Skip to content
2000
image of Unveiling The Applications of Nanoparticles in Cancer Immunotherapy

Abstract

Cancer immunotherapy has proven its potential application by enhancing the capacity of the immune system to destroy cancer cells. However, several challenges, such as non-specific targeting, variability in clinical response, and therapeutic resistance, are associated with immunotherapy, making it less efficacious. Nanoparticles (NPs) as a drug delivery system provide additional advantages during immunotherapy by ensuring targeted delivery of antigens. NPs can also change the cancer environment through adjuvant delivery, forcing cancer cells to be destroyed. Here, several applications of NPs are summarized to help enhance the therapeutic values of immunotherapy through several mechanisms. This article outlines the important developments and possible applications of NPs to fully realize the promise of cancer immunotherapy, which will eventually open the door to more personalized and efficient cancer treatments.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947321690240902093508
2024-09-11
2024-10-14
Loading full text...

Full text loading...

References

  1. Yang M. Olaoba O.T. Zhang C. Kimchi E.T. Staveley-O’Carroll K.F. Li G. Cancer Immunotherapy and Delivery System: An Update. Pharmaceutics 2022 14 8 1630 10.3390/pharmaceutics14081630 36015256
    [Google Scholar]
  2. Muluh T.A. Chen Z. Li Y. Xiong K. Jin J. Fu S. Wu J. Enhancing cancer immunotherapy treatment goals by using nanoparticle delivery system. Int. J. Nanomedicine 2021 16 2389 2404 10.2147/IJN.S295300 33790556
    [Google Scholar]
  3. Duan C. Yu M. Xu J. Li B.Y. Zhao Y. Kankala R.K. Overcoming Cancer Multi-drug Resistance (MDR): Reasons, mechanisms, nanotherapeutic solutions, and challenges. Biomed. Pharmacother. 2023 162 114643 10.1016/j.biopha.2023.114643 37031496
    [Google Scholar]
  4. He Y. Zan J. He Z. Bai X. Shuai C. Pan H. A Photochemically Active Cu2O Nanoparticle Endows Scaffolds with Good Antibacterial Performance by Efficiently Generating Reactive Oxygen Species. Nanomaterials (Basel) 2024 14 5 452 10.3390/nano14050452 38470782
    [Google Scholar]
  5. Kumari L. Mishra L. Patel P. Sharma N. Gupta G.D. Kurmi B.D. Emerging targeted therapeutic strategies for the treatment of triple-negative breast cancer. J. Drug Target. 2023 31 9 889 907 10.1080/1061186X.2023.2245579 37539789
    [Google Scholar]
  6. Zheng D.W. Gao F. Cheng Q. Bao P. Dong X. Fan J.X. Song W. Zeng X. Cheng S.X. Zhang X.Z. A vaccine-based nanosystem for initiating innate immunity and improving tumor immunotherapy. Nat. Commun. 2020 11 1 1985 10.1038/s41467‑020‑15927‑0 32332752
    [Google Scholar]
  7. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  8. Finn O.J. Cancer Immunology. N. Engl. J. Med. 2008 358 25 2704 2715 10.1056/NEJMra072739 18565863
    [Google Scholar]
  9. Mattiuzzi C. Lippi G. Current cancer epidemiology. J. Epidemiol. Glob. Health 2019 9 4 217 222 10.2991/jegh.k.191008.001 31854162
    [Google Scholar]
  10. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  11. Yadav D. Puranik N. Meshram A. Chavda V. Lee P.C.W. Jin J.O. How Advanced are Cancer Immuno-Nanotherapeutics? A Comprehensive Review of the Literature. Int. J. Nanomedicine 2023 18 35 48 10.2147/IJN.S388349 36636642
    [Google Scholar]
  12. Koury J. Lucero M. Cato C. Chang L. Geiger J. Henry D. Hernandez J. Hung F. Kaur P. Teskey G. Tran A. Immunotherapies: Exploiting the immune system for cancer treatment. J. Immunol. Res. 2018 2018 1 16 10.1155/2018/9585614 29725606
    [Google Scholar]
  13. Sharma P. Otto M. Multifunctional nanocomposites modulating the tumor microenvironment for enhanced cancer immunotherapy. Bioact. Mater. 2024 31 440 462 10.1016/j.bioactmat.2023.08.022 37701452
    [Google Scholar]
  14. Debele T.A. Yeh C.F. Su W.P. Cancer immunotherapy and application of nanoparticles in cancers immunotherapy as the delivery of immunotherapeutic agents and as the immunomodulators. Cancers (Basel) 2020 12 12 3773 10.3390/cancers12123773 33333816
    [Google Scholar]
  15. Mohan S. Bhaskaran M. George A. Thirutheri A. Somasundaran M. Pavithran A. Immunotherapy in oral cancer. J. Pharm. Bioallied Sci. 2019 11 6 Suppl. 2 107 10.4103/JPBS.JPBS_31_19 31198321
    [Google Scholar]
  16. Avila J.P. Carvalho B.M. Coimbra E.C. A Comprehensive view of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and prospects for emerging therapeutic opportunities. Cancers (Basel) 2023 15 4 1333 10.3390/cancers15041333 36831674
    [Google Scholar]
  17. Sharma P. Wagner K. Wolchok J.D. Allison J.P. Novel cancer immunotherapy agents with survival benefit: Recent successes and next steps. Nat. Rev. Cancer 2011 11 11 805 812 10.1038/nrc3153 22020206
    [Google Scholar]
  18. Mahoney K.M. Rennert P.D. Freeman G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015 14 8 561 584 10.1038/nrd4591 26228759
    [Google Scholar]
  19. Hammer C. Mellman I. Coming of Age: Human Genomics and the Cancer–Immune Set Point. Cancer Immunol. Res. 2022 10 6 674 679 10.1158/2326‑6066.CIR‑21‑1017 35471657
    [Google Scholar]
  20. Patel M. Thakkar A. Bhatt P. Shah U. Patel A. Solanki N. Patel S. Patel S. Gandhi K. Patel B. Prominent Targets for Cancer Care: Immunotherapy Perspective. Curr. Cancer Ther. Rev. 2023 19 4 298 317 10.2174/1573394719666230306121408
    [Google Scholar]
  21. Marzuki N.F.N. Zakaria Y. Fatin N. Medicinal plants in the regulation of PD-L1/PD-1 Immune checkpoint of various human cancer cells: A Narrative review. Curr. Cancer Ther. Rev. 2023 19 2 117 131 10.2174/1573394718666220829125338
    [Google Scholar]
  22. Apavaloaei A. Hardy M.P. Thibault P. Perreault C. The origin and immune recognition of Tumor-Specific antigens. Cancers (Basel) 2020 12 9 2607 10.3390/cancers12092607 32932620
    [Google Scholar]
  23. Sharma A. Sharma N. Singh S. Dua K. Review on theranostic and neuroprotective applications of nanotechnology in multiple sclerosis. J. Drug Deliv. Sci. Technol. 2023 81 104220 10.1016/j.jddst.2023.104220
    [Google Scholar]
  24. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-Based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  25. Ashique S. Almohaywi B. Haider N. Yasmin S. Hussain A. Mishra N. Garg A. siRNA-based nanocarriers for targeted drug delivery to control breast cancer. Advances Cancer Biol. - Metast. 2022 4 100047 10.1016/j.adcanc.2022.100047
    [Google Scholar]
  26. Ashique S. Kumar S. Hussain A. Mishra N. Garg A. Gowda B.H.J. Farid A. Gupta G. Dua K. Taghizadeh-Hesary F. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J. Health Popul. Nutr. 2023 42 1 74 10.1186/s41043‑023‑00423‑0
    [Google Scholar]
  27. Cheng C.J. Tietjen G.T. Saucier-Sawyer J.K. Saltzman W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov. 2015 14 4 239 247 10.1038/nrd4503 25598505
    [Google Scholar]
  28. Ashique S. Upadhyay A. Hussain A. Bag S. Chaterjee D. Rihan M. Mishra N. Bhatt S. Puri V. Sharma A. Prasher P. Singh S.K. Chellappan D.K. Gupta G. Dua K. Green biogenic silver nanoparticles, therapeutic uses, recent advances, risk assessment, challenges, and future perspectives. J. Drug Deliv. Sci. Technol. 2022 77 103876 10.1016/j.jddst.2022.103876
    [Google Scholar]
  29. Nguyen T.L. Cha B.G. Choi Y. Im J. Kim J. Injectable dual-scale mesoporous silica cancer vaccine enabling efficient delivery of antigen/adjuvant-loaded nanoparticles to dendritic cells recruited in local macroporous scaffold. Biomaterials 2020 239 119859 10.1016/j.biomaterials.2020.119859 32070828
    [Google Scholar]
  30. Park Y.M. Lee S.J. Kim Y.S. Lee M.H. Cha G.S. Jung I.D. Kang T.H. Han H.D. Nanoparticle-based vaccine delivery for cancer immunotherapy. Immune Netw. 2013 13 5 177 183 10.4110/in.2013.13.5.177 24198742
    [Google Scholar]
  31. Pei M. Xu R. Zhang C. Wang X. Li C. Hu Y. Mannose-functionalized antigen nanoparticles for targeted dendritic cells, accelerated endosomal escape and enhanced MHC-I antigen presentation. Colloids Surf. B Biointerfaces 2021 197 111378 10.1016/j.colsurfb.2020.111378 33010719
    [Google Scholar]
  32. Kiaie S.H. Salehi-Shadkami H. Sanaei M.J. Azizi M. Shokrollahi Barough M. Nasr M.S. Sheibani M. Nano-immunotherapy: Overcoming delivery challenge of immune checkpoint therapy. J. Nanobiotechnol. 2023 21 1 339 10.1186/s12951‑023‑02083‑y 37735656
    [Google Scholar]
  33. Yadav D. Kwak M. Chauhan P.S. Puranik N. Lee P.C.W. Jin J.O. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials. Semin. Cancer Biol. 2022 86 Pt 2 909 922 10.1016/j.semcancer.2022.02.016 35181474
    [Google Scholar]
  34. Almeida J.P.M. Figueroa E.R. Drezek R.A. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 2014 10 3 503 514 10.1016/j.nano.2013.09.011 24103304
    [Google Scholar]
  35. Xu H.Z. Li T.F. Wang C. Ma Y. Liu Y. Zheng M.Y. Liu Z.J.Y. Chen J.B. Li K. Sun S.K. Komatsu N. Xu Y.H. Zhao L. Chen X. Synergy of nanodiamond–doxorubicin conjugates and PD-L1 blockade effectively turns tumor-associated macrophages against tumor cells. J. Nanobiotechnol. 2021 19 1 268 10.1186/s12951‑021‑01017‑w 34488792
    [Google Scholar]
  36. Havel J.J. Chowell D. Chan T.A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer 2019 19 3 133 150 10.1038/s41568‑019‑0116‑x 30755690
    [Google Scholar]
  37. Sanaei M.J. Pourbagheri-Sigaroodi A. Kaveh V. Abolghasemi H. Ghaffari S.H. Momeny M. Bashash D. Recent advances in immune checkpoint therapy in non-small cell lung cancer and opportunities for nanoparticle-based therapy. Eur. J. Pharmacol. 2021 909 174404 10.1016/j.ejphar.2021.174404 34363829
    [Google Scholar]
  38. Yang M. Li J. Gu P. Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact. Mater. 2021 6 7 1973 1987 10.1016/j.bioactmat.2020.12.010 33426371
    [Google Scholar]
  39. Raju G.S.R. Pavitra E. Varaprasad G.L. Bandaru S.S. Nagaraju G.P. Farran B. Huh Y.S. Han Y.K. Nanoparticles mediated tumor microenvironment modulation: Current advances and applications. J. Nanobiotechnol. 2022 20 1 274 10.1186/s12951‑022‑01476‑9 35701781
    [Google Scholar]
  40. Han S. Chi Y. Yang Z. Ma J. Wang L. Tumor microenvironment regulation and cancer targeting therapy based on nanoparticles. J. Funct. Biomater. 2023 14 3 136 10.3390/jfb14030136 36976060
    [Google Scholar]
  41. Chen L. Zhao R. Shen J. Liu N. Zheng Z. Miao Y. Zhu J. Zhang L. Wang Y. Fang H. Zhou J. Li M. Yang Y. Liu Z. Chen Q. Antibacterial fusobacterium nucleatum‐Mimicking nanomedicine to selectively eliminate Tumor‐Colonized bacteria and enhance immunotherapy against colorectal cancer. Adv. Mater. 2023 35 45 2306281 10.1002/adma.202306281 37722134
    [Google Scholar]
  42. Li J. Zhao M. Sun M. Wu S. Zhang H. Dai Y. Wang D. Multifunctional nanoparticles boost cancer immunotherapy based on modulating the immunosuppressive tumor microenvironment. ACS Appl. Mater. Interfaces 2020 12 45 50734 50747 10.1021/acsami.0c14909 33124808
    [Google Scholar]
  43. Mao Q. Min J. Zeng R. Liu H. Li H. Zhang C. Zheng A. Lin J. Liu X. Wu M. Self-assembled traditional Chinese nanomedicine modulating tumor immunosuppressive microenvironment for colorectal cancer immunotherapy. Theranostics 2022 12 14 6088 6105 10.7150/thno.72509 36168633
    [Google Scholar]
  44. Cevaal P.M. Ali A. Czuba-Wojnilowicz E. Symons J. Lewin S.R. Cortez-Jugo C. Caruso F. In Vivo T Cell-Targeting Nanoparticle Drug Delivery Systems: Considerations for Rational Design. ACS Nano 2021 15 3 3736 3753 10.1021/acsnano.0c09514 33600163
    [Google Scholar]
  45. Est-Witte S.E. Livingston N.K. Omotoso M.O. Green J.J. Schneck J.P. Nanoparticles for generating antigen-specific T cells for immunotherapy. Semin. Immunol. 2021 56 101541 10.1016/j.smim.2021.101541 34922816
    [Google Scholar]
  46. Perica K. Bieler J.G. Schütz C. Varela J.C. Douglass J. Skora A. Chiu Y.L. Oelke M. Kinzler K. Zhou S. Vogelstein B. Schneck J.P. Enrichment and Expansion with Nanoscale Artificial Antigen Presenting Cells for Adoptive Immunotherapy. ACS Nano 2015 9 7 6861 6871 10.1021/acsnano.5b02829 26171764
    [Google Scholar]
  47. Li W. Zhang X. Zhang C. Yan J. Hou X. Du S. Zeng C. Zhao W. Deng B. McComb D.W. Zhang Y. Kang D.D. Li J. Carson W.E. III Dong Y. Biomimetic nanoparticles deliver mRNAs encoding costimulatory receptors and enhance T cell mediated cancer immunotherapy. Nat. Commun. 2021 12 1 7264 10.1038/s41467‑021‑27434‑x 34907171
    [Google Scholar]
  48. Li F. Wang Y. Chen D. Du Y. Nanoparticle-Based immunotherapy for reversing T-Cell exhaustion. Int. J. Mol. Sci. 2024 25 3 1396 10.3390/ijms25031396 38338674
    [Google Scholar]
  49. Balakrishnan P.B. Sweeney E.E. Nanoparticles for enhanced adoptive T cell therapies and future perspectives for CNS tumors. Front. Immunol. 2021 12 600659 10.3389/fimmu.2021.600659 33833751
    [Google Scholar]
  50. Pardi N. Hogan M.J. Porter F.W. Weissman D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018 17 4 261 279 10.1038/nrd.2017.243 29326426
    [Google Scholar]
  51. Wang C. Sun W. Ye Y. Hu Q. Bomba H.N. Gu Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat. Biomed. Eng. 2017 1 2 0011 10.1038/s41551‑016‑0011 30214831
    [Google Scholar]
  52. Wang C. Ye Y. Hu Q. Bellotti A. Gu Z. Tailoring biomaterials for cancer immunotherapy: Emerging trends and future outlook. Adv. Mater. 2017 29 29 1606036 10.1002/adma.201606036 28556553
    [Google Scholar]
  53. Zhang J. Wang S. Zhang D. He X. Wang X. Han H. Qin Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front. Immunol. 2023 14 1230893 10.3389/fimmu.2023.1230893 37600822
    [Google Scholar]
  54. Sandeep D. AlSawaftah N.M. Husseini G.A. Immunoliposomes: Synthesis, Structure, and their Potential as Drug Delivery Carriers. Curr. Cancer Ther. Rev. 2020 16 4 306 319 10.2174/1573394716666200227095521
    [Google Scholar]
  55. Kranz L.M. Diken M. Haas H. Kreiter S. Loquai C. Reuter K.C. Meng M. Fritz D. Vascotto F. Hefesha H. Grunwitz C. Vormehr M. Hüsemann Y. Selmi A. Kuhn A.N. Buck J. Derhovanessian E. Rae R. Attig S. Diekmann J. Jabulowsky R.A. Heesch S. Hassel J. Langguth P. Grabbe S. Huber C. Türeci Ö. Sahin U. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016 534 7607 396 401 10.1038/nature18300 27281205
    [Google Scholar]
  56. Li Y. Xiao K. Luo J. Xiao W. Lee J.S. Gonik A.M. Kato J. Dong T.A. Lam K.S. Well-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel delivery. Biomaterials 2011 32 27 6633 6645 10.1016/j.biomaterials.2011.05.050 21658763
    [Google Scholar]
  57. He J. Liu S. Zhang Y. Chu X. Lin Z. Zhao Z. Qiu S. Guo Y. Ding H. Pan Y. Pan J. The application of and strategy for gold nanoparticles in cancer immunotherapy. Front. Pharmacol. 2021 12 687399 10.3389/fphar.2021.687399 34163367
    [Google Scholar]
  58. Wang C. Ye Y. Hochu G.M. Sadeghifar H. Gu Z. Enhanced cancer immunotherapy by microneedle Patch-Assisted delivery of Anti-PD1 antibody. Nano Lett. 2016 16 4 2334 2340 10.1021/acs.nanolett.5b05030 26999507
    [Google Scholar]
  59. García-Domínguez D.J. López-Enríquez S. Alba G. Garnacho C. Jiménez-Cortegana C. Flores-Campos R. de la Cruz-Merino L. Hajji N. Sánchez-Margalet V. Hontecillas-Prieto L. Cancer Nano-Immunotherapy: The novel and promising weapon to fight cancer. Int. J. Mol. Sci. 2024 25 2 1195 10.3390/ijms25021195 38256268
    [Google Scholar]
  60. Zhu X. Li S. Nanomaterials in tumor immunotherapy: New strategies and challenges. Mol. Cancer 2023 22 1 94 10.1186/s12943‑023‑01797‑9 37312116
    [Google Scholar]
  61. Yang Y. Zeng W. Huang P. Zeng X. Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2021 2 2 20200042 10.1002/VIW.20200042
    [Google Scholar]
  62. Wang L. Xu H. Weng L. Sun J. Jin Y. Xiao C. Activation of cancer immunotherapy by nanomedicine. Front. Pharmacol. 2022 13 1041073 10.3389/fphar.2022.1041073 36618938
    [Google Scholar]
  63. Sharma N. Kurmi B.D. Singh D. Mehan S. Khanna K. Karwasra R. Kumar S. Chaudhary A. Jakhmola V. Sharma A. Singh S.K. Dua K. Kakkar D. Nanoparticles toxicity: An overview of its mechanism and plausible mitigation strategies. J. Drug Target. 2024 32 5 457 469 10.1080/1061186X.2024.2316785 38328920
    [Google Scholar]
  64. Palaniappan K. Clinical progress in gold nanoparticle (GNP)-Mediated photothermal cancer therapy. Curr. Cancer Ther. Rev. 2023 19 1 13 18 10.2174/1573394718666220823154459
    [Google Scholar]
  65. Karwasra R. Fatihi S. Raza K. Singh S. Khanna K. Sharma S. Sharma N. Varma S. Filgrastim loading in PLGA and SLN nanoparticulate system: A bioinformatics approach. Drug Dev. Ind. Pharm. 2020 46 8 1354 1361 10.1080/03639045.2020.1788071 32643442
    [Google Scholar]
  66. Paresishvili T. Kakabadze Z. Challenges and opportunities associated with drug delivery for the treatment of solid tumors. Oncol. Rev. 2023 17 10577 10.3389/or.2023.10577 37711860
    [Google Scholar]
  67. Herdiana Y. Wathoni N. Shamsuddin S. Muchtaridi M. Scale-up polymeric-based nanoparticles drug delivery systems: Development and challenges. OpenNano 2022 7 100048 10.1016/j.onano.2022.100048
    [Google Scholar]
  68. Ashique S. Upadhyay A. Kumar N. Chauhan S. Mishra N. Metabolic syndromes responsible for cervical cancer and advancement of nanocarriers for efficient targeted drug delivery- A review. Advances Cancer Biol. - Metast. 2022 4 100041 10.1016/j.adcanc.2022.100041
    [Google Scholar]
  69. Sincere N. I. Anand K. Ashique S. Yang J. You C. PROTACs: Emerging Targeted Protein Degradation Approaches for Advanced Druggable Strategies. Molecules 2023 28 10 4014 10.3390/molecules28104014
    [Google Scholar]
  70. Ashique S. Afzal O. Hussain A. Zeyaullah M. Altamimi M.A. Mishra N. Ahmad M.F. Dua K. Altamimi A.S.A. Anand K. It’s all about plant derived natural phytoconstituents and phytonanomedicine to control skin cancer. J. Drug Deliv. Sci. Technol. 2023 84 104495 10.1016/j.jddst.2023.104495
    [Google Scholar]
  71. Ashique S. Garg A. Mishra N. Raina N. Ming L.C. Tulli H.S. Behl T. Rani R. Gupta M. Nano-mediated strategy for targeting and treatment of non-small cell lung cancer (NSCLC). Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 11 2769 2792 10.1007/s00210‑023‑02522‑5 37219615
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947321690240902093508
Loading
/content/journals/cctr/10.2174/0115733947321690240902093508
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test