Skip to content
2000
image of Disrupting Tumour Niches: Advanced Strategies for Targeting the Tumour Microenvironment in Cancer Therapy

Abstract

The review paper provides an extensive overview of strategies for targeting the tumour microenvironment (TME) to enhance cancer therapy. It begins by underscoring the importance of profiling and comprehending the TME through advanced technologies like organ chips and artificial intelligence. The paper discusses multiple approaches to modulate the pro-tumour TME, including strategies for eliminating, normalizing, and targeting tumour cells. It delves into specific aspects such as cancer-associated fibroblasts, extracellular matrix, hypoxia, acidosis, neovascularisation, tumour-infiltrating T cells, the immune system, exosomes, tumour-associated neutrophils, and tumour angiogenesis. Emphasis is placed on the necessity of a multifaceted approach to effectively target the complex and dynamic TME, which plays a crucial role in tumour progression and therapeutic resistance. The conclusion highlights the significant impact of the TME on cancer therapy and identifies promising research and clinical application avenues. The paper underscores the shift in cancer treatment paradigms, advocating for strategies that address the intricate interactions within the TME to improve therapeutic outcomes.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947341257241018150125
2024-10-29
2025-05-08
Loading full text...

Full text loading...

References

  1. Sounni N.E. Noel A. Targeting the tumor microenvironment for cancer therapy. Clin. Chem. 2013 59 1 85 93 10.1373/clinchem.2012.185363 23193058
    [Google Scholar]
  2. Liu J. Dang H. Wang X.W. The significance of intertumor and intratumor heterogeneity in liver cancer. Exp. Mol. Med. 2018 50 1 e416 10.1038/emm.2017.165 29303512
    [Google Scholar]
  3. Grzywa T.M. Paskal W. Włodarski P.K. Intratumor and intertumor heterogeneity in melanoma. Transl. Oncol. 2017 10 6 956 975 10.1016/j.tranon.2017.09.007 29078205
    [Google Scholar]
  4. Stanta G. Bonin S. Overview on clinical relevance of intra-tumor heterogeneity. Front. Med. (Lausanne) 2018 5 85 10.3389/fmed.2018.00085 29682505
    [Google Scholar]
  5. Sormendi S. Wielockx B. Hypoxia pathway proteins as central mediators of metabolism in the tumor cells and their microenvironment. Front. Immunol. 2018 9 40 10.3389/fimmu.2018.00040 29434587
    [Google Scholar]
  6. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  7. Wang Q. Shao X. Zhang Y. Zhu M. Wang F.X.C. Mu J. Li J. Yao H. Chen K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023 12 10 11149 11165 10.1002/cam4.5698 36807772
    [Google Scholar]
  8. Abadjian M.C.Z. Edwards W.B. Anderson C.J. Imaging the tumor microenvironment. Adv. Exp. Med. Biol. 2017 1036 229 257 10.1007/978‑3‑319‑67577‑0_15 29275475
    [Google Scholar]
  9. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  10. Yabo Y.A. Niclou S.P. Golebiewska A. Cancer cell heterogeneity and plasticity: A paradigm shift in glioblastoma. Neuro-oncol. 2022 24 5 669 682 10.1093/neuonc/noab269 34932099
    [Google Scholar]
  11. Malherbe K. Tumor microenvironment and the role of artificial intelligence in breast cancer detection and prognosis. Am. J. Pathol. 2021 191 8 1364 1373 10.1016/j.ajpath.2021.01.014 33639101
    [Google Scholar]
  12. Bilotta M.T. Antignani A. Fitzgerald D.J. Managing the TME to improve the efficacy of cancer therapy. Front. Immunol. 2022 13 954992 10.3389/fimmu.2022.954992 36341428
    [Google Scholar]
  13. Gold K. Gaharwar A.K. Jain A. Emerging trends in multiscale modeling of vascular pathophysiology: Organ-on-a-chip and 3D printing. Biomaterials 2019 196 2 17 10.1016/j.biomaterials.2018.07.029 30072038
    [Google Scholar]
  14. Zhou L. Liu L. Chang M.A. Ma C. Chen W. Chen P. Spatiotemporal dissection of tumor microenvironment via in situ sensing and monitoring in tumor-on-a-chip. Biosens. Bioelectron. 2023 225 115064 10.1016/j.bios.2023.115064 36680970
    [Google Scholar]
  15. Bhinder B. Gilvary C. Madhukar N.S. Elemento O. Artificial intelligence in cancer research and precision medicine. Cancer Discov. 2021 11 4 900 915 10.1158/2159‑8290.CD‑21‑0090 33811123
    [Google Scholar]
  16. Ribeiro Franco P.I. Rodrigues A.P. de Menezes L.B. Pacheco Miguel M. Tumor microenvironment components: Allies of cancer progression. Pathol. Res. Pract. 2020 216 1 152729 10.1016/j.prp.2019.152729 31735322
    [Google Scholar]
  17. Liotta L. Petricoin E. Molecular profiling of human cancer. Nat. Rev. Genet. 2000 1 1 48 56 10.1038/35049567 11262874
    [Google Scholar]
  18. Le J.D. Tan N. Shkolyar E. Lu D.Y. Kwan L. Marks L.S. Huang J. Margolis D.J.A. Raman S.S. Reiter R.E. Multifocality and prostate cancer detection by multiparametric magnetic resonance imaging: Correlation with whole-mount histopathology. Eur. Urol. 2015 67 3 569 576 10.1016/j.eururo.2014.08.079 25257029
    [Google Scholar]
  19. Hitij N.T. Kern I. Sadikov A. Knez L. Stanič K. Zwitter M. Cufer T. Immunohistochemistry for EGFR mutation detection in non–small-cell lung cancer. Clin. Lung Cancer 2017 18 3 e187 e196 10.1016/j.cllc.2016.11.021 28089159
    [Google Scholar]
  20. Ong S.E. Kratchmarova I. Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2003 2 2 173 181 10.1021/pr0255708 12716131
    [Google Scholar]
  21. Hanash S. Schliekelman M. Proteomic profiling of the tumor microenvironment: Recent insights and the search for biomarkers. Genome Med. 2014 6 2 12 10.1186/gm529 24713112
    [Google Scholar]
  22. Serratì S. De Summa S. Pilato B. Petriella D. Lacalamita R. Tommasi S. Pinto R. Next-generation sequencing: Advances and applications in cancer diagnosis. OncoTargets Ther. 2016 9 7355 7365 10.2147/OTT.S99807 27980425
    [Google Scholar]
  23. Tsoulos N. Papadopoulou E. Metaxa-Mariatou V. Tsaousis G. Efstathiadou C. Tounta G. Scapeti A. Bourkoula E. Zarogoulidis P. Pentheroudakis G. Kakolyris S. Boukovinas I. Papakotoulas P. Athanasiadis E. Floros T. Koumarianou A. Barbounis V. Dinischiotu A. Nasioulas G. Tumor molecular profiling of NSCLC patients using next generation sequencing. Oncol. Rep. 2017 38 6 3419 3429 10.3892/or.2017.6051 29130105
    [Google Scholar]
  24. Wu J. Mayer A.T. Li R. Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Semin. Cancer Biol. 2022 84 310 328 10.1016/j.semcancer.2020.12.005 33290844
    [Google Scholar]
  25. Cao J. Chen L. Li H. Chen H. Yao J. Mu S. Liu W. Zhang P. Cheng Y. Liu B. Hu Z. Chen D. Kang H. Hu J. Wang A. Wang W. Yao M. Chrin G. Wang X. Zhao W. Li L. Xu L. Guo W. Jia J. Chen J. Wang K. Li G. Shi W. An accurate and comprehensive clinical sequencing assay for cancer targeted and immunotherapies. Oncologist 2019 24 12 e1294 e1302 10.1634/theoncologist.2019‑0236 31409745
    [Google Scholar]
  26. Medley C.D. Smith J.E. Tang Z. Wu Y. Bamrungsap S. Tan W. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008 80 4 1067 1072 10.1021/ac702037y 18198894
    [Google Scholar]
  27. Astolfi M. Péant B. Lateef M.A. Rousset N. Kendall-Dupont J. Carmona E. Monet F. Saad F. Provencher D. Mes-Masson A.M. Gervais T. Micro-dissected tumor tissues on chip: An ex vivo method for drug testing and personalized therapy. Lab Chip 2016 16 2 312 325 10.1039/C5LC01108F 26659477
    [Google Scholar]
  28. Han B. Qu C. Park K. Konieczny S.F. Korc M. Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Lett. 2016 380 1 319 329 10.1016/j.canlet.2015.12.003 26688098
    [Google Scholar]
  29. Kennedy R. Kuvshinov D. Sdrolia A. Kuvshinova E. Hilton K. Crank S. Beavis A.W. Green V. Greenman J. A patient tumour-on-a-chip system for personalised investigation of radiotherapy based treatment regimens. Sci. Rep. 2019 9 1 6327 10.1038/s41598‑019‑42745‑2 31004114
    [Google Scholar]
  30. Ingber D.E. Tensegrity I. Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 2003 116 7 1157 1173 10.1242/jcs.00359 12615960
    [Google Scholar]
  31. Ingber D.E. Tensegrity I.I. Tensegrity II. How structural networks influence cellular information processing networks. J. Cell Sci. 2003 116 8 1397 1408 10.1242/jcs.00360 12640025
    [Google Scholar]
  32. Albanese A Lam AK Sykes EA Rocheleau JV Chan WC Tumor-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun. 2013 4 2718
    [Google Scholar]
  33. Wang Y. Cuzzucoli F. Escobar A. Lu S. Liang L. Wang S. Tumor-on-a-chip platforms for assessing nanoparticle-based cancer therapy. Nanotechnology 2018 29 33 332001 10.1088/1361‑6528/aac7a4 29794338
    [Google Scholar]
  34. Khosravi P. Kazemi E. Imielinski M. Elemento O. Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 2018 27 317 328 10.1016/j.ebiom.2017.12.026 29292031
    [Google Scholar]
  35. Cheerla A. Gevaert O. Deep learning with multimodal representation for pancancer prognosis prediction. Bioinformatics 2019 35 14 i446 i454 10.1093/bioinformatics/btz342 31510656
    [Google Scholar]
  36. Madhukar N.S. Khade P.K. Huang L. Gayvert K. Galletti G. Stogniew M. Allen J.E. Giannakakou P. Elemento O. A Bayesian machine learning approach for drug target identification using diverse data types. Nat. Commun. 2019 10 1 5221 10.1038/s41467‑019‑12928‑6 31745082
    [Google Scholar]
  37. Tsai M.J. Chang W.A. Huang M.S. Kuo P.L. Tumor microenvironment: A new treatment target for cancer. ISRN Biochem. 2014 2014 1 8 10.1155/2014/351959 25937967
    [Google Scholar]
  38. Web P. Machine learning-assisted prognostication based on genomic expression in the tumor microenvironment. AI powered analysis provides quantitative measurements of human interpretable features in tumor microenvironment. Boston, MA PRWEB 2020
    [Google Scholar]
  39. López-Cortés A. Paz-y-Miño C. Cabrera-Andrade A. Barigye S.J. Munteanu C.R. González-Díaz H. Pazos A. Pérez-Castillo Y. Tejera E. Gene prioritization, communality analysis, networking and metabolic integrated pathway to better understand breast cancer pathogenesis. Sci. Rep. 2018 8 1 16679 10.1038/s41598‑018‑35149‑1 30420728
    [Google Scholar]
  40. Qi L. Ke J. Yu Z. Cao Y. Lai Y. Chen Y. Gao F. Wang X. Identification of prognostic spatial organisation features in colorectal cancer microenvironment using deep learning on histopathology images. MEOMIC 2021 2 100008
    [Google Scholar]
  41. Riley J.M. Cross A.W. Paulos C.M. Rubinstein M.P. Wrangle J. Camp E.R. The clinical implications of immunogenomics in colorectal cancer: A path for precision medicine. Cancer 2018 124 8 1650 1659 10.1002/cncr.31214 29315503
    [Google Scholar]
  42. Paauwe M. Schoonderwoerd M.J.A. Helderman R.F.C.P. Harryvan T.J. Groenewoud A. van Pelt G.W. Bor R. Hemmer D.M. Versteeg H.H. Snaar-Jagalska B.E. Theuer C.P. Hardwick J.C.H. Sier C.F.M. ten Dijke P. Hawinkels L.J.A.C. Endoglin expression on cancer-associated fibroblasts regulates invasion and stimulates colorectal cancer metastasis. Clin. Cancer Res. 2018 24 24 6331 6344 10.1158/1078‑0432.CCR‑18‑0329 29945992
    [Google Scholar]
  43. Park J.H. McMillan D.C. Powell A.G. Richards C.H. Horgan P.G. Edwards J. Roxburgh C.S.D. Evaluation of a tumor microenvironment-based prognostic score in primary operable colorectal cancer. Clin. Cancer Res. 2015 21 4 882 888 10.1158/1078‑0432.CCR‑14‑1686 25473000
    [Google Scholar]
  44. Tong Z. Zhou Y. Wang J. Identifying potential drug targets in hepatocellular carcinoma based on network analysis and one-class support vector machine. Sci. Rep. 2019 9 1 10442 10.1038/s41598‑019‑46540‑x 31320657
    [Google Scholar]
  45. Johannet P. Coudray N. Donnelly D.M. Jour G. Illa-Bochaca I. Xia Y. Johnson D.B. Wheless L. Patrinely J.R. Nomikou S. Rimm D.L. Pavlick A.C. Weber J.S. Zhong J. Tsirigos A. Osman I. Using machine learning algorithms to predict immunotherapy response in patients with advanced melanoma. Clin. Cancer Res. 2021 27 1 131 140 10.1158/1078‑0432.CCR‑20‑2415 33208341
    [Google Scholar]
  46. Sun D Wang M Li A. A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Transac. Computat. Biol. Bioinformatics 2019 16 3 841 850 10.1109/TCBB.2018.2806438
    [Google Scholar]
  47. Bożyk A. Wojas-Krawczyk K. Krawczyk P. Milanowski J. Tumor microenvironment—A short review of cellular and interaction diversity. Biology (Basel) 2022 11 6 929 10.3390/biology11060929 35741450
    [Google Scholar]
  48. Ramirez C.F.A. Taranto D. Ando-Kuri M. de Groot M.H.P. Tsouri E. Huang Z. de Groot D. Kluin R.J.C. Kloosterman D.J. Verheij J. Xu J. Vegna S. Akkari L. Cancer cell genetics shaping of the tumor microenvironment reveals myeloid cell-centric exploitable vulnerabilities in hepatocellular carcinoma. Nat. Commun. 2024 15 1 2581 10.1038/s41467‑024‑46835‑2 38519484
    [Google Scholar]
  49. de Visser K.E. Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023 41 3 374 403 10.1016/j.ccell.2023.02.016 36917948
    [Google Scholar]
  50. Baghban R. Roshangar L. Jahanban-Esfahlan R. Seidi K. Ebrahimi-Kalan A. Jaymand M. Kolahian S. Javaheri T. Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal. 2020 18 1 59 10.1186/s12964‑020‑0530‑4 32264958
    [Google Scholar]
  51. Mbeunkui F. Johann D.J. Jr Cancer and the tumor microenvironment: A review of an essential relationship. Cancer Chemother. Pharmacol. 2009 63 4 571 582 10.1007/s00280‑008‑0881‑9 19083000
    [Google Scholar]
  52. Babar Q. Saeed A. Tabish T.A. Sarwar M. Thorat N.D. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 6 166746 10.1016/j.bbadis.2023.166746 37160171
    [Google Scholar]
  53. Bejarano L. Jordāo M.J.C. Joyce J.A. Therapeutic Targeting of the Tumor Microenvironment. Cancer Discov. 2021 11 4 933 959 10.1158/2159‑8290.CD‑20‑1808 33811125
    [Google Scholar]
  54. Roma-Rodrigues C. Mendes R. Baptista P.V. Fernandes A.R. Targeting Tumor Microenvironment for Cancer Therapy. Int. J. Mol. Sci. 2019 20 4 840 10.3390/ijms20040840 30781344
    [Google Scholar]
  55. Xiao Y. Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021 221 107753 10.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  56. Xin L. Gao J. Zheng Z. Chen Y. Lv S. Zhao Z. Yu C. Yang X. Zhang R. Fibroblast activation protein-α as a target in the bench-to-bedside diagnosis and treatment of tumors: A narrative review. Front. Oncol. 2021 11 648187 10.3389/fonc.2021.648187 34490078
    [Google Scholar]
  57. Glabman R.A. Choyke P.L. Sato N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers (Basel) 2022 14 16 3906 10.3390/cancers14163906 36010899
    [Google Scholar]
  58. Anfray C. Ummarino A. Andón F.T. Allavena P. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells 2019 9 1 46 10.3390/cells9010046 31878087
    [Google Scholar]
  59. Zou Z. Lin H. Li M. Lin B. Tumor−associated macrophage polarisation in the inflammatory tumor microenvironment. Front. Oncol. 2023 2023 13
    [Google Scholar]
  60. Özdemir B.C. Pentcheva-Hoang T. Carstens J.L. Zheng X. Wu C.C. Simpson T.R. Laklai H. Sugimoto H. Kahlert C. Novitskiy S.V. De Jesus-Acosta A. Sharma P. Heidari P. Mahmood U. Chin L. Moses H.L. Weaver V.M. Maitra A. Allison J.P. LeBleu V.S. Kalluri R. Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell 2015 28 6 831 833 10.1016/j.ccell.2015.11.002 28843279
    [Google Scholar]
  61. Vanneman M. Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 2012 12 4 237 251 10.1038/nrc3237 22437869
    [Google Scholar]
  62. Jain R.K. Normalizing tumor microenvironment to treat cancer: Bench to bedside to biomarkers. J. Clin. Oncol. 2013 31 17 2205 2218 10.1200/JCO.2012.46.3653 23669226
    [Google Scholar]
  63. Hamzah J. Jugold M. Kiessling F. Rigby P. Manzur M. Marti H.H. Rabie T. Kaden S. Gröne H.J. Hämmerling G.J. Arnold B. Ganss R. Vascular normalization in Rgs5-deficient tumours promotes immune destruction. Nature 2008 453 7193 410 414 10.1038/nature06868 18418378
    [Google Scholar]
  64. Johansson A. Hamzah J. Payne C.J. Ganss R. Tumor-targeted TNFα stabilizes tumor vessels and enhances active immunotherapy. Proc. Natl. Acad. Sci. USA 2012 109 20 7841 7846 10.1073/pnas.1118296109 22547817
    [Google Scholar]
  65. Huang Y. Yuan J. Righi E. Kamoun W.S. Ancukiewicz M. Nezivar J. Santosuosso M. Martin J.D. Martin M.R. Vianello F. Leblanc P. Munn L.L. Huang P. Duda D.G. Fukumura D. Jain R.K. Poznansky M.C. Vascular normalizing doses of antiangiogenic treatment reprogram the immunosuppressive tumor microenvironment and enhance immunotherapy. Proc. Natl. Acad. Sci. USA 2012 109 43 17561 17566 10.1073/pnas.1215397109 23045683
    [Google Scholar]
  66. Kaneda M.M. Messer K.S. Ralainirina N. Li H. Leem C.J. Gorjestani S. Woo G. Nguyen A.V. Figueiredo C.C. Foubert P. Schmid M.C. Pink M. Winkler D.G. Rausch M. Palombella V.J. Kutok J. McGovern K. Frazer K.A. Wu X. Karin M. Sasik R. Cohen E.E.W. Varner J.A. PI3Kγ is a molecular switch that controls immune suppression. Nature 2016 539 7629 437 442 10.1038/nature19834 27642729
    [Google Scholar]
  67. Sanmamed M.F. Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2018 175 2 313 326 10.1016/j.cell.2018.09.035 30290139
    [Google Scholar]
  68. Su S. Chen J. Yao H. Liu J. Yu S. Lao L. Wang M. Luo M. Xing Y. Chen F. Huang D. Zhao J. Yang L. Liao D. Su F. Li M. Liu Q. Song E. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018 172 4 841 856.e16 10.1016/j.cell.2018.01.009 29395328
    [Google Scholar]
  69. Thorsson V. Gibbs D.L. Brown S.D. Wolf D. Bortone D.S. Ou Yang T.H. Porta-Pardo E. Gao G.F. Plaisier C.L. Eddy J.A. Ziv E. Culhane A.C. Paull E.O. Sivakumar I.K.A. Gentles A.J. Malhotra R. Farshidfar F. Colaprico A. Parker J.S. Mose L.E. Vo N.S. Liu J. Liu Y. Rader J. Dhankani V. Reynolds S.M. Bowlby R. Califano A. Cherniack A.D. Anastassiou D. Bedognetti D. Mokrab Y. Newman A.M. Rao A. Chen K. Krasnitz A. Hu H. Malta T.M. Noushmehr H. Pedamallu C.S. Bullman S. Ojesina A.I. Lamb A. Zhou W. Shen H. Choueiri T.K. Weinstein J.N. Guinney J. Saltz J. Holt R.A. Rabkin C.S. Lazar A.J. Serody J.S. Demicco E.G. Disis M.L. Vincent B.G. Shmulevich I. Caesar-Johnson S.J. Demchok J.A. Felau I. Kasapi M. Ferguson M.L. Hutter C.M. Sofia H.J. Tarnuzzer R. Wang Z. Yang L. Zenklusen J.C. Zhang J.J. Chudamani S. Liu J. Lolla L. Naresh R. Pihl T. Sun Q. Wan Y. Wu Y. Cho J. DeFreitas T. Frazer S. Gehlenborg N. Getz G. Heiman D.I. Kim J. Lawrence M.S. Lin P. Meier S. Noble M.S. Saksena G. Voet D. Zhang H. Bernard B. Chambwe N. Dhankani V. Knijnenburg T. Kramer R. Leinonen K. Liu Y. Miller M. Reynolds S. Shmulevich I. Thorsson V. Zhang W. Akbani R. Broom B.M. Hegde A.M. Ju Z. Kanchi R.S. Korkut A. Li J. Liang H. Ling S. Liu W. Lu Y. Mills G.B. Ng K-S. Rao A. Ryan M. Wang J. Weinstein J.N. Zhang J. Abeshouse A. Armenia J. Chakravarty D. Chatila W.K. de Bruijn I. Gao J. Gross B.E. Heins Z.J. Kundra R. La K. Ladanyi M. Luna A. Nissan M.G. Ochoa A. Phillips S.M. Reznik E. Sanchez-Vega F. Sander C. Schultz N. Sheridan R. Sumer S.O. Sun Y. Taylor B.S. Wang J. Zhang H. Anur P. Peto M. Spellman P. Benz C. Stuart J.M. Wong C.K. Yau C. Hayes D.N. Parker J.S. Wilkerson M.D. Ally A. Balasundaram M. Bowlby R. Brooks D. Carlsen R. Chuah E. Dhalla N. Holt R. Jones S.J.M. Kasaian K. Lee D. Ma Y. Marra M.A. Mayo M. Moore R.A. Mungall A.J. Mungall K. Robertson A.G. Sadeghi S. Schein J.E. Sipahimalani P. Tam A. Thiessen N. Tse K. Wong T. Berger A.C. Beroukhim R. Cherniack A.D. Cibulskis C. Gabriel S.B. Gao G.F. Ha G. Meyerson M. Schumacher S.E. Shih J. Kucherlapati M.H. Kucherlapati R.S. Baylin S. Cope L. Danilova L. Bootwalla M.S. Lai P.H. Maglinte D.T. Van Den Berg D.J. Weisenberger D.J. Auman J.T. Balu S. Bodenheimer T. Fan C. Hoadley K.A. Hoyle A.P. Jefferys S.R. Jones C.D. Meng S. Mieczkowski P.A. Mose L.E. Perou A.H. Perou C.M. Roach J. Shi Y. Simons J.V. Skelly T. Soloway M.G. Tan D. Veluvolu U. Fan H. Hinoue T. Laird P.W. Shen H. Zhou W. Bellair M. Chang K. Covington K. Creighton C.J. Dinh H. Doddapaneni H.V. Donehower L.A. Drummond J. Gibbs R.A. Glenn R. Hale W. Han Y. Hu J. Korchina V. Lee S. Lewis L. Li W. Liu X. Morgan M. Morton D. Muzny D. Santibanez J. Sheth M. Shinbrot E. Wang L. Wang M. Wheeler D.A. Xi L. Zhao F. Hess J. Appelbaum E.L. Bailey M. Cordes M.G. Ding L. Fronick C.C. Fulton L.A. Fulton R.S. Kandoth C. Mardis E.R. McLellan M.D. Miller C.A. Schmidt H.K. Wilson R.K. Crain D. Curley E. Gardner J. Lau K. Mallery D. Morris S. Paulauskis J. Penny R. Shelton C. Shelton T. Sherman M. Thompson E. Yena P. Bowen J. Gastier-Foster J.M. Gerken M. Leraas K.M. Lichtenberg T.M. Ramirez N.C. Wise L. Zmuda E. Corcoran N. Costello T. Hovens C. Carvalho A.L. de Carvalho A.C. Fregnani J.H. Longatto-Filho A. Reis R.M. Scapulatempo-Neto C. Silveira H.C.S. Vidal D.O. Burnette A. Eschbacher J. Hermes B. Noss A. Singh R. Anderson M.L. Castro P.D. Ittmann M. Huntsman D. Kohl B. Le X. Thorp R. Andry C. Duffy E.R. Lyadov V. Paklina O. Setdikova G. Shabunin A. Tavobilov M. McPherson C. Warnick R. Berkowitz R. Cramer D. Feltmate C. Horowitz N. Kibel A. Muto M. Raut C.P. Malykh A. Barnholtz-Sloan J.S. Barrett W. Devine K. Fulop J. Ostrom Q.T. Shimmel K. Wolinsky Y. Sloan A.E. De Rose A. Giuliante F. Goodman M. Karlan B.Y. Hagedorn C.H. Eckman J. Harr J. Myers J. Tucker K. Zach L.A. Deyarmin B. Hu H. Kvecher L. Larson C. Mural R.J. Somiari S. Vicha A. Zelinka T. Bennett J. Iacocca M. Rabeno B. Swanson P. Latour M. Lacombe L. Têtu B. Bergeron A. McGraw M. Staugaitis S.M. Chabot J. Hibshoosh H. Sepulveda A. Su T. Wang T. Potapova O. Voronina O. Desjardins L. Mariani O. Roman-Roman S. Sastre X. Stern M-H. Cheng F. Signoretti S. Berchuck A. Bigner D. Lipp E. Marks J. McCall S. McLendon R. Secord A. Sharp A. Behera M. Brat D.J. Chen A. Delman K. Force S. Khuri F. Magliocca K. Maithel S. Olson J.J. Owonikoko T. Pickens A. Ramalingam S. Shin D.M. Sica G. Van Meir E.G. Zhang H. Eijckenboom W. Gillis A. Korpershoek E. Looijenga L. Oosterhuis W. Stoop H. van Kessel K.E. Zwarthoff E.C. Calatozzolo C. Cuppini L. Cuzzubbo S. DiMeco F. Finocchiaro G. Mattei L. Perin A. Pollo B. Chen C. Houck J. Lohavanichbutr P. Hartmann A. Stoehr C. Stoehr R. Taubert H. Wach S. Wullich B. Kycler W. Murawa D. Wiznerowicz M. Chung K. Edenfield W.J. Martin J. Baudin E. Bubley G. Bueno R. De Rienzo A. Richards W.G. Kalkanis S. Mikkelsen T. Noushmehr H. Scarpace L. Girard N. Aymerich M. Campo E. Giné E. Guillermo A.L. Van Bang N. Hanh P.T. Phu B.D. Tang Y. Colman H. Evason K. Dottino P.R. Martignetti J.A. Gabra H. Juhl H. Akeredolu T. Stepa S. Hoon D. Ahn K. Kang K.J. Beuschlein F. Breggia A. Birrer M. Bell D. Borad M. Bryce A.H. Castle E. Chandan V. Cheville J. Copland J.A. Farnell M. Flotte T. Giama N. Ho T. Kendrick M. Kocher J-P. Kopp K. Moser C. Nagorney D. O’Brien D. O’Neill B.P. Patel T. Petersen G. Que F. Rivera M. Roberts L. Smallridge R. Smyrk T. Stanton M. Thompson R.H. Torbenson M. Yang J.D. Zhang L. Brimo F. Ajani J.A. Gonzalez A.M.A. Behrens C. Bondaruk J. Broaddus R. Czerniak B. Esmaeli B. Fujimoto J. Gershenwald J. Guo C. Lazar A.J. Logothetis C. Meric-Bernstam F. Moran C. Ramondetta L. Rice D. Sood A. Tamboli P. Thompson T. Troncoso P. Tsao A. Wistuba I. Carter C. Haydu L. Hersey P. Jakrot V. Kakavand H. Kefford R. Lee K. Long G. Mann G. Quinn M. Saw R. Scolyer R. Shannon K. Spillane A. Stretch Synott M. Thompson J. Wilmott J. Al-Ahmadie H. Chan T.A. Ghossein R. Gopalan A. Levine D.A. Reuter V. Singer S. Singh B. Tien N.V. Broudy T. Mirsaidi C. Nair P. Drwiega P. Miller J. Smith J. Zaren H. Park J-W. Hung N.P. Kebebew E. Linehan W.M. Metwalli A.R. Pacak K. Pinto P.A. Schiffman M. Schmidt L.S. Vocke C.D. Wentzensen N. Worrell R. Yang H. Moncrieff M. Goparaju C. Melamed J. Pass H. Botnariuc N. Caraman I. Cernat M. Chemencedji I. Clipca A. Doruc S. Gorincioi G. Mura S. Pirtac M. Stancul I. Tcaciuc D. Albert M. Alexopoulou I. Arnaout A. Bartlett J. Engel J. Gilbert S. Parfitt J. Sekhon H. Thomas G. Rassl D.M. Rintoul R.C. Bifulco C. Tamakawa R. Urba W. Hayward N. Timmers H. Antenucci A. Facciolo F. Grazi G. Marino M. Merola R. de Krijger R. Gimenez-Roqueplo A-P. Piché A. Chevalier S. McKercher G. Birsoy K. Barnett G. Brewer C. Farver C. Naska T. Pennell N.A. Raymond D. Schilero C. Smolenski K. Williams F. Morrison C. Borgia J.A. Liptay M.J. Pool M. Seder C.W. Junker K. Omberg L. Dinkin M. Manikhas G. Alvaro D. Bragazzi M.C. Cardinale V. Carpino G. Gaudio E. Chesla D. Cottingham S. Dubina M. Moiseenko F. Dhanasekaran R. Becker K-F. Janssen K-P. Slotta-Huspenina J. Abdel-Rahman M.H. Aziz D. Bell S. Cebulla C.M. Davis A. Duell R. Elder J.B. Hilty J. Kumar B. Lang J. Lehman N.L. Mandt R. Nguyen P. Pilarski R. Rai K. Schoenfield L. Senecal K. Wakely P. Hansen P. Lechan R. Powers J. Tischler A. Grizzle W.E. Sexton K.C. Kastl A. Henderson J. Porten S. Waldmann J. Fassnacht M. Asa S.L. Schadendorf D. Couce M. Graefen M. Huland H. Sauter G. Schlomm T. Simon R. Tennstedt P. Olabode O. Nelson M. Bathe O. Carroll P.R. Chan J.M. Disaia P. Glenn P. Kelley R.K. Landen C.N. Phillips J. Prados M. Simko J. Smith-McCune K. VandenBerg S. Roggin K. Fehrenbach A. Kendler A. Sifri S. Steele R. Jimeno A. Carey F. Forgie I. Mannelli M. Carney M. Hernandez B. Campos B. Herold-Mende C. Jungk C. Unterberg A. von Deimling A. Bossler A. Galbraith J. Jacobus L. Knudson M. Knutson T. Ma D. Milhem M. Sigmund R. Godwin A.K. Madan R. Rosenthal H.G. Adebamowo C. Adebamowo S.N. Boussioutas A. Beer D. Giordano T. Mes-Masson A-M. Saad F. Bocklage T. Landrum L. Mannel R. Moore K. Moxley K. Postier R. Walker J. Zuna R. Feldman M. Valdivieso F. Dhir R. Luketich J. Pinero E.M.M. Quintero-Aguilo M. Carlotti C.G. Jr Dos Santos J.S. Kemp R. Sankarankuty A. Tirapelli D. Catto J. Agnew K. Swisher E. Creaney J. Robinson B. Shelley C.S. Godwin E.M. Kendall S. Shipman C. Bradford C. Carey T. Haddad A. Moyer J. Peterson L. Prince M. Rozek L. Wolf G. Bowman R. Fong K.M. Yang I. Korst R. Rathmell W.K. Fantacone-Campbell J.L. Hooke J.A. Kovatich A.J. Shriver C.D. DiPersio J. Drake B. Govindan R. Heath S. Ley T. Van Tine B. Westervelt P. Rubin M.A. Lee J.I. Aredes N.D. Mariamidze A. The Immune Landscape of Cancer. Immunity 2018 48 4 812 830.e14 10.1016/j.immuni.2018.03.023 29628290
    [Google Scholar]
  70. Quail D.F. Joyce J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013 19 11 1423 1437 10.1038/nm.3394 24202395
    [Google Scholar]
  71. Mansouri V. Beheshtizadeh N. Gharibshahian M. Sabouri L. Varzandeh M. Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed. Pharmacother. 2021 141 111875 10.1016/j.biopha.2021.111875 34229250
    [Google Scholar]
  72. Rooney M.S. Shukla S.A. Wu C.J. Getz G. Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015 160 1-2 48 61 10.1016/j.cell.2014.12.033 25594174
    [Google Scholar]
  73. Amit M. Takahashi H. Dragomir M.P. Lindemann A. Gleber-Netto F.O. Pickering C.R. Anfossi S. Osman A.A. Cai Y. Wang R. Knutsen E. Shimizu M. Ivan C. Rao X. Wang J. Silverman D.A. Tam S. Zhao M. Caulin C. Zinger A. Tasciotti E. Dougherty P.M. El-Naggar A. Calin G.A. Myers J.N. Loss of p53 drives neuron reprogramming in head and neck cancer. Nature 2020 578 7795 449 454 10.1038/s41586‑020‑1996‑3 32051587
    [Google Scholar]
  74. Dias Carvalho P. Guimarães C.F. Cardoso A.P. Mendonça S. Costa Â.M. Oliveira M.J. Velho S. KRAS Oncogenic Signaling Extends beyond Cancer Cells to Orchestrate the Microenvironment. Cancer Res. 2018 78 1 7 14 10.1158/0008‑5472.CAN‑17‑2084 29263151
    [Google Scholar]
  75. Wang Q. Hu B. Hu X. Kim H. Squatrito M. Scarpace L. deCarvalho A.C. Lyu S. Li P. Li Y. Barthel F. Cho H.J. Lin Y.H. Satani N. Martinez-Ledesma E. Zheng S. Chang E. Sauvé C.E.G. Olar A. Lan Z.D. Finocchiaro G. Phillips J.J. Berger M.S. Gabrusiewicz K.R. Wang G. Eskilsson E. Hu J. Mikkelsen T. DePinho R.A. Muller F. Heimberger A.B. Sulman E.P. Nam D.H. Verhaak R.G.W. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell 2017 32 1 42 56.e6 10.1016/j.ccell.2017.06.003 28697342
    [Google Scholar]
  76. Menyhárt O. Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 2021 19 949 960 10.1016/j.csbj.2021.01.009 33613862
    [Google Scholar]
  77. Van Oekelen O. Laganà A. Multi-omics profiling of the tumor microenvironment. Adv. Exp. Med. Biol. 2022 1361 283 326 10.1007/978‑3‑030‑91836‑1_16 35230695
    [Google Scholar]
  78. Berger M.F. Mardis E.R. The emerging clinical relevance of genomics in cancer medicine. Nat. Rev. Clin. Oncol. 2018 15 6 353 365 10.1038/s41571‑018‑0002‑6 29599476
    [Google Scholar]
  79. Hinshaw D.C. Shevde L.A. The tumor microenvironment innately modulates cancer progression. Cancer Res. 2019 79 18 4557 4566 10.1158/0008‑5472.CAN‑18‑3962 31350295
    [Google Scholar]
  80. Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012 148 3 399 408 10.1016/j.cell.2012.01.021 22304911
    [Google Scholar]
  81. Kroemer G. Pouyssegur J. Tumor cell metabolism: Cancer’s Achilles’ heel. Cancer Cell 2008 13 6 472 482 10.1016/j.ccr.2008.05.005 18538731
    [Google Scholar]
  82. Massagué J. TGFβ in Cancer. Cell 2008 134 2 215 230 10.1016/j.cell.2008.07.001 18662538
    [Google Scholar]
  83. Batlle E. Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019 50 4 924 940 10.1016/j.immuni.2019.03.024 30995507
    [Google Scholar]
  84. Egeblad M. Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002 2 3 161 174 10.1038/nrc745 11990853
    [Google Scholar]
  85. Lu P. Weaver V.M. Werb Z. The extracellular matrix: A dynamic niche in cancer progression. J. Cell Biol. 2012 196 4 395 406 10.1083/jcb.201102147 22351925
    [Google Scholar]
  86. Paszek M.J. Zahir N. Johnson K.R. Lakins J.N. Rozenberg G.I. Gefen A. Reinhart-King C.A. Margulies S.S. Dembo M. Boettiger D. Hammer D.A. Weaver V.M. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005 8 3 241 254 10.1016/j.ccr.2005.08.010 16169468
    [Google Scholar]
  87. Whiteside T.L. Exosomes and tumor-mediated immune suppression. J. Clin. Invest. 2016 126 4 1216 1223 10.1172/JCI81136 26927673
    [Google Scholar]
  88. Chen G. Huang A.C. Zhang W. Zhang G. Wu M. Xu W. Yu Z. Yang J. Wang B. Sun H. Xia H. Man Q. Zhong W. Antelo L.F. Wu B. Xiong X. Liu X. Guan L. Li T. Liu S. Yang R. Lu Y. Dong L. McGettigan S. Somasundaram R. Radhakrishnan R. Mills G. Lu Y. Kim J. Chen Y.H. Dong H. Zhao Y. Karakousis G.C. Mitchell T.C. Schuchter L.M. Herlyn M. Wherry E.J. Xu X. Guo W. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 2018 560 7718 382 386 10.1038/s41586‑018‑0392‑8 30089911
    [Google Scholar]
  89. Takebe N. Harris P.J. Warren R.Q. Ivy S.P. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 2011 8 2 97 106 10.1038/nrclinonc.2010.196 21151206
    [Google Scholar]
  90. Willumsen N. Thomsen L.B. Bager C.L. Jensen C. Karsdal M.A. Quantification of altered tissue turnover in a liquid biopsy: A proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol. Immunother. 2018 67 1 1 12 10.1007/s00262‑017‑2074‑z 29022089
    [Google Scholar]
  91. Dart A. Naughty neutrophils. Nat. Rev. Cancer 2022 22 5 258 10.1038/s41568‑022‑00470‑5 35314809
    [Google Scholar]
  92. Netea-Maier R.T. Smit J.W.A. Netea M.G. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett. 2018 413 102 109 10.1016/j.canlet.2017.10.037 29111350
    [Google Scholar]
  93. Öhlund D. Elyada E. Tuveson D. Fibroblast heterogeneity in the cancer wound. J. Exp. Med. 2014 211 8 1503 1523 10.1084/jem.20140692 25071162
    [Google Scholar]
  94. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016 16 9 582 598 10.1038/nrc.2016.73 27550820
    [Google Scholar]
  95. Hanahan D. Coussens L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 21 3 309 322 10.1016/j.ccr.2012.02.022 22439926
    [Google Scholar]
  96. Ramos P. Bentires-Alj M. Mechanism-based cancer therapy: Resistance to therapy, therapy for resistance. Oncogene 2015 34 28 3617 3626 10.1038/onc.2014.314 25263438
    [Google Scholar]
  97. De P. Aske J. Sulaiman R. Dey N. Bête noire of chemotherapy and targeted therapy: CAF-Mediated resistance. Cancers (Basel) 2022 14 6 1519 10.3390/cancers14061519 35326670
    [Google Scholar]
  98. Biffi G. Oni T.E. Spielman B. Hao Y. Elyada E. Park Y. Preall J. Tuveson D.A. IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 2019 9 2 282 301 10.1158/2159‑8290.CD‑18‑0710 30366930
    [Google Scholar]
  99. Elyada E. Bolisetty M. Laise P. Flynn W.F. Courtois E.T. Burkhart R.A. Teinor J.A. Belleau P. Biffi G. Lucito M.S. Sivajothi S. Armstrong T.D. Engle D.D. Yu K.H. Hao Y. Wolfgang C.L. Park Y. Preall J. Jaffee E.M. Califano A. Robson P. Tuveson D.A. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019 9 8 1102 1123 10.1158/2159‑8290.CD‑19‑0094 31197017
    [Google Scholar]
  100. Li H. Courtois E.T. Sengupta D. Tan Y. Chen K.H. Goh J.J.L. Kong S.L. Chua C. Hon L.K. Tan W.S. Wong M. Choi P.J. Wee L.J.K. Hillmer A.M. Tan I.B. Robson P. Prabhakar S. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet. 2017 49 5 708 718 10.1038/ng.3818 28319088
    [Google Scholar]
  101. Costea D.E. Hills A. Osman A.H. Thurlow J. Kalna G. Huang X. Pena Murillo C. Parajuli H. Suliman S. Kulasekara K.K. Johannessen A.C. Partridge M. Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma. Cancer Res. 2013 73 13 3888 3901 10.1158/0008‑5472.CAN‑12‑4150 23598279
    [Google Scholar]
  102. Pelon F. Bourachot B. Kieffer Y. Magagna I. Mermet-Meillon F. Bonnet I. Costa A. Givel A.M. Attieh Y. Barbazan J. Bonneau C. Fuhrmann L. Descroix S. Vignjevic D. Silberzan P. Parrini M.C. Vincent-Salomon A. Mechta-Grigoriou F. Cancer-associated fibroblast heterogeneity in axillary lymph nodes drives metastases in breast cancer through complementary mechanisms. Nat. Commun. 2020 11 1 404 10.1038/s41467‑019‑14134‑w 31964880
    [Google Scholar]
  103. Mizutani Y. Kobayashi H. Iida T. Asai N. Masamune A. Hara A. Esaki N. Ushida K. Mii S. Shiraki Y. Ando K. Weng L. Ishihara S. Ponik S.M. Conklin M.W. Haga H. Nagasaka A. Miyata T. Matsuyama M. Kobayashi T. Fujii T. Yamada S. Yamaguchi J. Wang T. Woods S.L. Worthley D. Shimamura T. Fujishiro M. Hirooka Y. Enomoto A. Takahashi M. Meflin-positive cancer-associated fibroblasts inhibit pancreatic carcinogenesis. Cancer Res. 2019 79 20 5367 5381 10.1158/0008‑5472.CAN‑19‑0454 31439548
    [Google Scholar]
  104. Neuzillet C. Tijeras-Raballand A. Cohen R. Cros J. Faivre S. Raymond E. de Gramont A. Targeting the TGFβ pathway for cancer therapy. Pharmacol. Ther. 2015 147 22 31 10.1016/j.pharmthera.2014.11.001 25444759
    [Google Scholar]
  105. Karamanos N.K. Piperigkou Z. Passi A. Götte M. Rousselle P. Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol. Med. 2021 27 10 1000 1013 10.1016/j.molmed.2021.07.009 34389240
    [Google Scholar]
  106. Hope H.C. Salmond R.J. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy. Eur. J. Immunol. 2019 49 8 1147 1152 10.1002/eji.201848058 31270810
    [Google Scholar]
  107. Chyuan I.T. Chu C.L. Hsu P.N. Targeting the tumor microenvironment for improving therapeutic effectiveness in cancer immunotherapy: Focusing on immune checkpoint inhibitors and combination therapies. Cancers (Basel) 2021 13 6 1188 10.3390/cancers13061188 33801815
    [Google Scholar]
  108. García-Cañaveras J.C. Lahoz A. Tumor microenvironment-derived metabolites: A guide to find new metabolic therapeutic targets and biomarkers. Cancers (Basel) 2021 13 13 3230 10.3390/cancers13133230 34203535
    [Google Scholar]
  109. Zhong S. Jeong J.H. Chen Z. Chen Z. Luo J.L. Targeting Tumor Microenvironment by Small-Molecule Inhibitors. Transl. Oncol. 2020 13 1 57 69 10.1016/j.tranon.2019.10.001 31785429
    [Google Scholar]
  110. Leslie L.A. Younes A. Antibody-drug conjugates in hematologic malignancies. Am. Soc. Clin. Oncol. Educ. Book 2013 33 33 e108 e113 10.14694/EdBook_AM.2013.33.e108 23714472
    [Google Scholar]
  111. Verma S. Miles D. Gianni L. Krop I.E. Welslau M. Baselga J. Pegram M. Oh D.Y. Diéras V. Guardino E. Fang L. Lu M.W. Olsen S. Blackwell K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2012 367 19 1783 1791 10.1056/NEJMoa1209124 23020162
    [Google Scholar]
  112. Rose A.A.N. Grosset A.A. Dong Z. Russo C. MacDonald P.A. Bertos N.R. St-Pierre Y. Simantov R. Hallett M. Park M. Gaboury L. Siegel P.M. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin. Cancer Res. 2010 16 7 2147 2156 10.1158/1078‑0432.CCR‑09‑1611 20215530
    [Google Scholar]
  113. Newick K. O’Brien S. Moon E. Albelda S.M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 2017 68 1 139 152 10.1146/annurev‑med‑062315‑120245 27860544
    [Google Scholar]
  114. Zhang L. Morgan R.A. Beane J.D. Zheng Z. Dudley M.E. Kassim S.H. Nahvi A.V. Ngo L.T. Sherry R.M. Phan G.Q. Hughes M.S. Kammula U.S. Feldman S.A. Toomey M.A. Kerkar S.P. Restifo N.P. Yang J.C. Rosenberg S.A. Tumor-infiltrating lymphocytes genetically engineered with an inducible gene encoding interleukin-12 for the immunotherapy of metastatic melanoma. Clin. Cancer Res. 2015 21 10 2278 2288 10.1158/1078‑0432.CCR‑14‑2085 25695689
    [Google Scholar]
  115. Caruana I. Savoldo B. Hoyos V. Weber G. Liu H. Kim E.S. Ittmann M.M. Marchetti D. Dotti G. Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat. Med. 2015 21 5 524 529 10.1038/nm.3833 25849134
    [Google Scholar]
  116. Wang L.C.S. Lo A. Scholler J. Sun J. Majumdar R.S. Kapoor V. Antzis M. Cotner C.E. Johnson L.A. Durham A.C. Solomides C.C. June C.H. Puré E. Albelda S.M. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2014 2 2 154 166 10.1158/2326‑6066.CIR‑13‑0027 24778279
    [Google Scholar]
  117. Mao X. Xu J. Wang W. Liang C. Hua J. Liu J. Zhang B. Meng Q. Yu X. Shi S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021 20 1 131 10.1186/s12943‑021‑01428‑1 34635121
    [Google Scholar]
  118. Najafi M. Farhood B. Mortezaee K. Extracellular matrix (ECM) stiffness and degradation as cancer drivers. J. Cell. Biochem. 2019 120 3 2782 2790 10.1002/jcb.27681 30321449
    [Google Scholar]
  119. Xu M. Chen J. Zhang P. Cai J. Song H. Li Z. Liu Z. An antibody-radionuclide conjugate targets fibroblast activation protein for cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 2023 50 11 3214 3224 10.1007/s00259‑023‑06300‑6 37318538
    [Google Scholar]
  120. Borzone F.R. Giorello M.B. Sanmartin M.C. Yannarelli G. Martinez L.M. Chasseing N.A. Mesenchymal stem cells and cancer‐associated fibroblasts as a therapeutic strategy for breast cancer. Br. J. Pharmacol. 2024 181 2 238 256 10.1111/bph.15861 35485850
    [Google Scholar]
  121. Hapani S. Sher A. Chu D. Wu S. Increased risk of serious hemorrhage with bevacizumab in cancer patients: A meta-analysis. Oncology 2010 79 1-2 27 38 10.1159/000314980 21051914
    [Google Scholar]
  122. Raghu G. Scholand M.B. de Andrade J. Lancaster L. Mageto Y. Goldin J. Brown K.K. Flaherty K.R. Wencel M. Wanger J. Neff T. Valone F. Stauffer J. Porter S. FG-3019 anti-connective tissue growth factor monoclonal antibody: Results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur. Respir. J. 2016 47 5 1481 1491 10.1183/13993003.01030‑2015 26965296
    [Google Scholar]
  123. Formenti S.C. Lee P. Adams S. Goldberg J.D. Li X. Xie M.W. Ratikan J.A. Felix C. Hwang L. Faull K.F. Sayre J.W. Hurvitz S. Glaspy J.A. Comin-Anduix B. Demaria S. Schaue D. McBride W.H. Focal irradiation and systemic TGFb blockade in metastatic breast cancer. Clin. Cancer Res. 2018 24 11 2493 2504 10.1158/1078‑0432.CCR‑17‑3322 29476019
    [Google Scholar]
  124. Huang Y. Simms A.E. Mazur A. Wang S. León N.R. Jones B. Aziz N. Kelly T. Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin. Exp. Metastasis 2011 28 6 567 579 10.1007/s10585‑011‑9392‑x 21604185
    [Google Scholar]
  125. Zhou K.X. Xie L.H. Peng X. Guo Q.M. Wu Q.Y. Wang W.H. Zhang G.L. Wu J.F. Zhang G.J. Du C.W. CXCR4 antagonist AMD3100 enhances the response of MDA-MB-231 triple-negative breast cancer cells to ionizing radiation. Cancer Lett. 2018 418 196 203 10.1016/j.canlet.2018.01.009 29317253
    [Google Scholar]
  126. Chiappori A.A. Eckhardt S.G. Bukowski R. Sullivan D.M. Ikeda M. Yano Y. Yamada-Sawada T. Kambayashi Y. Tanaka K. Javle M.M. Mekhail T. O’Bryant C.L. Creaven P.J. A phase I pharmacokinetic and pharmacodynamic study of s-3304, a novel matrix metalloproteinase inhibitor, in patients with advanced and refractory solid tumors. Clin. Cancer Res. 2007 13 7 2091 2099 10.1158/1078‑0432.CCR‑06‑1586 17404091
    [Google Scholar]
  127. Stover D.G. Gil Del Alcazar C.R. Brock J. Guo H. Overmoyer B. Balko J. Xu Q. Bardia A. Tolaney S.M. Gelman R. Lloyd M. Wang Y. Xu Y. Michor F. Wang V. Winer E.P. Polyak K. Lin N.U. Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer. NPJ Breast Cancer 2018 4 1 10 10.1038/s41523‑018‑0060‑z 29761158
    [Google Scholar]
  128. Cunningham T.J. Tabacchi M. Eliane J.P. Tuchayi S.M. Manivasagam S. Mirzaalian H. Turkoz A. Kopan R. Schaffer A. Saavedra A.P. Wallendorf M. Cornelius L.A. Demehri S. Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. J. Clin. Invest. 2016 127 1 106 116 10.1172/JCI89820 27869649
    [Google Scholar]
  129. Ni X Hu G Cai X The success and the challenge of all-trans retinoic acid in the treatment of cancer. Crit. Rev. Food Sci. Nutr. 2019 59 sup1 S71 S80 10.1080/10408398.2018.1509201
    [Google Scholar]
  130. Rosenberg A. Mathew P. Imatinib and prostate cancer: Lessons learned from targeting the platelet-derived growth factor receptor. Expert Opin. Investig. Drugs 2013 22 6 787 794 10.1517/13543784.2013.787409 23540855
    [Google Scholar]
  131. Owonikoko T.K. Zhang G. Lallani S.B. Chen Z. Martinson D.E. Khuri F.R. Lonial S. Marcus A. Sun S.Y. Evaluation of preclinical efficacy of everolimus and pasireotide in thyroid cancer cell lines and xenograft models. PLoS One 2019 14 2 e0206309 10.1371/journal.pone.0206309 30807575
    [Google Scholar]
  132. Bowles D.W. Keysar S.B. Eagles J.R. Wang G. Glogowska M.J. McDermott J.D. Le P.N. Gao D. Ray C.E. Rochon P.J. Roop D.R. Tan A.C. Serracino H.S. Jimeno A. A pilot study of cetuximab and the hedgehog inhibitor IPI-926 in recurrent/metastatic head and neck squamous cell carcinoma. Oral Oncol. 2016 53 74 79 10.1016/j.oraloncology.2015.11.014 26705064
    [Google Scholar]
  133. Damgaci S. Ibrahim-Hashim A. Enriquez-Navas P.M. Pilon-Thomas S. Guvenis A. Gillies R.J. Hypoxia and acidosis: Immune suppressors and therapeutic targets. Immunology 2018 154 3 354 362 10.1111/imm.12917 29485185
    [Google Scholar]
  134. McDonald P.C. Chafe S.C. Dedhar S. Overcoming hypoxia-mediated tumor progression: Combinatorial approaches targeting pH regulation, angiogenesis and immune dysfunction. Front. Cell Dev. Biol. 2016 4 27 10.3389/fcell.2016.00027 27066484
    [Google Scholar]
  135. Gatenby R.A. Gillies R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004 4 11 891 899 10.1038/nrc1478 15516961
    [Google Scholar]
  136. Wang G. Wang J.J. Yin P.H. Xu K. Wang Y.Z. Shi F. Gao J. Fu X.L. New strategies for targeting glucose metabolism–mediated acidosis for colorectal cancer therapy. J. Cell. Physiol. 2019 234 1 348 368 10.1002/jcp.26917 30069931
    [Google Scholar]
  137. Raj R. Das S. Prospects of bacteriotherapy with nanotechnology in nanoparticledrug conjugation approach for cancer therapy. Curr. Med. Chem. 2016 23 14 1477 1494 10.2174/0929867323666160406120923 27048378
    [Google Scholar]
  138. Phillips R.M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. Cancer Chemother. Pharmacol. 2016 77 3 441 457 10.1007/s00280‑015‑2920‑7 26811177
    [Google Scholar]
  139. Li Y. Zhao L. Li X.F. Targeting Hypoxia: Hypoxia-Activated Prodrugs in Cancer Therapy. Front. Oncol. 2021 11 700407 10.3389/fonc.2021.700407 34395270
    [Google Scholar]
  140. Zeman E.M. Brown J.M. Lemmon M.J. Hirst V.K. Lee W.W. Sr SR-4233: A new bioreductive agent with high selective toxicity for hypoxic mammalian cells. Int. J. Radiat. Oncol. Biol. Phys. 1986 12 7 1239 1242 10.1016/0360‑3016(86)90267‑1 3744945
    [Google Scholar]
  141. Patterson L.H. Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: A new class of bioreductive agent. Cancer Metastasis Rev. 1993 12 2 119 134 10.1007/BF00689805 8375016
    [Google Scholar]
  142. Patterson A.V. Ferry D.M. Edmunds S.J. Gu Y. Singleton R.S. Patel K. Pullen S.M. Hicks K.O. Syddall S.P. Atwell G.J. Yang S. Denny W.A. Wilson W.R. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res. 2007 13 13 3922 3932 10.1158/1078‑0432.CCR‑07‑0478 17606726
    [Google Scholar]
  143. Oostveen E.A. Speckamp W.N. Mitomycin analogs I. Indoloquinones as (potential) bisalkylating agents. Tetrahedron 1987 43 1 255 262 10.1016/S0040‑4020(01)89952‑X
    [Google Scholar]
  144. Duan J.X. Jiao H. Kaizerman J. Stanton T. Evans J.W. Lan L. Lorente G. Banica M. Jung D. Wang J. Ma H. Li X. Yang Z. Hoffman R.M. Ammons W.S. Hart C.P. Matteucci M. Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. J. Med. Chem. 2008 51 8 2412 2420 10.1021/jm701028q 18257544
    [Google Scholar]
  145. Meng F. Evans J.W. Bhupathi D. Banica M. Lan L. Lorente G. Duan J.X. Cai X. Mowday A.M. Guise C.P. Maroz A. Anderson R.F. Patterson A.V. Stachelek G.C. Glazer P.M. Matteucci M.D. Hart C.P. Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. Mol. Cancer Ther. 2012 11 3 740 751 10.1158/1535‑7163.MCT‑11‑0634 22147748
    [Google Scholar]
  146. Hicks K.O. Siim B.G. Jaiswal J.K. Pruijn F.B. Fraser A.M. Patel R. Hogg A. Liyanage H.D.S. Dorie M.J. Brown J.M. Denny W.A. Hay M.P. Wilson W.R. Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. Clin. Cancer Res. 2010 16 20 4946 4957 10.1158/1078‑0432.CCR‑10‑1439 20732963
    [Google Scholar]
  147. Anderson R.F. Yadav P. Patel D. Reynisson J. Tipparaju S.R. Guise C.P. Patterson A.V. Denny W.A. Maroz A. Shinde S.S. Hay M.P. Characterisation of radicals formed by the triazine 1,4-dioxide hypoxia-activated prodrug, SN30000. Org. Biomol. Chem. 2014 12 21 3386 3392 10.1039/C4OB00236A 24737463
    [Google Scholar]
  148. Chu S. Shi X. Tian Y. Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front. Oncol. 2022 12 855019 10.3389/fonc.2022.855019 35392227
    [Google Scholar]
  149. Shi Z. Li Q. Mei L. pH-Sensitive nanoscale materials as robust drug delivery systems for cancer therapy. Chin. Chem. Lett. 2020 31 6 1345 1356 10.1016/j.cclet.2020.03.001
    [Google Scholar]
  150. Oguntade A.S. Al-Amodi F. Alrumayh A. Alobaida M. Bwalya M. Anti-angiogenesis in cancer therapeutics: The magic bullet. J. Egypt. Natl. Canc. Inst. 2021 33 1 15 10.1186/s43046‑021‑00072‑6 34212275
    [Google Scholar]
  151. Pastorekova S. Gillies R.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev. 2019 38 1-2 65 77 10.1007/s10555‑019‑09799‑0 31076951
    [Google Scholar]
  152. Belotti D. Pinessi D. Taraboletti G. Alternative vascularisation mechanisms in tumor resistance to therapy. Cancers (Basel) 2021 13 8 1912 10.3390/cancers13081912 33921099
    [Google Scholar]
  153. Meng M.B. Zaorsky N.G. Deng L. Wang H.H. Chao J. Zhao L.J. Yuan Z.Y. Ping W. Pericytes: A double-edged sword in cancer therapy. Future Oncol. 2015 11 1 169 179 10.2217/fon.14.123 25143028
    [Google Scholar]
  154. Bergers G. Song S. Meyer-Morse N. Bergsland E. Hanahan D. Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J. Clin. Invest. 2003 111 9 1287 1295 10.1172/JCI200317929 12727920
    [Google Scholar]
  155. Xie Y. Xie F. Zhang L. Zhou X. Huang J. Wang F. Jin J. Zhang L. Zeng L. Zhou F. Targeted anti‐tumor immunotherapy using tumor infiltrating cells. Adv. Sci. (Weinh.) 2021 8 22 2101672 10.1002/advs.202101672 34658167
    [Google Scholar]
  156. Grinberg-Bleyer Y. Oh H. Desrichard A. Bhatt D.M. Caron R. Chan T.A. Schmid R.M. Klein U. Hayden M.S. Ghosh S. NF-κB c-rel is crucial for the regulatory t cell immune checkpoint in cancer. Cell 2017 170 6 1096 1108.e13 10.1016/j.cell.2017.08.004 28886380
    [Google Scholar]
  157. Kim M.C. Borcherding N. Ahmed K.K. Voigt A.P. Vishwakarma A. Kolb R. Kluz P.N. Pandey G. De U. Drashansky T. Helm E.Y. Zhang X. Gibson-Corley K.N. Klesney-Tait J. Zhu Y. Lu J. Lu J. Huang X. Xiang H. Cheng J. Wang D. Wang Z. Tang J. Hu J. Wang Z. Liu H. Li M. Zhuang H. Avram D. Zhou D. Bacher R. Zheng S.G. Wu X. Zakharia Y. Zhang W. CD177 modulates the function and homeostasis of tumor-infiltrating regulatory T cells. Nat. Commun. 2021 12 1 5764 10.1038/s41467‑021‑26091‑4 34599187
    [Google Scholar]
  158. Bindea G. Mlecnik B. Tosolini M. Kirilovsky A. Waldner M. Obenauf A.C. Angell H. Fredriksen T. Lafontaine L. Berger A. Bruneval P. Fridman W.H. Becker C. Pagès F. Speicher M.R. Trajanoski Z. Galon J. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013 39 4 782 795 10.1016/j.immuni.2013.10.003 24138885
    [Google Scholar]
  159. Motzer R.J. Penkov K. Haanen J. Rini B. Albiges L. Campbell M.T. Venugopal B. Kollmannsberger C. Negrier S. Uemura M. Lee J.L. Vasiliev A. Miller W.H. Jr Gurney H. Schmidinger M. Larkin J. Atkins M.B. Bedke J. Alekseev B. Wang J. Mariani M. Robbins P.B. Chudnovsky A. Fowst C. Hariharan S. Huang B. di Pietro A. Choueiri T.K. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2019 380 12 1103 1115 10.1056/NEJMoa1816047 30779531
    [Google Scholar]
  160. Motzer R.J. Robbins P.B. Powles T. Albiges L. Haanen J.B. Larkin J. Mu X.J. Ching K.A. Uemura M. Pal S.K. Alekseev B. Gravis G. Campbell M.T. Penkov K. Lee J.L. Hariharan S. Wang X. Zhang W. Wang J. Chudnovsky A. di Pietro A. Donahue A.C. Choueiri T.K. Avelumab plus axitinib versus sunitinib in advanced renal cell carcinoma: Biomarker analysis of the phase 3 JAVELIN Renal 101 trial. Nat. Med. 2020 26 11 1733 1741 10.1038/s41591‑020‑1044‑8 32895571
    [Google Scholar]
  161. Powles T. Park S.H. Voog E. Caserta C. Valderrama B.P. Gurney H. Kalofonos H. Radulović S. Demey W. Ullén A. Loriot Y. Sridhar S.S. Tsuchiya N. Kopyltsov E. Sternberg C.N. Bellmunt J. Aragon-Ching J.B. Petrylak D.P. Laliberte R. Wang J. Huang B. Davis C. Fowst C. Costa N. Blake-Haskins J.A. di Pietro A. Grivas P. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N. Engl. J. Med. 2020 383 13 1218 1230 10.1056/NEJMoa2002788 32945632
    [Google Scholar]
  162. Barlesi F. Vansteenkiste J. Spigel D. Ishii H. Garassino M. de Marinis F. Özgüroğlu M. Szczesna A. Polychronis A. Uslu R. Krzakowski M. Lee J.S. Calabrò L. Arén Frontera O. Ellers-Lenz B. Bajars M. Ruisi M. Park K. Avelumab versus docetaxel in patients with platinum-treated advanced non-small-cell lung cancer (JAVELIN Lung 200): An open-label, randomised, phase 3 study. Lancet Oncol. 2018 19 11 1468 1479 10.1016/S1470‑2045(18)30673‑9 30262187
    [Google Scholar]
  163. Uboha N.V. Milhem M.M. Kovacs C. Amin A. Magley A. Purkayastha D.D. Piha-Paul S.A. Phase II study of spartalizumab (PDR001) and LAG525 in advanced solid tumors and hematologic malignancies. J. Clin. Oncol. 2019 37 15_suppl 2553 10.1200/JCO.2019.37.15_suppl.2553
    [Google Scholar]
  164. Piha-Paul S.A. Amin A. Kovacs C. Magley A. Purkayastha D.D. Zhuo Y. A phase 2, open-label study of the combination of spartalizumab (PDR001) and LAG525 for patients with advanced solid tumors and hematologic malignancies. J. Clin. Oncol. 2018 36 15_suppl TPS2616 10.1200/JCO.2018.36.15_suppl.TPS2616
    [Google Scholar]
  165. Qin S. Xu L. Yi M. Yu S. Wu K. Luo S. Novel immune checkpoint targets: Moving beyond PD-1 and CTLA-4. Mol. Cancer 2019 18 1 155 10.1186/s12943‑019‑1091‑2 31690319
    [Google Scholar]
  166. Zahra K. Yana N. Hassane Z. John K. Suthee R. Hong W. Marc E. Joseph D. Diwakar D. Mohan B. Randomized Phase II Neoadjuvant Study: PD-1 Inhibitor TSR-042 vs. Combination PD-1 Inhibitor TSR-042 and Tim-3 Inhibitor TSR-022 in Borderline Resectable Stage III or Oligometastatic Stage IV Melanoma Cancer.
    [Google Scholar]
  167. Mach N. Curigliano G. Santoro A. Kim D.W. Tai D.W.M. Hodi S. Wilgenhof S. Doi T. Longmire T. Sun H. Xyrafas A. Gutzwiller S. Manenti L. Lin C-C. Phase (Ph) II study of MBG453 + spartalizumab in patients (pts) with non-small cell lung cancer (NSCLC) and melanoma pretreated with anti–PD-1/L1 therapy. Ann. Oncol. 2019 30 v491 v492 10.1093/annonc/mdz253.028
    [Google Scholar]
  168. Zeidan A.M. Miyazaki Y. Platzbecker U. Malek K. Niolat J. Kiertsman F. Fenaux P. A randomized, double-blind, placebo-controlled, phase II study of MBG453 added to Hypomethylating Agents (HMAs) in Patients (pts) with intermediate, high, or very high risk Myelodysplastic Syndrome (MDS): Stimulus-MDS1. Blood 2019 134 Suppl. 1 4259 10.1182/blood‑2019‑127041
    [Google Scholar]
  169. Rodriguez-Abreu D. Johnson M.L. Hussein M.A. Cobo M. Patel A.J. Secen N.M. Lee K.H. Massuti B. Hiret S. Yang J.C.H. Barlesi F. Lee D.H. Paz-Ares L.G. Hsieh R.W. Miller K. Patil N. Twomey P. Kapp A.V. Meng R. Cho B.C. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol. 2020 38 15_suppl 9503 10.1200/JCO.2020.38.15_suppl.9503
    [Google Scholar]
  170. Caruso C. Tiragolumab impresses in multiple trials. Cancer Discov. 2020 10 8 1086 1087 10.1158/2159‑8290.CD‑NB2020‑063 32576590
    [Google Scholar]
  171. ElTanbouly M.A. Schaafsma E. Noelle R.J. Lines J.L. VISTA: Coming of age as a multi-lineage immune checkpoint. Clin. Exp. Immunol. 2020 200 2 120 130 10.1111/cei.13415 31930484
    [Google Scholar]
  172. Tolcher A. Hamid O. Weber J. LoRusso P. Shantz K. Heller K. Gutierrez M. Immunother J. Single agent anti-tumor activity in PD-1 refractory NSCLC: Phase 1 data from the first-in-human trial of NC318, a Siglec-15-targeted antibody.
    [Google Scholar]
  173. Timmerman J. Herbaux C. Ribrag V. Zelenetz A.D. Houot R. Neelapu S.S. Logan T. Lossos I.S. Urba W. Salles G. Ramchandren R. Jacobson C. Godwin J. Carpio C. Lathers D. Liu Y. Neely J. Suryawanshi S. Koguchi Y. Levy R. Urelumab alone or in combination with rituximab in patients with relapsed or refractory B‐cell lymphoma. Am. J. Hematol. 2020 95 5 510 520 10.1002/ajh.25757 32052473
    [Google Scholar]
  174. Tran B. Carvajal R.D. Marabelle A. Patel S.P. LoRusso P.M. Rasmussen E. Juan G. Upreti V.V. Beers C. Ngarmchamnanrith G. Schöffski P. Dose escalation results from a first-in-human, phase 1 study of glucocorticoid-induced TNF receptor–related protein agonist AMG 228 in patients with advanced solid tumors. J. Immunother. Cancer 2018 6 1 93 10.1186/s40425‑018‑0407‑x 30253804
    [Google Scholar]
  175. Siu L.L. Steeghs N. Meniawy T. Joerger M. Spratlin J.L. Rottey S. Nagrial A. Cooper A. Meier R. Guan X. Phillips P. Bajaj G. Gokemeijer J. Korman A.J. Aung K.L. Carlino M.S. Preliminary results of a phase I/IIa study of BMS-986156 (glucocorticoid-induced tumor necrosis factor receptor–related gene [GITR] agonist), alone and in combination with nivolumab in pts with advanced solid tumors. J. Clin. Oncol. 2017 35 15_suppl 104 10.1200/JCO.2017.35.15_suppl.104
    [Google Scholar]
  176. Chuckran C.A. Liu C. Bruno T.C. Workman C.J. P555 Neuropilin-1 stabilizes human tregs in cancer patients thereby potentiating their suppressive function. Trends Immunol. 2020 41 493
    [Google Scholar]
  177. Benzon B. Zhao S.G. Haffner M.C. Takhar M. Erho N. Yousefi K. Hurley P. Bishop J.L. Tosoian J. Ghabili K. Alshalalfa M. Glavaris S. Simons B.W. Tran P. Davicioni E. Karnes R.J. Boudadi K. Antonarakis E.S. Schaeffer E.M. Drake C.G. Feng F. Ross A.E. Correlation of B7-H3 with androgen receptor, immune pathways and poor outcome in prostate cancer: An expression-based analysis. Prostate Cancer Prostatic Dis. 2017 20 1 28 35 10.1038/pcan.2016.49 27801901
    [Google Scholar]
  178. Park J.A. Cheung N.K.V. Targets and antibody formats for immunotherapy of neuroblastoma. J. Clin. Oncol. 2020 38 16 1836 1848 10.1200/JCO.19.01410 32167865
    [Google Scholar]
  179. Cassetta L. Pollard J.W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov. 2018 17 12 887 904 10.1038/nrd.2018.169 30361552
    [Google Scholar]
  180. Hibbs J.B. Jr Discrimination between neoplastic and non-neoplastic cells in vitro by activated macrophages. J. Natl. Cancer Inst. 1974 53 5 1487 1492 10.1093/jnci/53.5.1487 4473563
    [Google Scholar]
  181. Dunn G.P. Old L.J. Schreiber R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004 22 1 329 360 10.1146/annurev.immunol.22.012703.104803 15032581
    [Google Scholar]
  182. Liu L. Chen G. Gong S. Huang R. Fan C. Targeting tumor-associated macrophage: An adjuvant strategy for lung cancer therapy. Front. Immunol. 2023 14 1274547 10.3389/fimmu.2023.1274547 38022518
    [Google Scholar]
  183. Yin S. Huang J. Li Z. Zhang J. Luo J. Lu C. Xu H. Xu H. The prognostic and clinicopathological significance of tumor-associated macrophages in patients with gastric cancer: A meta-analysis. PLoS One 2017 12 1 e0170042 10.1371/journal.pone.0170042 28081243
    [Google Scholar]
  184. Zhao X. Qu J. Sun Y. Wang J. Liu X. Wang F. Prognostic significance of tumor-associated macrophages in breast cancer: A meta-analysis of the literature. Oncotarget. 2017 8 18 30576 30586
    [Google Scholar]
  185. Zhou K. Cheng T. Zhan J. Peng X. Zhang Y. Wen J. Chen X. Ying M. Targeting tumor‑associated macrophages in the tumor microenvironment (Review). Oncol. Lett. 2020 20 5 1 10.3892/ol.2020.12097 32968456
    [Google Scholar]
  186. Alhudaithi S.S. Almuqbil R.M. Zhang H. Bielski E.R. Du W. Sunbul F.S. Bos P.D. da Rocha S.R.P. local targeting of lung-tumor-associated macrophages with pulmonary delivery of a CSF-1R inhibitor for the treatment of breast cancer lung metastases. Mol. Pharm. 2020 17 12 4691 4703 10.1021/acs.molpharmaceut.0c00983 33170724
    [Google Scholar]
  187. Anfray C. Mainini F. Digifico E. Maeda A. Sironi M. Erreni M. Anselmo A. Ummarino A. Gandoy S. Expósito F. Redrado M. Serrano D. Calvo A. Martens M. Bravo S. Mantovani A. Allavena P. Andón F.T. Intratumoral combination therapy with poly(I:C) and resiquimod synergistically triggers tumor-associated macrophages for effective systemic antitumoral immunity. J. Immunother. Cancer 2021 9 9 e002408 10.1136/jitc‑2021‑002408 34531246
    [Google Scholar]
  188. Grivennikov S.I. Greten F.R. Karin M. Immunity, inflammation, and cancer. Cell 2010 140 6 883 899 10.1016/j.cell.2010.01.025 20303878
    [Google Scholar]
  189. Hou J. Karin M. Sun B. Targeting cancer-promoting inflammation — have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 2021 18 5 261 279 10.1038/s41571‑020‑00459‑9 33469195
    [Google Scholar]
  190. Yang J.D. Hainaut P. Gores G.J. Amadou A. Plymoth A. Roberts L.R. A global view of hepatocellular carcinoma: Trends, risk, prevention and management. Nat. Rev. Gastroenterol. Hepatol. 2019 16 10 589 604 10.1038/s41575‑019‑0186‑y 31439937
    [Google Scholar]
  191. Choi I.J. Kook M.C. Kim Y.I. Cho S.J. Lee J.Y. Kim C.G. Park B. Nam B.H. Helicobacter pylori Therapy for the Prevention of Metachronous Gastric Cancer. N. Engl. J. Med. 2018 378 12 1085 1095 10.1056/NEJMoa1708423 29562147
    [Google Scholar]
  192. Mima K. Sukawa Y. Nishihara R. Qian Z.R. Yamauchi M. Inamura K. Kim S.A. Masuda A. Nowak J.A. Nosho K. Kostic A.D. Giannakis M. Watanabe H. Bullman S. Milner D.A. Harris C.C. Giovannucci E. Garraway L.A. Freeman G.J. Dranoff G. Chan A.T. Garrett W.S. Huttenhower C. Fuchs C.S. Ogino S. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol. 2015 1 5 653 661 10.1001/jamaoncol.2015.1377 26181352
    [Google Scholar]
  193. Simon T.G. Duberg A.S. Aleman S. Chung R.T. Chan A.T. Ludvigsson J.F. Association of Aspirin with Hepatocellular Carcinoma and Liver-Related Mortality. N. Engl. J. Med. 2020 382 11 1018 1028 10.1056/NEJMoa1912035 32160663
    [Google Scholar]
  194. Joharatnam-Hogan N. Cafferty F. Hubner R. Swinson D. Sothi S. Gupta K. Falk S. Patel K. Warner N. Kunene V. Rowley S. Khabra K. Underwood T. Jankowski J. Bridgewater J. Crossley A. Henson V. Berkman L. Gilbert D. Kynaston H. Ring A. Cameron D. Din F. Graham J. Iveson T. Adams R. Thomas A. Wilson R. Pramesh C.S. Langley R. Burn J. Campbell S. Capaldi L. Carse Y. Gadgil D. Goldman A. Gupta S. Leonard G. MacKenzie M. Parmar M. Patrono C. Petty R. Rothwell P.M. Steele R.J.C. Aspirin as an adjuvant treatment for cancer: Feasibility results from the Add-Aspirin randomised trial. Lancet Gastroenterol. Hepatol. 2019 4 11 854 862 10.1016/S2468‑1253(19)30289‑4 31477558
    [Google Scholar]
  195. El-Serag H.B. Johnson M.L. Hachem C. Morgana R.O. Statins are associated with a reduced risk of hepatocellular carcinoma in a large cohort of patients with diabetes. Gastroenterology 2009 136 5 1601 1608 10.1053/j.gastro.2009.01.053 19208359
    [Google Scholar]
  196. Shlomai G. Neel B. LeRoith D. Gallagher E.J. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy. J. Clin. Oncol. 2016 34 35 4261 4269 10.1200/JCO.2016.67.4044 27903154
    [Google Scholar]
  197. Madhusudan S. Muthuramalingam S.R. Braybrooke J.P. Wilner S. Kaur K. Han C. Hoare S. Balkwill F. Ganesan T.S. Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. J. Clin. Oncol. 2005 23 25 5950 5959 10.1200/JCO.2005.04.127 16135466
    [Google Scholar]
  198. Jones S.A. Jenkins B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018 18 12 773 789 10.1038/s41577‑018‑0066‑7 30254251
    [Google Scholar]
  199. An Y. Liu F. Chen Y. Yang Q. Crosstalk between cancer-associated fibroblasts and immune cells in cancer. J Cell Mol Med. 2020; 24(1):13-24. Rothlin C V., Ghosh S. Lifting the innate immune barriers to antitumor immunity. J. Immunother. Cancer 2020 8 1 e000695 32273348
    [Google Scholar]
  200. Douguet L. Janho dit Hreich S. Benzaquen J. Seguin L. Juhel T. Dezitter X. Duranton C. Ryffel B. Kanellopoulos J. Delarasse C. Renault N. Furman C. Homerin G. Féral C. Cherfils-Vicini J. Millet R. Adriouch S. Ghinet A. Hofman P. Vouret-Craviari V. A small-molecule P2RX7 activator promotes anti-tumor immune responses and sensitizes lung tumor to immunotherapy. Nat. Commun. 2021 12 1 653 10.1038/s41467‑021‑20912‑2 33510147
    [Google Scholar]
  201. Rothlin C.V. Ghosh S. Lifting the innate immune barriers to antitumor immunity. J. Immunother. Cancer 2020 8 1 e000695 10.1136/jitc‑2020‑000695 32273348
    [Google Scholar]
  202. biotechne. Immuno-oncology: The anti-tumor immune response vs. the anti-immune tumor response. 2024 Available From: https://www.bio-techne.com/research-areas/immuno-oncology/immuno-oncology-tumor-immunity
  203. Keerthikumar S. Chisanga D. Ariyaratne D. Al Saffar H. Anand S. Zhao K. Samuel M. Pathan M. Jois M. Chilamkurti N. Gangoda L. Mathivanan S. ExoCarta: A web-based compendium of exosomal cargo. J. Mol. Biol. 2016 428 4 688 692 10.1016/j.jmb.2015.09.019 26434508
    [Google Scholar]
  204. Zhu L. Sun H.T. Wang S. Huang S.L. Zheng Y. Wang C.Q. Hu B-Y. Qin W. Zou T-T. Fu Y. Shen X-T. Zhu W-W. Geng Y. Lu L. Jia H. Qin L-X. Dong Q-Z. Isolation and characterization of exosomes for cancer research. J. Hematol. Oncol. 2020 13 1 152 10.1186/s13045‑020‑00987‑y 31900191
    [Google Scholar]
  205. Datta A. Kim H. McGee L. Johnson A.E. Talwar S. Marugan J. Southall N. Hu X. Lal M. Mondal D. Ferrer M. Abdel-Mageed A.B. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Sci. Rep. 2018 8 1 8161 10.1038/s41598‑018‑26411‑7 29802284
    [Google Scholar]
  206. Mroweh M. Decaens T. Marche P.N. Macek Jilkova Z. Clément F. Modulating the crosstalk between the tumor and its microenvironment using rna interference: A treatment strategy for hepatocellular carcinoma. Int. J. Mol. Sci. 2020 21 15 5250 10.3390/ijms21155250 32722054
    [Google Scholar]
  207. Malekian F. Shamsian A. Kodam S.P. Ullah M. Exosome engineering for efficient and targeted drug delivery: Current status and future perspective. J. Physiol. 2023 601 22 4853 4872 10.1113/JP282799 35570717
    [Google Scholar]
  208. Roseblade A. Luk F. Ung A. Bebawy M. Targeting microparticle biogenesis: A novel approach to the circumvention of cancer multidrug resistance. Curr. Cancer Drug Targets 2015 15 3 205 214 10.2174/1568009615666150225121508 25714701
    [Google Scholar]
  209. Shamseddine A.A. Airola M.V. Hannun Y.A. Roles and regulation of neutral sphingomyelinase-2 in cellular and pathological processes. Adv. Biol. Regul. 2015 57 24 41 10.1016/j.jbior.2014.10.002 25465297
    [Google Scholar]
  210. Arenz C. Small molecule inhibitors of acid sphingomyelinase. Cell. Physiol. Biochem. 2010 26 1 1 8 10.1159/000315100 20501999
    [Google Scholar]
  211. Li J. Liu K. Liu Y. Xu Y. Zhang F. Yang H. Liu J. Pan T. Chen J. Wu M. Zhou X. Yuan Z. Exosomes mediate the cell-to-cell transmission of IFN-α-induced antiviral activity. Nat. Immunol. 2013 14 8 793 803 10.1038/ni.2647 23832071
    [Google Scholar]
  212. Figuera-Losada M. Stathis M. Dorskind J.M. Thomas A.G. Bandaru V.V.R. Yoo S.W. Westwood N.J. Rogers G.W. McArthur J.C. Haughey N.J. Slusher B.S. Rojas C. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One 2015 10 5 e0124481 10.1371/journal.pone.0124481 26010541
    [Google Scholar]
  213. Kulshreshtha A. Singh S. Ahmad M. Khanna K. Ahmad T. Agrawal A. Ghosh B. Simvastatin mediates inhibition of exosome synthesis, localization and secretion via multicomponent interventions. Sci. Rep. 2019 9 1 16373 10.1038/s41598‑019‑52765‑7 31704996
    [Google Scholar]
  214. Nieland T.J.F. Chroni A. Fitzgerald M.L. Maliga Z. Zannis V.I. Kirchhausen T. Krieger M. Cross-inhibition of SR-BI- and ABCA1-mediated cholesterol transport by the small molecules BLT-4 and glyburide. J. Lipid Res. 2004 45 7 1256 1265 10.1194/jlr.M300358‑JLR200 15102890
    [Google Scholar]
  215. Aung T. Chapuy B. Vogel D. Wenzel D. Oppermann M. Lahmann M. Weinhage T. Menck K. Hupfeld T. Koch R. Trümper L. Wulf G.G. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc. Natl. Acad. Sci. USA 2011 108 37 15336 15341 10.1073/pnas.1102855108 21873242
    [Google Scholar]
  216. Siklos M. BenAissa M. Thatcher G.R.J. Cysteine proteases as therapeutic targets: Does selectivity matter? A systematic review of calpain and cathepsin inhibitors. Acta Pharm. Sin. B 2015 5 6 506 519 10.1016/j.apsb.2015.08.001 26713267
    [Google Scholar]
  217. Stratton D. Moore C. Zheng L. Lange S. Inal J. Prostate cancer cells stimulated by calcium-mediated activation of protein kinase C undergo a refractory period before re-releasing calcium-bearing microvesicles. Biochem. Biophys. Res. Commun. 2015 460 3 511 517 10.1016/j.bbrc.2015.03.061 25797625
    [Google Scholar]
  218. Sapet C. Simoncini S. Loriod B. Puthier D. Sampol J. Nguyen C. Dignat-George F. Anfosso F. Thrombin-induced endothelial microparticle generation: Identification of a novel pathway involving ROCK-II activation by caspase-2. Blood 2006 108 6 1868 1876 10.1182/blood‑2006‑04‑014175 16720831
    [Google Scholar]
  219. Li M. Yu D. Williams K.J. Liu M.L. Tobacco smoke induces the generation of procoagulant microvesicles from human monocytes/macrophages. Arterioscler. Thromb. Vasc. Biol. 2010 30 9 1818 1824 10.1161/ATVBAHA.110.209577 20558816
    [Google Scholar]
  220. Datta A. Kim H. Lal M. McGee L. Johnson A. Moustafa A.A. Jones J.C. Mondal D. Ferrer M. Abdel-Mageed A.B. Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Lett. 2017 408 73 81 10.1016/j.canlet.2017.08.020 28844715
    [Google Scholar]
  221. Savina A. Furlán M. Vidal M. Colombo M.I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 2003 278 22 20083 20090 10.1074/jbc.M301642200 12639953
    [Google Scholar]
  222. Sella A. Kilbourn R. Amato R. Bui C. Zukiwski A.A. Ellerhorst J. Logothetis C.J. Phase II study of ketoconazole combined with weekly doxorubicin in patients with androgen-independent prostate cancer. J. Clin. Oncol. 1994 12 4 683 688 10.1200/JCO.1994.12.4.683 7512126
    [Google Scholar]
  223. Im E.J. Lee C.H. Moon P.G. Rangaswamy G.G. Lee B. Lee J.M. Lee J.C. Jee J.G. Bae J.S. Kwon T.K. Kang K.W. Jeong M.S. Lee J.E. Jung H.S. Ro H.J. Jun S. Kang W. Seo S.Y. Cho Y.E. Song B.J. Baek M.C. Sulfisoxazole inhibits the secretion of small extracellular vesicles by targeting the endothelin receptor A. Nat. Commun. 2019 10 1 1387 10.1038/s41467‑019‑09387‑4 30918259
    [Google Scholar]
  224. Lee C.H. Bae J.H. Choe E.J. Park J.M. Park S.S. Cho H.J. Song B.J. Baek M.C. Macitentan improves antitumor immune responses by inhibiting the secretion of tumor-derived extracellular vesicle PD-L1. Theranostics 2022 12 5 1971 1987 10.7150/thno.68864 35265193
    [Google Scholar]
  225. Kim J.H. Lee C.H. Baek M.C. Dissecting exosome inhibitors: Therapeutic insights into small-molecule chemicals against cancer. Exp. Mol. Med. 2022 54 11 1833 1843 10.1038/s12276‑022‑00898‑7 36446847
    [Google Scholar]
  226. Kirchhausen T. Macia E. Pelish H.E. Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis. Methods Enzymol. 2008 438 77 93 10.1016/S0076‑6879(07)38006‑3 18413242
    [Google Scholar]
  227. Kosgodage U. Trindade R. Thompson P. Inal J. Lange S. Chloramidine/bisindolylmaleimide-I-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int. J. Mol. Sci. 2017 18 5 1007 10.3390/ijms18051007 28486412
    [Google Scholar]
  228. Bishop S.C. Burlison J.A. Blagg B.S. Hsp90: A novel target for the disruption of multiple signaling cascades. Curr. Cancer Drug Targets 2007 7 4 369 388 10.2174/156800907780809778 17979631
    [Google Scholar]
  229. Parmar D. Apte M. Angiopoietin inhibitors: A review on targeting tumor angiogenesis. Eur. J. Pharmacol. 2021 899 1 174021 10.1016/j.ejphar.2021.174021 33741382
    [Google Scholar]
  230. Sato Y. Molecular diagnosis of tumor angiogenesis and anti-angiogenic cancer therapy. Int. J. Clin. Oncol. 2003 8 4 200 206 10.1007/s10147‑003‑0342‑8 12955574
    [Google Scholar]
  231. Fu L.Q. Du W.L. Cai M.H. Yao J.Y. Zhao Y.Y. Mou X.Z. The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell. Immunol. 2020 353 104119 10.1016/j.cellimm.2020.104119 32446032
    [Google Scholar]
  232. Teleanu R.I. Chircov C. Grumezescu A.M. Teleanu D.M. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J. Clin. Med. 2019 9 1 84 10.3390/jcm9010084 31905724
    [Google Scholar]
  233. Jimenez C. Fazeli S. Román-Gonzalez A. Antiangiogenic therapies for pheochromocytoma and paraganglioma. Endocr. Relat. Cancer 2020 27 7 R239 R254 10.1530/ERC‑20‑0043 32369773
    [Google Scholar]
  234. Abdalla A.M.E. Xiao L. Ullah M.W. Yu M. Ouyang C. Yang G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics 2018 8 2 533 548 10.7150/thno.21674 29290825
    [Google Scholar]
  235. Li T. Kang G. Wang T. Huang H. Tumor angiogenesis and anti‑angiogenic gene therapy for cancer (Review). Oncol. Lett. 2018 16 1 687 702 10.3892/ol.2018.8733 29963134
    [Google Scholar]
  236. Zhao Y. Adjei A.A. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015 20 6 660 673 10.1634/theoncologist.2014‑0465 26001391
    [Google Scholar]
  237. Chamberlain M.C. Bevacizumab plus irinotecan in recurrent glioblastoma. J. Clin. Oncol. 2008 26 6 1012 1013 10.1200/JCO.2007.15.1605 18281677
    [Google Scholar]
  238. Shukla S. Robey R.W. Bates S.E. Ambudkar S.V. Sunitinib (Sutent, SU11248), a small-molecule receptor tyrosine kinase inhibitor, blocks function of the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and ABCG2. Drug Metab. Dispos. 2009 37 2 359 365 10.1124/dmd.108.024612 18971320
    [Google Scholar]
  239. Sternberg C.N. Davis I.D. Mardiak J. Szczylik C. Lee E. Wagstaff J. Barrios C.H. Salman P. Gladkov O.A. Kavina A. Zarbá J.J. Chen M. McCann L. Pandite L. Roychowdhury D.F. Hawkins R.E. Pazopanib in locally advanced or metastatic renal cell carcinoma: Results of a randomized phase III trial. J. Clin. Oncol. 2010 28 6 1061 1068 10.1200/JCO.2009.23.9764 20100962
    [Google Scholar]
  240. Sobrero A.F. Bruzzi P. Vatalanib in advanced colorectal cancer: Two studies with identical results. J. Clin. Oncol. 2011 29 15 1938 1940 10.1200/JCO.2010.33.2429 21464409
    [Google Scholar]
  241. Escudier B. Eisen T. Stadler W.M. Szczylik C. Oudard S. Siebels M. Negrier S. Chevreau C. Solska E. Desai A.A. Rolland F. Demkow T. Hutson T.E. Gore M. Freeman S. Schwartz B. Shan M. Simantov R. Bukowski R.M. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 2007 356 2 125 134 10.1056/NEJMoa060655 17215530
    [Google Scholar]
  242. Alberts S.R. Fitch T.R. Kim G.P. Morlan B.W. Dakhil S.R. Gross H.M. Nair S. Cediranib (AZD2171) in patients with advanced hepatocellular carcinoma: A phase II North Central Cancer Treatment Group Clinical Trial. Am. J. Clin. Oncol. 2012 35 4 329 333 10.1097/COC.0b013e3182118cdf 21422991
    [Google Scholar]
  243. Huynh H. Ngo V.C. Fargnoli J. Ayers M. Soo K.C. Koong H.N. Thng C.H. Ong H.S. Chung A. Chow P. Pollock P. Byron S. Tran E. Brivanib alaninate, a dual inhibitor of vascular endothelial growth factor receptor and fibroblast growth factor receptor tyrosine kinases, induces growth inhibition in mouse models of human hepatocellular carcinoma. Clin. Cancer Res. 2008 14 19 6146 6153 10.1158/1078‑0432.CCR‑08‑0509 18829493
    [Google Scholar]
  244. Awasthi N. Hinz S. Brekken R.A. Schwarz M.A. Schwarz R.E. Nintedanib, a triple angiokinase inhibitor, enhances cytotoxic therapy response in pancreatic cancer. Cancer Lett. 2015 358 1 59 66 10.1016/j.canlet.2014.12.027 25527450
    [Google Scholar]
  245. Brassard M. Rondeau G. Role of vandetanib in the management of medullary thyroid cancer. Biologics 2012 6 59 66 10.2147/BTT.S24220 22500115
    [Google Scholar]
  246. Van Cutsem E. Tabernero J. Lakomy R. Prenen H. Prausová J. Macarulla T. Ruff P. van Hazel G.A. Moiseyenko V. Ferry D. McKendrick J. Polikoff J. Tellier A. Castan R. Allegra C. Addition of aflibercept to fluorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J. Clin. Oncol. 2012 30 28 3499 3506 10.1200/JCO.2012.42.8201 22949147
    [Google Scholar]
  247. Ettrich T.J. Seufferlein T. Regorafenib. Recent Results Cancer Res. 2018 211 45 56 10.1007/978‑3‑319‑91442‑8_3 30069758
    [Google Scholar]
  248. Hudes G. Carducci M. Tomczak P. Dutcher J. Figlin R. Kapoor A. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. J. Urol. 2008 179 2 497 498
    [Google Scholar]
  249. Zhang Y. Liu G. Sun M. Lu X. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol. Med. 2020 17 1 32 43 10.20892/j.issn.2095‑3941.2019.0372 32296575
    [Google Scholar]
  250. Gregory A.D. McGarry Houghton A. Tumor-associated neutrophils: New targets for cancer therapy. Cancer Res. 2011 71 7 2411 2416 10.1158/0008‑5472.CAN‑10‑2583 21427354
    [Google Scholar]
  251. Ha H. Debnath B. Neamati N. Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics 2017 7 6 1543 1588 10.7150/thno.15625 28529637
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947341257241018150125
Loading
/content/journals/cctr/10.2174/0115733947341257241018150125
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test