targeted solid lipid nanoparticles for delivery of doxorubicin to triple-negative breast cancer cell line: Preparation, statistical optimization, and In vitro characterization. Biomed. Res. Int. 2022 2022 6253978 10.1155/2022/6253978
    [Google Scholar]
  167. Sheikhpour M. Golbabaie A. Kasaeian A. Carbon nanotubes: A review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C 2017 76 1289 1304 10.1016/j.msec.2017.02.132 28482496
    [Google Scholar]
  168. El-Shahawy A.A.G. Elnagar N. Zohery M. Abd Elhafeez M.S. El-Dek S.I. Smart nanocarrier-based chitosan @silica coated carbon nanotubes composite for breast cancer treatment approach. Int. J. Polym. Mater. 2022 71 12 910 922 10.1080/00914037.2021.1925277
    [Google Scholar]
  169. Thakur C.K. Neupane R. Karthikeyan C. Ashby C.R. Jr Babu R.J. Boddu S.H.S. Tiwari A.K. Moorthy N.S.H.N. Lysinated multiwalled carbon nanotubes with carbohydrate ligands as an effective nanocarrier for targeted doxorubicin delivery to breast cancer cells. Molecules 2022 27 21 7461 10.3390/molecules27217461 36364286
    [Google Scholar]
  170. Abu Lila A.S. Bhattacharya R. Moin A. Al Hagbani T. Abdallah M.H. Danish Rizvi S.M. Khafagy E.S. Hussain T. Gangadharappa H.V. Dual targeting multiwalled carbon nanotubes for improved neratinib delivery in breast cancer. RSC Advances 2023 13 35 24309 24318 10.1039/D3RA04732F 37583664
    [Google Scholar]
  171. Khalid N Latif M. Removal of cobalt ions from aqueous media by using coconut coir. 2014 347 1 46 53
    [Google Scholar]
  172. Okuyucu C.E. Kalaycioglu G.D. Kacaroglu D. Ozden A.K. Aydogan N. Trojan-like doxorubicin and gold nanoparticle entrapped smart nanostructured lipid carriers for breast cancer synergistic chemo/photothermal therapy. Colloids Surf. A Physicochem. Eng. Asp. 2023 672 April 131763 10.1016/j.colsurfa.2023.131763
    [Google Scholar]
  173. kharazmi A. Attaran N. Evaluation of the parameters affecting the loading of anticancer drug Paclitaxel on coated gold nanoparticles for breast cancer treatment. IET Nanobiotechnol. 2023 17 3 234 245 10.1049/nbt2.12121 36849875
    [Google Scholar]
  174. Faid A.H. Shouman S.A. Thabet N.A. Badr Y.A. Sliem M.A. Laser enhanced combinatorial chemo-photothermal therapy of green synthesis gold nanoparticles loaded with 6Mercaptopurine on breast cancer model. J. Pharm. Innov. 2023 18 1 144 148 10.1007/s12247‑022‑09626‑0
    [Google Scholar]
  175. Lorenzana-Vázquez G. Pavel I. Meléndez E. Gold nanoparticles functionalized with 2-Thiouracil for antiproliferative and photothermal therapies in breast cancer cells. Molecules 2023 28 11 4453 10.3390/molecules28114453 37298929
    [Google Scholar]
  176. Maherani B. Arab-Tehrany E. Mozafari M R. Liposomes: A review of manufacturing techniques and targeting strategies. Curr. Nanosci. 2011 7 3 436 452 10.2174/157341311795542453
    [Google Scholar]
  177. Lao J. Madani J. Puértolas T. Álvarez M. Hernández A. Pazo-Cid R. Artal Á. Antón Torres A. Liposomal doxorubicin in the treatment of breast cancer patients: A review. J. Drug Deliv. 2013 2013 1 12 10.1155/2013/456409 23634302
    [Google Scholar]
  178. Haemmerich D. Ramajayam K.K. Newton D.A. Review of the delivery kinetics of thermosensitive liposomes. Cancers 2023 15 2 398 10.3390/cancers15020398 36672347
    [Google Scholar]
  179. Paliwal S.R. Paliwal R. Vyas S.P. A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery. Drug Deliv. 2015 22 3 231 242 10.3109/10717544.2014.882469 24524308
    [Google Scholar]
  180. Eloy J.O. Petrilli R. Trevizan L.N.F. Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf. B Biointerfaces 2017 159 454 467 10.1016/j.colsurfb.2017.07.085 28837895
    [Google Scholar]
  181. Kommineni N. Paul D. Saka R. Khan W. Nanjappan S. Stealth liposomal chemotherapeutic agent for triple negative breast cancer with improved pharmacokinetics. Nanotheranostics 2022 6 4 424 435 10.7150/ntno.76370 36051857
    [Google Scholar]
  182. Duarte J.A. Gomes E.R. De Barros A.L.B. Leite E.A. Co-Encapsulation of Simvastatin and Doxorubicin into pH-sensitive liposomes enhances antitumoral activity in breast cancer cell lines. Pharmaceutics 2023 15 2 369 10.3390/pharmaceutics15020369 36839690
    [Google Scholar]
  183. Fahmy S.A. Preis E. Dayyih A.A. Alawak M. El-Said Azzazy H.M. Bakowsky U. Shoeib T. Thermosensitive liposomes encapsulating nedaplatin and picoplatin demonstrate enhanced cytotoxicity against breast cancer cells. ACS Omega 2022 7 46 42115 42125 10.1021/acsomega.2c04525 36440163
    [Google Scholar]
  184. Fréchet J.M.J. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology. J. Polym. Sci. A Polym. Chem. 2003 41 23 3713 3725 10.1002/pola.10952
    [Google Scholar]
  185. Gupta V. Nayak S. Dendrimers: A review on synthetic approaches. J. Appl. Pharm. Sci. 2015 5 3 117 122 10.7324/JAPS.2015.50321
    [Google Scholar]
  186. Bharali D.J. Khalil M. Gurbuz M. Simone T.M. Mousa S.A. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. Int. J. Nanomedicine 2009 4 1 1 7 19421366
    [Google Scholar]
  187. Bartusik-Aebisher D. Chrzanowski G. Bober Z. Aebisher D. An analytical study of Trastuzumab-dendrimer-fluorine drug delivery system in breast cancer therapy in vitro. Biomed. Pharmacother. 2021 133 111053 10.1016/j.biopha.2020.111053 33378959
    [Google Scholar]
  188. Lewińska A. Wróbel K. Błoniarz D. Adamczyk-Grochala J. Wołowiec S. Wnuk M. Lapatinib- and fulvestrant-PAMAM dendrimer conjugates promote apoptosis in chemotherapy-induced senescent breast cancer cells with different receptor status. Biomaterials Advances 2022 140 May 213047 10.1016/j.bioadv.2022.213047 35917687
    [Google Scholar]
  189. Zhang P. Li Z. Cao W. Tang J. Xia Y. Peng L. Ma J. A PD-L1 antibody‐conjugated PAMAM Dendrimer nanosystem for simultaneously inhibiting glycolysis and promoting immune response in fighting breast cancer. Adv. Mater. 2023 35 41 2305215 10.1002/adma.202305215 37522451
    [Google Scholar]
  190. Michlewska S Garaiova Z Šubjakova V Lipid-coated ruthenium dendrimer conjugated with doxorubicin in anti-cancer drug delivery: Introducing protocols. Colloids Surf B Biointerfaces. 2023 227 113371 10.1016/j.colsurfb.2023.
    [Google Scholar]
  191. Singh SK Singh S Jr JWL Singh R Drug delivery approaches for breast cancer. Int. J. Nanomedicine. 2017 12 6205 10.2147/IJN.S140325
    [Google Scholar]
  192. Subhan M.A. Advances with metal oxide-based nanoparticles as MDR metastatic breast cancer therapeutics and diagnostics. RSC Advances 2022 12 51 32956 32978 10.1039/D2RA02005J 36425155
    [Google Scholar]
  193. Cao Z. Liu R. Li Y. Luo X. Hua Z. Wang X. Xue Z. Zhang Z. Lu C. Lu A. Liu Y. MTX-PEG-modified CG/DMMA polymeric micelles for targeted delivery of doxorubicin to induce synergistic autophagic death against triple-negative breast cancer. Breast. Cancer. Res. 2023 25 1 3 10.1186/s13058‑022‑01599‑9 36635685
    [Google Scholar]
  194. Patil S.S. Chougale R.D. Manjappa A.S. Disouza J.I. Hajare A.A. Patil K.S. Statistically developed docetaxel-laden mixed micelles for improved therapy of breast cancer. OpenNano 2022 8 September 100079 10.1016/j.onano.2022.100079
    [Google Scholar]
  195. Lu H. Chen T. Wang Y. He Y. Pang Z. Wang Y. Dual targeting micelles loaded with paclitaxel and lapatinib for combinational therapy of brain metastases from breast cancer. Sci. Rep. 2022 12 1 2610 10.1038/s41598‑022‑06677‑8 35173243
    [Google Scholar]
  196. Masoumzade R. Gity Behbudi SM. A medical encyclopedia with new approach graphene quantum dots for anti-breast cancer applications: mini review. J. Adv. Appl. NanoBio. Tech. 2020 1 4 84 90
    [Google Scholar]
  197. Bae P.K. Chung B.H. Multiplexed detection of various breast cancer cells by perfluorocarbon/quantum dot nanoemulsions conjugated with antibodies. Nano Converg. 2014 1 1 23 10.1186/s40580‑014‑0023‑5 28191403
    [Google Scholar]
  198. Vakilinezhad M.A. Amini A. Dara T. Alipour S. Methotrexate and Curcumin co-encapsulated PLGA nanoparticles as a potential breast cancer therapeutic system: In vitro and in vivo evaluation. Colloids Surf. B Biointerfaces 2019 184 110515 10.1016/j.colsurfb.2019.110515 31585308
    [Google Scholar]
  199. Yu K. Zhao J. Zhang Z. Gao Y. Zhou Y. Teng L. Li Y. Enhanced delivery of Paclitaxel using electrostatically-conjugated Herceptin-bearing PEI/PLGA nanoparticles against HER-positive breast cancer cells. Int. J. Pharm. 2016 497 1-2 78 87 10.1016/j.ijpharm.2015.11.033 26617314
    [Google Scholar]
  200. Tonbul H. Sahin A. Tavukcuoglu E. Esendagli G. Capan Y. Combination drug delivery with actively-targeted PLGA nanoparticles to overcome multidrug resistance in breast cancer. J. Drug. Deliv. Sci. Technol. 2019 54 101380 10.1016/j.jddst.2019.101380
    [Google Scholar]
  201. Cerqueira B.B.S. Lasham A. Shelling A.N. Al-Kassas R. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells. Mater. Sci. Eng. C 2017 76 593 600 10.1016/j.msec.2017.03.121 28482569
    [Google Scholar]
  202. de Carvalho F.P. Benfato I.D. Moretto T.L. Barthichoto M. de Oliveira C.A.M. Voluntary running decreases nonexercise activity in lean and diet-induced obese mice. Physiol. Behav. 2016 165 249 256 10.1016/j.physbeh.2016.08.003 27497922
    [Google Scholar]
  203. Fasehee H. Dinarvand R. Ghavamzadeh A. Esfandyari-Manesh M. Moradian H. Faghihi S. Ghaffari S.H. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: In vitro and in vivo investigations. J. Nanobiotechnology 2016 14 1 32 10.1186/s12951‑016‑0183‑z 27102110
    [Google Scholar]
  204. Naruphontjirakul P. Viravaidya-Pasuwat K. Development of anti-HER2-targeted doxorubicin–core-shell chitosan nanoparticles for the treatment of human breast cancer. Int. J. Nanomedicine 2019 14 4105 4121 10.2147/IJN.S198552 31239670
    [Google Scholar]
  205. Yang H. Tang C. Yin C. Estrone-modified pH-sensitive glycol chitosan nanoparticles for drug delivery in breast cancer. Acta Biomater. 2018 73 400 411 10.1016/j.actbio.2018.04.020
    [Google Scholar]
  206. Mirzaie ZH Irani S Mirfakhraie R Atyabi SM Dinarvand R Varshochian R Docetaxel–chitosan nanoparticles for breast cancer treatment: Cell viability and gene expression study. Chem Biol Drug Des 88 88 6 850-8 10.1111/cbdd.12814
    [Google Scholar]
  207. Kumar Mehata A. Bharti S. Singh P. Viswanadh M.K. Kumari L. Agrawal P. Singh S. Koch B. Muthu M.S. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids Surf. B Biointerfaces 2019 173 366 377 10.1016/j.colsurfb.2018.10.007 30316083
    [Google Scholar]
  208. Oliveira M.S. Mussi S.V. Gomes D.A. Yoshida M.I. Frezard F. Carregal V.M. Ferreira L.A.M. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surf. B Biointerfaces 2016 140 246 253 10.1016/j.colsurfb.2015.12.019 26764108
    [Google Scholar]
  209. da Rocha M.C.O. da Silva P.B. Radicchi M.A. Andrade B.Y.G. de Oliveira J.V. Venus T. Merker C. Estrela-Lopis I. Longo J.P.F. Báo S.N. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J. Nanobiotechnology 2020 18 1 43 10.1186/s12951‑020‑00604‑7 32164731
    [Google Scholar]
  210. Ozgen P.S.O Atasoy S. Zengin Kurt B. Durmus Z. Yigit G. Dag A. Glycopolymer decorated multiwalled carbon nanotubes for dual targeted breast cancer therapy. J. Mater. Chem. B Mater. Biol. Med. 2020 8 15 3123 3137 10.1039/C9TB02711D 32211704
    [Google Scholar]
  211. Badea M.A. Prodana M. Dinischiotu A. Crihana C. Ionita D. Balas M. Cisplatin loaded multiwalled carbon nanotubes induce resistance in triple negative breast cancer cells. Pharmaceutics 2018 10 4 228 10.3390/pharmaceutics10040228 30428555
    [Google Scholar]
  212. Cai Z. Yook S. Lu Y. Bergstrom D. Winnik M.A. Pignol J.P. Reilly R.M. Local radiation treatment of HER2-positive breast cancer using trastuzumab-modified gold nanoparticles labeled with 177Lu. Pharm. Res. 2017 34 3 579 590 10.1007/s11095‑016‑2082‑2 27987070
    [Google Scholar]
  213. Morshed R.A. Muroski M.E. Dai Q. Wegscheid M.L. Auffinger B. Yu D. Han Y. Zhang L. Wu M. Cheng Y. Lesniak M.S. Cell-penetrating peptide-modified gold nanoparticles for the delivery of doxorubicin to brain metastatic breast cancer. Mol. Pharm. 2016 13 6 1843 1854 10.1021/acs.molpharmaceut.6b00004 27169484
    [Google Scholar]
  214. Yook S. Cai Z. Lu Y. Winnik M.A. Pignol J.P. Reilly R.M. Radiation nanomedicine for EGFR-positive breast cancer: Panitumumab-modified gold nanoparticles complexed to the β-Particle-Emitter, 177 Lu. Mol. Pharm. 2015 12 11 3963 3972 10.1021/acs.molpharmaceut.5b00425 26402157
    [Google Scholar]
  215. Bunney P.E. Zink A.N. Holm A.A. Billington C.J. Kotz C.M. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol. Behav. 2017 176 1 139 148 10.1016/j.physbeh.2017.03.040 28363838
    [Google Scholar]
  216. Jose A. Ninave K.M. Karnam S. Venuganti V.V.K. Temperature-sensitive liposomes for co-delivery of tamoxifen and imatinib for synergistic breast cancer treatment. J. Liposome Res. 2019 29 153 162 10.1080/08982104.2018.1502315
    [Google Scholar]
  217. Fu M. Tang W. Liu J.J. Gong X.Q. Kong L. Yao X.M. Jing M. Cai F.Y. Li X.T. Ju R.J. Combination of targeted daunorubicin liposomes and targeted emodin liposomes for treatment of invasive breast cancer. J. Drug Target. 2020 28 3 245 258 10.1080/1061186X.2019.1656725 31462111
    [Google Scholar]
  218. Liu C. Gao H. Zhao Z. Rostami I. Wang C. Zhu L. Yang Y. Improved tumor targeting and penetration by a dual-functional poly(amidoamine) dendrimer for the therapy of triple-negative breast cancer. J. Mater. Chem. B Mater. Biol. Med. 2019 7 23 3724 3736 10.1039/C9TB00433E
    [Google Scholar]
  219. Kulhari H. Pooja D. Shrivastava S. Kuncha M. Naidu V.G.M. Bansal V. Sistla R. Adams D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep. 2016 6 1 23179 10.1038/srep23179 27052896
    [Google Scholar]
  220. Gaballu A Cho WCS Dehghan G Silencing of HMGA2 by siRNA loaded methotrexate. Genes 2021 12 7 1102 10.3390/genes12071102
    [Google Scholar]
  221. Guo X.L. Kang X.X. Wang Y.Q. Zhang X.J. Li C.J. Liu Y. Du L.B. Co-delivery of cisplatin and doxorubicin by covalently conjugating with polyamidoamine dendrimer for enhanced synergistic cancer therapy. Acta Biomater. 2019 84 367 377 10.1016/j.actbio.2018.12.007 30528609
    [Google Scholar]
  222. Tan L. Ma B. QianZhao LanZhang Chen L. Peng J. Qian Z. Toxicity evaluation and anti-tumor study of docetaxel loaded mPEG-Polyester micelles for breast cancer therapy. J. Biomed. Nanotechnol. 2017 13 4 393 408 10.1166/jbn.2017.2356 29384603
    [Google Scholar]
  223. Lv L. Qiu K. Yu X. Chen C. Qin F. Shi Y. Ou J. Zhang T. Zhu H. Wu J. Liu C. Li G. Amphiphilic copolymeric micelles for doxorubicin and curcumin co-delivery to reverse multidrug resistance in breast cancer. J. Biomed. Nanotechnol. 2016 12 5 973 985 10.1166/jbn.2016.2231 27305819
    [Google Scholar]
  224. Zhang T. Luo J. Fu Y. Li H. Ding R. Gong T. Zhang Z. Novel oral administrated paclitaxel micelles with enhanced bioavailability and antitumor efficacy for resistant breast cancer. Colloids Surf. B Biointerfaces 2017 150 89 97 10.1016/j.colsurfb.2016.11.024 27898360
    [Google Scholar]
  225. Alibolandi M. Abnous K. Sadeghi F. Hosseinkhani H. Ramezani M. Hadizadeh F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int. J. Pharm. 2016 500 1-2 162 178 10.1016/j.ijpharm.2016.01.040 26802496
    [Google Scholar]
  226. Ko N.R. Nafiujjaman M. Lee J.S. Lim H.N. Lee Y. Kwon I.K. Graphene quantum dot-based theranostic agents for active targeting of breast cancer. RSC Advances 2017 7 19 11420 11427 10.1039/C6RA25949A
    [Google Scholar]
  227. Li Y. Ma Z. Biaminoquinolines and nanoformulations for cancer treatment US Patent 17/761162 2023
  228. Jermy B.R. Ravinayagam V. Baykal A. Method for making superparamagnetic iron oxide nanocarrier. US Patent 18/520628 2024
  229. Sun D. Gao W. Hu H. Compositions and methods for systemic delivery OF Bcl-2 and Bcl-xL antagonists. US Patent 17/784404 2023
  230. Baldwin P. Sridhar S. Singh B. Nanoencapsulated combination drug formulations. US Patent 11648211 2023
  231. Jermy B.R. Ravinayagam V. Baykal A. Method for treating cancer with a nanoformulation. US Patent 11723920 2023
  232. Luo J. Huang W. Shao Y. Shi C. Telodendrimers and nanocarriers and methods of using same. US Patent 11406714 2022
  233. Zhang L. Hu C.M. Fang R.H. Luk B.T. Wang K.C. Chien S. Treating vasculature related diseases or disorders using nanoparticles. US Patent 11241394 2022
  234. Batrakova E.V. Kabanov A.V. Sokolsky M. Haney M.J. Yuan D. Kim M.S. Biological agent-exosome compositions and uses thereof. US Patent 11458097 2022
  235. Huang L. Guo J. Delivery system complexes comprising a precipitate of an active agent and methods of use. US Patent 17/767816 2022
  236. Balasamy R.J. Acharya S. Ravinayagam V. Hierarchical siliceous mesosilicalite nanocarrier loaded with platinum (II) complex US Patent 11103594 2021
  237. Weinberg MS D'astolfo DS Mahajan S Dna-pk inhibitors WO Patent 2013163190A8 2019
  238. Lam K.S. Li Y. Xiao K. Feng C. Poly (vinyl alcohol) nanocarriers. US Patent 11135309 2021
  239. Kotcherlakota R. Mukherjee S. Patra C.R. Gopal V. Industrial Research CSIR, assignee. Gold nanoparticle based formulation for use in cancer therapy. US Patent 10806715. 2020
  240. Sezgin V.C. Bayraktar O. Development of curcumin and piperine loaded double-layered biopolymer based nano delivery systems by using electrospray/coating method. US Patent 10398650 2019
  241. Shen H. Ferrari M. Jianliang S.H. Zhang M. Polycation-functionalized nanoporous silicon carrier for systemic delivery of gene silencing agents. US Patent 10087442 2018
  242. Chauhan S Jaggi M Yallapu MM Magnetic nanoparticle formulations, methods for making such formulations, and methods for their use. EP Patent 2649623B1 2013
  243. Mousa S.A. Composition and method for sulfated non-anticoagulant low molecular weight heparins in cancer and tumor metastasis. US Patent 9572831 2017
  244. Mousa S.A. Al Haider A. Abdelgader A. Aldahmash A.M. Almomen A. Methods and compositions of camel derived products. US Patent 9770419 2017
  245. Mousa S.A. Davis P.J. Method and composition of thyroid hormone analogues and nanoformulations thereof for treating anti-inflammatory disorders. US Patent 9498536 2016
  246. Kwon G.S. Micelle encapsulation of a combination of therapeutic agents US Patent 8858965 2014
  247. Jiawei W. Xiajun B. Tian S. Xuzheng G. Zhenwang Z. Comprehensive analysis of PLKs expression and prognosis in breast cancer. Cancer Genet. 2022 268-269 268 83 92 10.1016/j.cancergen.2022.09.007 36206661
    [Google Scholar]
  248. Yan S. Wang W. Zhu B. Pan X. Wu X. Tao W. Construction of nomograms for predicting pathological complete response and tumor shrinkage size in breast cancer. Cancer Manag. Res. 2020 12 8313 8323 10.2147/CMAR.S270687 32982426
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947344495250131171240
Loading
/content/journals/cctr/10.2174/0115733947344495250131171240
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test