Skip to content
2000
image of The Role of Long Non-coding RNA ZFAS1 in Gliomagenesis: A Scoping Review

Abstract

Background

Non-coding RNA species play important roles in biological mechanisms that regulate glioma initiation and progression. Recently, evidence suggested that ZNFX1 antisense RNA 1 (ZFAS1) has the ability to act as an oncogene or tumour suppressor, and so plays critical regulatory functions in the development and progression of many types of cancers such as lung, renal and hepatocarcinoma. The roles of ZFAS1 in glioma cancer are still unclear, and there are numerous potential pathways to explore.

Objective

The aim of this scoping review is to provide an overview of the role of ZFAS1 in gliomagenesis, outline existing research on its mechanisms in glioma, and identify any knowledge gaps.

Method

A literature search was carried out using Scopus, PubMed, and Web of Science (WoS) using a specified search string, and the data gathered was discussed and reported.

Results

This scoping review comprised five original research papers that study ZFAS1 and its roles in gliomagenesis. was found to be highly upregulated in glioma. and overall survival was revealed to be significantly associated with status and regulated via several pathways and interactions, such as miRNA signalling, Epithelial to Mesenchymal transition (EMT) and Notch signalling pathway. Furthermore, knockdown decreased cell proliferation, migration, and invasion while promoting cell death, implying that is involved in glioma cancer progression.

Conclusion

The evaluation of their diagnostic importance and therapeutic potential may aid in the development of novel therapies for glioma cancer.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947330587241104110434
2024-12-04
2025-05-30
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Campo E. Swerdlow S.H. Harris N.L. Pileri S. Stein H. Jaffe E.S. The 2008 WHO classification of lymphoid neoplasms and beyond: Evolving concepts and practical applications. Blood 2011 117 19 5019 5032 10.1182/blood‑2011‑01‑293050 21300984
    [Google Scholar]
  3. Louis D.N. Ohgaki H. Wiestler O.D. Cavenee W.K. Burger P.C. Jouvet A. Scheithauer B.W. Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007 114 2 97 109 10.1007/s00401‑007‑0243‑4 17618441
    [Google Scholar]
  4. Burić S.S. Podolski-Renić A. Dinić J. Stanković T. Jovanović M. Hadžić S. Ayuso J.M. Virumbrales-Muñoz M. Fernández L.J. Ochoa I. Pérez-García V.M. Pešić M. Modulation of antioxidant potential with coenzyme Q10 suppressed invasion of temozolomide-resistant rat glioma in vitro and in vivo. Oxid. Med. Cell. Longev. 2019 2019 1 14 10.1155/2019/3061607 30984333
    [Google Scholar]
  5. O’Brien S.J. Fiechter C. Burton J. Hallion J. Paas M. Patel A. Patel A. Rochet A. Scheurlen K. Gardner S. Eichenberger M. Sarojini H. Srivastava S. Rai S. Kalbfleisch T. Polk H.C. Jr Galandiuk S. Long non-coding RNA ZFAS1 is a major regulator of epithelial-mesenchymal transition through miR-200/ZEB1/E-cadherin, vimentin signaling in colon adenocarcinoma. Cell Death Discov. 2021 7 1 61 10.1038/s41420‑021‑00427‑x 33771981
    [Google Scholar]
  6. Birkó Z. Nagy B. Klekner Á. Virga J. Novel molecular markers in glioblastoma—Benefits of liquid biopsy. Int. J. Mol. Sci. 2020 21 20 7522 10.3390/ijms21207522 33053907
    [Google Scholar]
  7. Guttman M. Rinn J.L. Modular regulatory principles of large non-coding RNAs. Nature 2012 482 7385 339 346 10.1038/nature10887 22337053
    [Google Scholar]
  8. Katsushima K. Jallo G. Eberhart C.G. Perera R.J. Long non-coding RNAs in brain tumors. NAR Cancer 2021 3 1 zcaa041 10.1093/narcan/zcaa041 34316694
    [Google Scholar]
  9. Zottel A. Šamec N. Videtič Paska A. Jovčevska I. Coding of glioblastoma progression and therapy resistance through long noncoding RNAs. Cancers (Basel) 2020 12 7 1842 10.3390/cancers12071842 32650527
    [Google Scholar]
  10. Baspinar Y. Elmaci I. Ozpinar A. Altinoz M.A. Long non-coding RNA MALAT1 as a key target in pathogenesis of glioblastoma. Janus faces or Achilles’ heal? Gene 2020 739 144518 10.1016/j.gene.2020.144518 32119915
    [Google Scholar]
  11. Chen X. Li Y. Zuo C. Zhang K. Lei X. Wang J. Yang Y. Zhang J. Ma K. Wang S. Mu N. Yang C. Xian J. Feng H. Tang R. Chen T. Long non−coding RNA H19 regulates glioma cell growth and metastasis via miR-200a-mediated CDK6 and ZEB1 expression. Front. Oncol. 2021 11 757650 10.3389/fonc.2021.757650 34796112
    [Google Scholar]
  12. Wang X. Yu X. Xu H. Wei K. Wang S. Wang Y. Han J. Serum-derived extracellular vesicles facilitate temozolomide resistance in glioblastoma through a HOTAIR-dependent mechanism. Cell Death Dis. 2022 13 4 344 10.1038/s41419‑022‑04699‑8 35418162
    [Google Scholar]
  13. Dong D. Mu Z. Zhao C. Sun M. ZFAS1: A novel tumor-related long non-coding RNA. Cancer Cell Int. 2018 18 1 125 10.1186/s12935‑018‑0623‑y 30186041
    [Google Scholar]
  14. Su Y. Hou W. Zhang C. Ji P. Hu R. Zhang Q. Wang Y. Li P. Zhang H. Chen Y. Zhang X. Zhang M. Long non-coding RNA ZFAS1 regulates cell proliferation and invasion in cervical cancer via the miR-190a-3p/KLF6 axis. Bioengineered 2022 13 2 3840 3851 10.1080/21655979.2021.2022265 35112985
    [Google Scholar]
  15. Rao M. Xu S. Zhang Y. Liu Y. Luan W. Zhou J. Long non-coding RNA ZFAS1 promotes pancreatic cancer proliferation and metastasis by sponging miR-497-5p to regulate HMGA2 expression. Cell Death Dis. 2021 12 10 859 10.1038/s41419‑021‑04123‑7 34552050
    [Google Scholar]
  16. Wang L. Ruan Y. Wu X. Zhou X. lncRNA ZFAS1 promotes HMGCR mRNA stabilization via binding U2AF2 to modulate pancreatic carcinoma lipometabolism. J. Immunol. Res. 2022 2022 1 12 10.1155/2022/4163198 35846429
    [Google Scholar]
  17. Zhang B. Chen J. Cui M. Jiang Y. LncRNA ZFAS1/miR-1271-5p/HK2 promotes glioma development through regulating proliferation, migration, invasion and apoptosis. Neurochem. Res. 2020 45 12 2828 2839 10.1007/s11064‑020‑03131‑x 32964288
    [Google Scholar]
  18. Gao K. Ji Z. She K. Yang Q. Shao L. Long non-coding RNA ZFAS1 is an unfavourable prognostic factor and promotes glioma cell progression by activation of the Notch signaling pathway. Biomed. Pharmacother. 2017 87 555 560 10.1016/j.biopha.2017.01.014 28081466
    [Google Scholar]
  19. Lv Q.L. Chen S.H. Zhang X. Sun B. Hu L. Qu Q. Huang Y.T. Wang G.H. Liu Y.L. Zhang Y.Y. Zhou H.H. Upregulation of long noncoding RNA zinc finger antisense 1 enhances epithelial–mesenchymal transition in vitro and predicts poor prognosis in glioma. Tumour Biol. 2017 39 3 10.1177/1010428317695022 28349823
    [Google Scholar]
  20. Tricco A.C. Lillie E. Zarin W. O’Brien K.K. Colquhoun H. Levac D. Moher D. Peters M.D.J. Horsley T. Weeks L. Hempel S. Akl E.A. Chang C. McGowan J. Stewart L. Hartling L. Aldcroft A. Wilson M.G. Garritty C. Lewin S. Godfrey C.M. Macdonald M.T. Langlois E.V. Soares-Weiser K. Moriarty J. Clifford T. Tunçalp Ö. Straus S.E. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018 169 7 467 473 10.7326/M18‑0850 30178033
    [Google Scholar]
  21. Arksey H. O’Malley L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005 8 1 19 32 10.1080/1364557032000119616
    [Google Scholar]
  22. Li X. Luo Y. Liu L. Cui S. Chen W. Zeng A. Shi Y. Luo L. The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR‐150‐5p/PLP2 axis. J. Cell. Physiol. 2020 235 3 2937 2946 10.1002/jcp.29199 31535380
    [Google Scholar]
  23. Yang G. Han B. Feng T. ZFAS1 knockdown inhibits viability and enhances cisplatin cytotoxicity by up‐regulating miR‐432‐5p in glioma cells. Basic Clin. Pharmacol. Toxicol. 2019 125 6 518 526 10.1111/bcpt.13286 31246330
    [Google Scholar]
  24. Beylerli O. Gareev I. Sufianov A. Ilyasova T. Zhang F. The role of microRNA in the pathogenesis of glial brain tumors. Noncoding RNA Res. 2022 7 2 71 76 10.1016/j.ncrna.2022.02.005 35330864
    [Google Scholar]
  25. Li N. Sun Z.H. Fang M. Xin J.Y. Wan C.Y. Long non-coding RNA ZFAS1 sponges miR-486 to promote osteosarcoma cells progression and metastasis in vitro and vivo. Oncotarget 2017 8 61 104160 104170 10.18632/oncotarget.22032 29262629
    [Google Scholar]
  26. Salmena L. Poliseno L. Tay Y. Kats L. Pandolfi P.P. A ceRNA hypothesis: The Rosetta stone of a hidden RNA language? Cell 2011 146 3 353 358 10.1016/j.cell.2011.07.014 21802130
    [Google Scholar]
  27. Liang L. Zhang Z. Qin X. Gao Y. Zhao P. Liu J. Zeng W. Long noncoding RNA ZFAS1 promotes tumorigenesis through regulation of miR-150-5p/RAB9A in melanoma. Melanoma Res. 2019 29 6 569 581 10.1097/CMR.0000000000000595 30889053
    [Google Scholar]
  28. Zhang F. Li Y. Xu W. He L. Tan Y. Xu H. Long non-coding RNA ZFAS1 regulates the malignant progression of gastric cancer via the microRNA-200b-3p/Wnt1 axis. Biosci. Biotechnol. Biochem. 2019 83 7 1289 1299 10.1080/09168451.2019.1606697 30999814
    [Google Scholar]
  29. Dong D. Mu Z. Wei N. Sun M. Wang W. Xin N. Shao Y. Zhao C. Long non-coding RNA ZFAS1 promotes proliferation and metastasis of clear cell renal cell carcinoma via targeting miR-10a/SKA1 pathway. Biomed. Pharmacother. 2019 111 917 925 10.1016/j.biopha.2018.12.143 30841471
    [Google Scholar]
  30. Wang J.S. Liu Q.H. Cheng X.H. Zhang W.Y. Jin Y.C. The long noncoding RNA ZFAS1 facilitates bladder cancer tumorigenesis by sponging miR-329. Biomed. Pharmacother. 2018 103 174 181 10.1016/j.biopha.2018.04.031 29653362
    [Google Scholar]
  31. Xie S. Ge Q. Wang X. Sun X. Kang Y. Long non-coding RNA ZFAS1 sponges miR-484 to promote cell proliferation and invasion in colorectal cancer. Cell Cycle 2018 17 2 154 161 10.1080/15384101.2017.1407895 29179614
    [Google Scholar]
  32. Peng J. Liu F. Zheng H. Wu Q. Liu S. Long noncoding RNA ZFAS1 promotes tumorigenesis and metastasis in nasopharyngeal carcinoma by sponging miR‐892b to up‐regulate LPAR1 expression. J. Cell. Mol. Med. 2020 24 2 1437 1450 10.1111/jcmm.14823 31851778
    [Google Scholar]
  33. Peng J. Liu F. Zheng H. Wu Q. Liu S. IncRNA ZFAS1 contributes to the radioresistance of nasopharyngeal carcinoma cells by sponging hsa-miR-7-5p to upregulate ENO2. Cell Cycle 2021 20 1 126 141 10.1080/15384101.2020.1864128 33342344
    [Google Scholar]
  34. Chen Y.H. Hueng D.Y. Tsai W.C. Proteolipid protein 2 overexpression indicates aggressive tumor behavior and adverse prognosis in human gliomas. Int. J. Mol. Sci. 2018 19 11 3353 10.3390/ijms19113353 30373180
    [Google Scholar]
  35. Xia B. Hou Y. Chen H. Yang S. Liu T. Lin M. Lou G. Long non-coding RNA ZFAS1 interacts with miR-150-5p to regulate Sp1 expression and ovarian cancer cell malignancy. Oncotarget 2017 8 12 19534 19546 10.18632/oncotarget.14663 28099946
    [Google Scholar]
  36. Fan G. Jiao J. Shen F. Chu F. Upregulation of lncRNA ZFAS1 promotes lung adenocarcinoma progression by sponging miR-1271-5p and upregulating FRS2. Thorac. Cancer 2020 11 8 2178 2187 10.1111/1759‑7714.13525 32515146
    [Google Scholar]
  37. Ashique S. Bhowmick M. Pal R. Khatoon H. Kumar P. Sharma H. Garg A. Kumar S. Das U. Multi drug resistance in colorectal cancer- approaches to overcome, advancements and future success. Adv. Cancer Biol. Metastasis 2024 10 100114 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  38. Liu Y. Lu C. Zhou Y. Zhang Z. Sun L. Circular RNA hsa_circ_0008039 promotes breast cancer cell proliferation and migration by regulating miR-432-5p/E2F3 axis. Biochem. Biophys. Res. Commun. 2018 502 3 358 363 10.1016/j.bbrc.2018.05.166 29807010
    [Google Scholar]
  39. Zeisberg M. Neilson E.G. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Invest. 2009 119 6 1429 1437 10.1172/JCI36183 19487819
    [Google Scholar]
  40. Iwadate Y. Epithelial-mesenchymal transition in glioblastoma progression. Oncol. Lett. 2016 11 3 1615 1620 10.3892/ol.2016.4113 26998052
    [Google Scholar]
  41. Kalluri R. Weinberg R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 2009 119 6 1420 1428 10.1172/JCI39104 19487818
    [Google Scholar]
  42. Charles N.A. Holland E.C. Gilbertson R. Glass R. Kettenmann H. The brain tumor microenvironment. Glia 2011 59 8 1169 1180 10.1002/glia.21136 21446047
    [Google Scholar]
  43. Santamaría P.G. Mazón M.J. Eraso P. Portillo F. UPR: An upstream signal to EMT induction in cancer. J. Clin. Med. 2019 8 5 624 10.3390/jcm8050624 31071975
    [Google Scholar]
  44. Iser I.C. Pereira M.B. Lenz G. Wink M.R. The epithelial‐to‐mesenchymal transition‐like process in glioblastoma: An updated systematic review and in silico investigation. Med. Res. Rev. 2017 37 2 271 313 10.1002/med.21408 27617697
    [Google Scholar]
  45. Cheng J.T. Wang L. Wang H. Tang F.R. Cai W.Q. Sethi G. Xin H.W. Ma Z. Insights into biological role of lncRNAs in epithelial-mesenchymal transition. Cells 2019 8 10 1178 10.3390/cells8101178 31575017
    [Google Scholar]
  46. Kolenda T. Guglas K. Kopczyńska M. Teresiak A. Bliźniak R. Mackiewicz A. Lamperska K. Mackiewicz J. Oncogenic role of ZFAS1 lncrna in head and neck squamous cell carcinomas. Cells 2019 8 4 366 10.3390/cells8040366 31010087
    [Google Scholar]
  47. Zhuo W. Zeng Z. Hu Y. Hu P. Han S. Wang D. Wang F. Zhao Y. Huang Y. Wang J. Lv G. Wang H. Li Y. Zhao E. Cai K. Zhao G. Metabolic stress-induced reciprocal loop of long noncoding RNA ZFAS1 and ZEB1 promotes epithelial-mesenchymal transition and metastasis of pancreatic cancer cells. Cancer Sci. 2023 114 9 3623 3635 10.1111/cas.15905 37488751
    [Google Scholar]
  48. Andersson E.R. Sandberg R. Lendahl U. Notch signaling: Simplicity in design, versatility in function. Development 2011 138 17 3593 3612 10.1242/dev.063610 21828089
    [Google Scholar]
  49. Wang X. Yan Y. Zhang C. Wei W. Ai X. Pang Y. Bian Y. Upregulation of lncRNA PlncRNA-1 indicates the poor prognosis and promotes glioma progression by activation of Notch signal pathway. Biomed. Pharmacother. 2018 103 216 221 10.1016/j.biopha.2018.03.150 29653367
    [Google Scholar]
  50. Wu Q. Lu S. Zhang L. Zhao L. LncRNA HOXA-AS2 activates the notch pathway to promote cervical cancer cell proliferation and migration. Reprod. Sci. 2021 28 10 3000 3009 10.1007/s43032‑021‑00626‑y 34076871
    [Google Scholar]
  51. Lu S. Dong W. Zhao P. Liu Z. lncRNA FAM83H‑AS1 is associated with the prognosis of colorectal carcinoma and promotes cell proliferation by targeting the Notch signaling pathway. Oncol. Lett. 2017 15 2 1861 1868 10.3892/ol.2017.7520 29434883
    [Google Scholar]
  52. Xu P. Yu S. Jiang R. Kang C. Wang G. Jiang H. Pu P. Differential expression of Notch family members in astrocytomas and medulloblastomas. Pathol. Oncol. Res. 2009 15 4 703 710 10.1007/s12253‑009‑9173‑x 19424825
    [Google Scholar]
  53. Mutvei A.P. Fredlund E. Lendahl U. Frequency and distribution of Notch mutations in tumor cell lines. BMC Cancer 2015 15 1 311 10.1186/s12885‑015‑1278‑x 25907971
    [Google Scholar]
  54. Brzozowa-Zasada M. Piecuch A. Michalski M. Segiet O. Kurek J. Harabin-Słowińska M. Wojnicz R. Notch and its oncogenic activity in human malignancies. Eur. Surg. 2017 49 5 199 209 10.1007/s10353‑017‑0491‑z 29104587
    [Google Scholar]
  55. Yan Y. Xu Z. Li Z. Sun L. Gong Z. An insight into the increasing role of lncRNAs in the pathogenesis of gliomas. Front. Mol. Neurosci. 2017 10 53 10.3389/fnmol.2017.00053 28293170
    [Google Scholar]
  56. Zhang P. Meng X. Liu L. Li S. Li Y. Ali S. Li S. Xiong J. Liu X. Li S. Xia Q. Dong L. Identification of the prognostic signatures of glioma with different PTEN status. Front. Oncol. 2021 11 633357 10.3389/fonc.2021.633357 34336645
    [Google Scholar]
  57. Qin A. Musket A. Musich P.R. Schweitzer J.B. Xie Q. Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter? Neurooncol. Adv. 2021 3 1 vdab133 10.1093/noajnl/vdab133 34806012
    [Google Scholar]
  58. Li D. Xu D. Zhang Y. Chen P. Xie J. Effect of Notch1 signaling on cellular proliferation and apoptosis in human laryngeal carcinoma. World J. Surg. Oncol. 2022 20 1 262 10.1186/s12957‑022‑02728‑6 35982489
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947330587241104110434
Loading
/content/journals/cctr/10.2174/0115733947330587241104110434
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Glioma ; long non-coding RNA ; ZFAS1 ; ZNFX1 antisense RNA 1 ; Gliomagenesis ; cell death
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test