Skip to content
2000
image of Liposomes in Anticancer Strategies

Abstract

Chemotherapy drugs are not fully selective for cancer cells - they can also destroy healthy cells. Recent advances in nanotechnology have offered hope to overcome this problem. Liposome carriers are widely studied for their use to deliver drugs and genes inside cancer cells. Gemini quaternary ammonium salts (QAS) show great application potential among lipid carriers. Structures made of Gemini surfactants are characterized by a lower critical micelle concentration (CMC) and higher effectiveness in lowering the surface tension compared to monomeric forms of this type of compound. Encapsulation of a drug or genetic material is one of the critical steps in the formation of liposomal carriers. This efficient process allows one to minimize the number of necessary liposomes capable of delivering a certain amount of active substance. Delivery of a liposome to a solid tumor depends on the physiological factors of the tumor - vascularity, lymphatic drainage, interstitial fluid pressure – and on the physicochemical properties of the carrier. Many nanoparticles for targeted drug delivery have been tested in animal studies but have not achieved satisfactory clinical success. Promising preclinical research results are not always reflected in the treatment of patients. Therefore, understanding the relationships governing the transport of the drug and the carrier to the cancer cell seems to be a key challenge in modern nanotechnology.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947312894240930110609
2024-10-10
2024-11-20
Loading full text...

Full text loading...

References

  1. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  2. Duong V.A. Nguyen T.T.L. Maeng H.J. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics 2023 15 1 207 10.3390/pharmaceutics15010207 36678838
    [Google Scholar]
  3. Fulton M.D. Najahi-Missaoui W. Liposomes in cancer therapy: How did we start and where are we now. Int. J. Mol. Sci. 2023 24 7 6615 10.3390/ijms24076615 37047585
    [Google Scholar]
  4. Rommasi F. Esfandiari N. Liposomal nanomedicine: Applications for drug delivery in cancer therapy. Nanoscale Res. Lett. 2021 16 1 95 10.1186/s11671‑021‑03553‑8 34032937
    [Google Scholar]
  5. Akkewar A. Mahajan N. Kharwade R. Gangane P. Liposomes in the targeted gene therapy of cancer: A critical review. Curr. Drug Deliv. 2023 20 4 350 370 10.2174/1567201819666220421113127 35593362
    [Google Scholar]
  6. Gu Z. Da Silva C. Van der Maaden K. Ossendorp F. Cruz L. Liposome-based drug delivery systems in cancer immunotherapy. Pharmaceutics 2020 12 11 1054 10.3390/pharmaceutics12111054 33158166
    [Google Scholar]
  7. Dymek M. Sikora E. Liposomes as biocompatible and smart delivery systems – The current state. Adv. Colloid Interface Sci. 2022 309 102757 10.1016/j.cis.2022.102757 36152374
    [Google Scholar]
  8. Guerrero-Hernández L. Meléndez-Ortiz H.I. Cortez-Mazatan G.Y. Vaillant-Sánchez S. Peralta-Rodríguez R.D. Gemini and bicephalous surfactants: A review on their synthesis, micelle formation, and uses. Int. J. Mol. Sci. 2022 23 3 1798 10.3390/ijms23031798 35163721
    [Google Scholar]
  9. Pisárčik M. Polakovičová M. Markuliak M. Lukáč M. Devínsky F. Self-assembly properties of cationic gemini surfactants with biodegradable groups in the spacer. Molecules 2019 24 8 1481 10.3390/molecules24081481 30991746
    [Google Scholar]
  10. Al Badri Y.N. Chaw C.S. Elkordy A.A. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics 2023 15 1 294 10.3390/pharmaceutics15010294 36678922
    [Google Scholar]
  11. Obłąk E. Piecuch A. Rewak-Soroczyńska J. Paluch E. Activity of gemini quaternary ammonium salts against microorganisms. Appl. Microbiol. Biotechnol. 2019 103 2 625 632 10.1007/s00253‑018‑9523‑2 30460534
    [Google Scholar]
  12. Nakhaei P. Margiana R. Bokov D.O. Abdelbasset W.K. Jadidi Kouhbanani M.A. Varma R.S. Marofi F. Jarahian M. Beheshtkhoo N. RETRACTED: Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol. 2021 9 705886 10.3389/fbioe.2021.705886 34568298
    [Google Scholar]
  13. Aguirre-Ramírez M. Silva-Jiménez H. Banat I.M. Díaz De Rienzo M.A. Surfactants: Physicochemical interactions with biological macromolecules. Biotechnol. Lett. 2021 43 3 523 535 10.1007/s10529‑020‑03054‑1 33534014
    [Google Scholar]
  14. Singer O.M. Campbell J.W. Hoare J.G. Masuda J.D. Marangoni G. Singer R.D. Improved green synthesis and crystal structures of symmetrical cationic gemini surfactants. ACS Omega 2022 7 39 35326 35330 10.1021/acsomega.2c05073 36211064
    [Google Scholar]
  15. Anchev B.A. Tsekova D.S. Mircheva K.M. Grozev N.A. Monolayer formed by l -Asp-based gemini surfactants self-assembled in 1D nanostructures. RSC Advances 2019 9 57 33071 33079 10.1039/C9RA06390K 35529116
    [Google Scholar]
  16. Brycki B. Szulc A. Babkova M. Synthesis of silver nanoparticles with gemini surfactants as efficient capping and stabilizing agents. Appl. Sci. 2020 11 1 154 10.3390/app11010154
    [Google Scholar]
  17. Azum N. Rub M.A. Khan A. Alotaibi M.M. Asiri A.M. Rahman M.M. Mixed micellization, thermodynamic and adsorption behavior of tetracaine hydrochloride in the presence of cationic gemini/conventional surfactants. Gels 2022 8 2 128 10.3390/gels8020128 35200509
    [Google Scholar]
  18. Liu C. Zhang L. Zhu W. Guo R. Sun H. Chen X. Deng N. Barriers and strategies of cationic liposomes for cancer gene therapy. Mol. Ther. Methods Clin. Dev. 2020 18 751 764 10.1016/j.omtm.2020.07.015 32913882
    [Google Scholar]
  19. Pisani S. Di Martino D. Cerri S. Genta I. Dorati R. Bertino G. Benazzo M. Conti B. Investigation and comparison of active and passive encapsulation methods for loading proteins into liposomes. Int. J. Mol. Sci. 2023 24 17 13542 10.3390/ijms241713542 37686348
    [Google Scholar]
  20. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  21. Sur S. Fries A.C. Kinzler K.W. Zhou S. Vogelstein B. Remote loading of preencapsulated drugs into stealth liposomes. Proc. Natl. Acad. Sci. USA 2014 111 6 2283 2288 10.1073/pnas.1324135111 24474802
    [Google Scholar]
  22. Amarandi R.M. Ibanescu A. Carasevici E. Marin L. Dragoi B. Liposomal-based formulations: A path from basic research to temozolomide delivery inside glioblastoma tissue. Pharmaceutics 2022 14 2 308 10.3390/pharmaceutics14020308 35214041
    [Google Scholar]
  23. Roberts S.A. Lee C. Singh S. Agrawal N. Versatile encapsulation and synthesis of potent liposomes by thermal equilibration. Membranes 2022 12 3 319 10.3390/membranes12030319 35323794
    [Google Scholar]
  24. Xu Z. Chen X. Tan T. Wu S. Zhang J. Zhou G. Anionic Gemini surfactant: A novel cation responsive system based on fluorescence quenching mechanism. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 236 118327 10.1016/j.saa.2020.118327
    [Google Scholar]
  25. Wang Z. Li C. Sun W. Accelerated self-assembled nanomicelles for enhanced hypoxic tumor therapy via magnetic navigation. ACS Appl. Mater. Interfaces 2022 14 2 2324 2337 10.1021/acsami.1c18878
    [Google Scholar]
  26. Ibrahim M. Abuwatfa W.H. Awad N.S. Sabouni R. Husseini G.A. Encapsulation, release, and cytotoxicity of doxorubicin loaded in liposomes, micelles, and metal-organic frameworks: A review. Pharmaceutics 2022 14 2 254 10.3390/pharmaceutics14020254 35213987
    [Google Scholar]
  27. Kher C. Kumar S. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review. Cureus 2022 14 9 e29059 10.7759/cureus.29059 36259014
    [Google Scholar]
  28. Amin M. Seynhaeve A.L.B. Sharifi M. Falahati M. ten Hagen T.L.M. Liposomal drug delivery systems for cancer therapy: The rotterdam experience. Pharmaceutics 2022 14 10 2165 10.3390/pharmaceutics14102165 36297598
    [Google Scholar]
  29. Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med. 2021 11 8 771 10.3390/jpm11080771 34442415
    [Google Scholar]
  30. Leporatti S. Thinking about enhanced permeability and retention effect (EPR). J. Pers. Med. 2022 12 8 1259 10.3390/jpm12081259 36013208
    [Google Scholar]
  31. Maeda H. The 35th anniversary of the discovery of epr effect: A new wave of nanomedicines for tumor-targeted drug delivery—personal remarks and future prospects. J. Pers. Med. 2021 11 3 229 10.3390/jpm11030229 33810037
    [Google Scholar]
  32. Golombek S.K. May J.N. Theek B. Appold L. Drude N. Kiessling F. Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018 130 17 38 10.1016/j.addr.2018.07.007 30009886
    [Google Scholar]
  33. Subhan M.A. Parveen F. Filipczak N. Yalamarty S.S.K. Torchilin V.P. Approaches to improve EPR-based drug delivery for cancer therapy and diagnosis. J. Pers. Med. 2023 13 3 389 10.3390/jpm13030389 36983571
    [Google Scholar]
  34. Wei K. Faraj Y. Yao G. Xie R. Lai B. Strategies for improving perovskite photocatalysts reactivity for organic pollutants degradation: A review on recent progress. Chem. Eng. J. 2021 414 128783 10.1016/j.cej.2021.128783
    [Google Scholar]
  35. Ashique S. Bhowmick M. Pal R. Khatoon H. Kumar P. Sharma H. Garg A. Kumar S. Das U. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. Adv. Cancer Biol. Metastasis 2024 10 100114 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  36. Lee H.J. Huang Y.W. Chiou S.H. Aronstam R.S. Polyhistidine facilitates direct membrane translocation of cell-penetrating peptides into cells. Sci. Rep. 2019 9 1 9398 10.1038/s41598‑019‑45830‑8 31253836
    [Google Scholar]
  37. Cheng Y. Ou Z. Li Q. Yang J. Hu M. Zhou Y. Zhuang X. Zhang Z. Guan S. Cabazitaxel liposomes with aptamer modification enhance tumor‑targeting efficacy in nude mice. Mol. Med. Rep. 2018 19 1 490 498 10.3892/mmr.2018.9689 30483775
    [Google Scholar]
  38. Wang Y. Yu L. Han L. Sha X. Zeng L. Li L. In vitro and in vivo studies on the complexes of cationic liposomes and PEG-modified poly (amidoamine) dendrimers as potential carriers for gene delivery. J. Control. Release 2005 110 2 323 336 10.1016/j.jconrel.2005.09.039 16290118
    [Google Scholar]
  39. Boix-Montesinos P. Soriano-Teruel P.M. Armiñán A. Orzáez M. Vicent M.J. The past, present, and future of breast cancer models for nanomedicine development. Adv. Drug Deliv. Rev. 2021 173 306 330 10.1016/j.addr.2021.03.018 33798642
    [Google Scholar]
  40. Kumar P. Pandey S.N. Ahmad F. Verma A. Sharma H. Ashique S. Bhattacharyya S.P. Bhattacharyya I. Kumar S. Mishra N. Garg A. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2024 20 6 769 800 10.2174/0115734137271865231105070727
    [Google Scholar]
  41. Karmacharya M. Kumar S. Cho Y.K. Tuning the extracellular vesicles membrane through fusion for biomedical applications. J. Funct. Biomater. 2023 14 2 117 10.3390/jfb14020117 36826916
    [Google Scholar]
  42. Cardoso R.V. Pereira P.R. Freitas C.S. Paschoalin V.M.F. Trends in drug delivery systems for natural bioactive molecules to treat health disorders: The importance of nano-liposomes. Pharmaceutics 2022 14 12 2808 10.3390/pharmaceutics14122808 36559301
    [Google Scholar]
  43. Qiu C Xia F Zhang J Shi Q Meng Y Wang C Pang H Gu L Xu C Guo Q Wang J. Advanced strategies for overcoming endosomal/lysosomal barrier in nanodrug delivery. Research (Wash D C) 2023 6 0148
    [Google Scholar]
  44. Roy S. Ho J.C.S. Teo D.L.C. Gupta S. Nallani M. Biomimetic stratum corneum liposome models: Lamellar organization and permeability studies. Membranes 2023 13 2 135 10.3390/membranes13020135 36837639
    [Google Scholar]
  45. Chien P.Y. Wang J. Carbonaro D. Lei S. Miller B. Sheikh S. Ali S.M. Ahmad M.U. Ahmad I. Novel cationic cardiolipin analogue-based liposome for efficient DNA and small interfering RNA delivery in vitro and in vivo. Cancer Gene Ther. 2005 12 3 321 328 10.1038/sj.cgt.7700793 15578064
    [Google Scholar]
  46. A M G. O O K. A S N. L i V. v A S. L A K. e A E. v v S. U A B. Yu L S. N e S. M R K. e M. Transfection efficacy and drug release depends upon the PEG derivative in cationic lipoplexes: Evaluation in 3D in vitro model and in vivo. J. Biomed. Mater. Res. B Appl. Biomater. 2023 111 9 1614 1628 10.1002/jbm.b.35259 37132593
    [Google Scholar]
  47. Zakharova L.Y. Pashirova T.N. Doktorovova S. Fernandes A.R. Sanchez-Lopez E. Silva A.M. Souto S.B. Souto E.B. Cationic surfactants: Self-assembly, structure-activity correlation and their biological applications. Int. J. Mol. Sci. 2019 20 22 5534 10.3390/ijms20225534 31698783
    [Google Scholar]
  48. Yadav M.R. Kumar M. Murumkar P.R. Further studies on cationic gemini amphiphiles as carriers for gene delivery─the effect of linkers in the structure and other factors affecting the transfection efficacy of these amphiphiles. ACS Omega 2021 6 49 33370 33388 10.1021/acsomega.1c03667 34926887
    [Google Scholar]
  49. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  50. Allahou L.W. Madani S.Y. Seifalian A. Investigating the application of liposomes as drug delivery systems for the diagnosis and treatment of cancer. Int. J. Biomater. 2021 2021 1 16 10.1155/2021/3041969 34512761
    [Google Scholar]
  51. Park K. Facing the truth about nanotechnology in drug delivery. ACS Nano 2013 7 9 7442 7447 10.1021/nn404501g 24490875
    [Google Scholar]
  52. Torrice M. Does nanomedicine have a delivery problem? ACS Cent. Sci. 2016 2 7 434 437 10.1021/acscentsci.6b00190 27504489
    [Google Scholar]
  53. Gustafson H.H. Holt-Casper D. Grainger D.W. Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015 10 4 487 510 10.1016/j.nantod.2015.06.006 26640510
    [Google Scholar]
  54. Fam S.Y. Chee C.F. Yong C.Y. Ho K.L. Mariatulqabtiah A.R. Tan W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials 2020 10 4 787 10.3390/nano10040787 32325941
    [Google Scholar]
  55. Hoshyar N. Gray S. Han H. Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 2016 11 6 673 692 10.2217/nnm.16.5 27003448
    [Google Scholar]
  56. Sadat S.M.A. Jahan S.T. Haddadi A. Effects of size and surface charge of polymeric nanoparticles on <i>in vitro</i> and <i>in vivo</i> applications. J. Biomater. Nanobiotechnol. 2016 7 2 91 108 10.4236/jbnb.2016.72011
    [Google Scholar]
  57. Padín-González E. Lancaster P. Bottini M. Gasco P. Tran L. Fadeel B. Wilkins T. Monopoli M.P. Understanding the role and impact of poly (Ethylene Glycol) (PEG) on nanoparticle formulation: Implications for covid-19 vaccines. Front. Bioeng. Biotechnol. 2022 10 882363 10.3389/fbioe.2022.882363 35747492
    [Google Scholar]
  58. Suk JS Xu Q Kim N Hanes J Ensign LM PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016 99 Pt A 28 51 10.1016/j.addr.2015.09.012
    [Google Scholar]
  59. Nie S. Understanding and overcoming major barriers in cancer nanomedicine. Nanomedicine 2010 5 4 523 528 10.2217/nnm.10.23 20528447
    [Google Scholar]
  60. Papini E. Tavano R. Mancin F. Opsonins and dysopsonins of nanoparticles: Facts, concepts, and methodological guidelines. Front. Immunol. 2020 11 567365 10.3389/fimmu.2020.567365 33154748
    [Google Scholar]
  61. Kreuter J. The influence of coatings with surfactants on the body distribution of nanoparticles after intravenous injection to rats. Clin. Mater. 1993 13 1-4 131 134 10.1016/0267‑6605(93)90099‑S
    [Google Scholar]
  62. Yingchoncharoen P. Kalinowski D.S. Richardson D.R. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacol. Rev. 2016 68 3 701 787 10.1124/pr.115.012070 27363439
    [Google Scholar]
  63. Solaro R. Chiellini F. Battisti A. Targeted delivery of protein drugs by nanocarriers. Materials 2010 3 3 1928 1980 10.3390/ma3031928
    [Google Scholar]
  64. Ahmad J. Akhter S. Greig N.H. Kamal M.A. Midoux P. Pichon C. Engineered nanoparticles against MDR in cancer: The state of the art and its prospective. Curr. Pharm. Des. 2016 22 28 4360 4373 10.2174/1381612822666160617112111 27319945
    [Google Scholar]
  65. Waghray D. Zhang Q. Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment. J. Med. Chem. 2018 61 12 5108 5121 10.1021/acs.jmedchem.7b01457 29251920
    [Google Scholar]
  66. Huang Y. Cole S.P.C. Cai T. Cai Y. Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol. Lett. 2016 12 1 11 15 10.3892/ol.2016.4596 27347092
    [Google Scholar]
  67. Wang Y.F. Liu L. Xue X. Liang X.J. Nanoparticle-based drug delivery systems: What can they really do in vivo? F1000 Res. 2017 6 681 10.12688/f1000research.9690.1 28620465
    [Google Scholar]
  68. Li X. Jia X. Niu H. Nanostructured lipid carriers co-delivering lapachone and doxorubicin for overcoming multidrug resistance in breast cancer therapy. Int. J. Nanomedicine 2018 13 4107 4119 10.2147/IJN.S163929 30034236
    [Google Scholar]
  69. Mercado-Lubo R. Zhang Y. Zhao L. Rossi K. Wu X. Zou Y. Castillo A. Leonard J. Bortell R. Greiner D.L. Shultz L.D. Han G. McCormick B.A. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours. Nat. Commun. 2016 7 1 12225 10.1038/ncomms12225 27452236
    [Google Scholar]
  70. Lou L. Zhang P. Piao R. Wang Y. Salmonella pathogenicity Island 1 (SPI-1) and its complex regulatory network. Front. Cell. Infect. Microbiol. 2019 9 270 10.3389/fcimb.2019.00270 31428589
    [Google Scholar]
  71. Darwin K.H. Miller V.L. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 1999 12 3 405 428 10.1128/CMR.12.3.405 10398673
    [Google Scholar]
  72. Raffatellu M. Wilson R.P. Chessa D. Andrews-Polymenis H. Tran Q.T. Lawhon S. Khare S. Adams L.G. Bäumler A.J. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. Infect. Immun. 2005 73 1 146 154 10.1128/IAI.73.1.146‑154.2005 15618149
    [Google Scholar]
  73. Din F. Aman W. Ullah I. Qureshi O.S. Mustapha O. Shafique S. Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 2017 12 7291 7309 10.2147/IJN.S146315 29042776
    [Google Scholar]
  74. Edis Z. Wang J. Waqas M.K. Ijaz M. Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives. Int. J. Nanomedicine 2021 16 1313 1330 10.2147/IJN.S289443 33628022
    [Google Scholar]
  75. Hossain S. Chowdhury E.H. Akaike T. Nanoparticles and toxicity in therapeutic delivery: The ongoing debate. Ther. Deliv. 2011 2 2 125 132 10.4155/tde.10.109 22833937
    [Google Scholar]
  76. Sharma S. Parveen R. Chatterji B.P. Toxicology of nanoparticles in drug delivery. Curr. Pathobiol. Rep. 2021 9 4 133 144 10.1007/s40139‑021‑00227‑z 34840918
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947312894240930110609
Loading
/content/journals/cctr/10.2174/0115733947312894240930110609
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test