Skip to content
2000
image of Modulation of Intestinal Flora as an Emerging Therapeutic Approach for the Treatment of Colon Cancer

Abstract

The five-year survival rate for people with colon cancer has increased explosively over the last two decades due to major advances in treatment. Colon cancer survival rates have improved significantly over the past few decades, with some of this success owing to aggressive surgical care and breakthroughs in other complementary treatments. As a new option for Colorectal Cancer (CRC) patients, targeted therapy has been shown to be effective in extending the overall life. A dramatic increase in the number of novel drugs targeting multiple key pathways and immunological checkpoints has been observed after the success of cetuximab (an EGFR inhibitor) and bevacizumab (an anti-angiogenic agent). Neutralizing an already present dysbiosis in the gut microbiome is a novel strategy for combating colorectal cancer and its metastases. Several methods have been employed to date, such as prebiotics, postbiotics, antibiotics, and the transplantation of faecal microbiota. An overview of the epidemiological study and possible mechanisms of colon cancer is presented in this review. We have covered a wide range of targeted treatments for CRC in addition to diagnostic biomarkers as therapeutic targets.

Loading

Article metrics loading...

/content/journals/cctr/10.2174/0115733947302126240924050845
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. Jia S.N. Han Y.B. Yang R. Yang Z.C. Chemokines in colon cancer progression. Semin. Cancer Biol. 2022 86 Pt 3 400 407 10.1016/j.semcancer.2022.02.007 35183412
    [Google Scholar]
  2. Rawla P. Sunkara T. Barsouk A. Epidemiology of colorectal cancer: Incidence, mortality, survival, and risk factors. Prz. Gastroenterol. 2019 14 2 89 103 10.5114/pg.2018.81072 31616522
    [Google Scholar]
  3. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  4. Kijima S. Sasaki T. Nagata K. Utano K. Lefor A.T. Sugimoto H. Preoperative evaluation of colorectal cancer using CT colonography, MRI, and PET/CT. World J. Gastroenterol. 2014 20 45 16964 16975 10.3748/wjg.v20.i45.16964 25493009
    [Google Scholar]
  5. Nie Q. Peng W.W. Wang Y. Zhong L. Zhang X. Zeng L. β-catenin correlates with the progression of colon cancers and berberine inhibits the proliferation of colon cancer cells by regulating the β-catenin signaling pathway. Gene 2022 818 146207 10.1016/j.gene.2022.146207 35063579
    [Google Scholar]
  6. Luo C. Cen S. Ding G. Wu W. Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options. Cancer Commun. 2019 39 1 1 13 10.1186/s40880‑019‑0361‑0 30922401
    [Google Scholar]
  7. Sheng H. Wei X. Mao M. He J. Luo T. Lu S. Zhou L. Huang Z. Yang A. Adenocarcinoma with mixed subtypes is a rare but aggressive histologic subtype in colorectal cancer. BMC Cancer 2019 19 1 1071 10.1186/s12885‑019‑6245‑5 31703713
    [Google Scholar]
  8. Park P.Y. Goldin T. Chang J. Markman M. Kundranda M.N. Signet-ring cell carcinoma of the colon: A case report and review of the literature. Case Rep. Oncol. 2015 8 3 466 471 10.1159/000441772 26600781
    [Google Scholar]
  9. Remo A. Fassan M. Vanoli A. Bonetti L.R. Barresi V. Tatangelo F. Gafà R. Giordano G. Pancione M. Grillo F. Mastracci L. Morphology and molecular features of rare colorectal carcinoma histotypes. Cancers 2019 11 7 1036 10.3390/cancers11071036 31340478
    [Google Scholar]
  10. Fares J. Fares M.Y. Khachfe H.H. Salhab H.A. Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020 5 1 28 10.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  11. Sawicki T. Ruszkowska M. Danielewicz A. Niedźwiedzka E. Arłukowicz T. Przybyłowicz K.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 2021 13 9 2025 10.3390/cancers13092025 33922197
    [Google Scholar]
  12. Valderrama-Treviño AI Barrera-Mera B Ceballos-Villalva JC Montalvo-Javé EE Hepatic metastasis from colorectal cancer. Euroasian J. Hepato-Gastroenterol. 2017 7 2 166 175 10.5005/jp‑journals‑10018‑1241
    [Google Scholar]
  13. Augestad K.M. Bakaki P.M. Rose J. Crawshaw B.P. Lindsetmo R.O. Dørum L.M. Koroukian S.M. Delaney C.P. Metastatic spread pattern after curative colorectal cancer surgery. A retrospective, longitudinal analysis. Cancer Epidemiol. 2015 39 5 734 744 10.1016/j.canep.2015.07.009 26277328
    [Google Scholar]
  14. Pretzsch E. Bösch F. Neumann J. Ganschow P. Bazhin A. Guba M. Werner J. Angele M. Mechanisms of metastasis in colorectal cancer and metastatic organotropism: Hematogenous versus peritoneal spread. J. Oncol. 2019 2019 1 13 10.1155/2019/7407190 31641356
    [Google Scholar]
  15. Kranenburg O. Speeten K. Hingh I. Peritoneal metastases from colorectal cancer: Defining and addressing the challenges. Front. Oncol. 2021 11 650098 10.3389/fonc.2021.650098 33816304
    [Google Scholar]
  16. Jelski W. Mroczko B. Biochemical markers of colorectal cancer – Present and future. Cancer Manag. Res. 2020 12 4789 4797 10.2147/CMAR.S253369 32606968
    [Google Scholar]
  17. Bonde A. Smith D.A. Kikano E. Yoest J.M. Tirumani S.H. Ramaiya N.H. Overview of serum and tissue markers in colorectal cancer: A primer for radiologists. Abdom. Radiol. 2021 46 12 5521 5535 10.1007/s00261‑021‑03243‑0 34415413
    [Google Scholar]
  18. Xing H. Wang J. Wang Y. Tong M. Hu H. Huang C. Diagnostic value of CA 19-9 and carcinoembryonic antigen for pancreatic cancer: A meta-analysis. Gastroenterol. Res. Pract. 2018 8704751
    [Google Scholar]
  19. Elessawi D.F. Alkady M.M. Ibrahim I.M. Diagnostic and prognostic value of serum IL-23 in colorectal cancer. Arab J. Gastroenterol. 2019 20 2 65 68 10.1016/j.ajg.2019.05.002 31155425
    [Google Scholar]
  20. Kotzev A.I. Draganov P.V. Carbohydrate antigen 19-9, carcinoembryonic antigen, and carbohydrate antigen 72-4 in gastric cancer: Is the old band still playing? Gastrointest. Tumors 2018 5 1-2 1 13 10.1159/000488240 30574476
    [Google Scholar]
  21. Kuipers E.J. Grady W.M. Lieberman D. Seufferlein T. Sung J.J. Boelens P.G. van de Velde C.J.H. Watanabe T. Colorectal cancer. Nat. Rev. Dis. Primers 2015 1 1 15065 10.1038/nrdp.2015.65 27189416
    [Google Scholar]
  22. Yuan H. Ma Q. Ye L. Piao G. The traditional medicine and modern medicine from natural products. Molecules 2016 21 5 559 10.3390/molecules21050559 27136524
    [Google Scholar]
  23. Zhai M. Gong P. Li H. Peng J. Xu W. Song S. Liu X. Liu J. Liu J. Liu Z. Metastable interface biomimetic synthesis of a smart nanosystem for enhanced starvation/gas therapy. J. Colloid Interface Sci. 2021 599 149 157 10.1016/j.jcis.2021.04.042 33940438
    [Google Scholar]
  24. Peng J. Gong P. Li S. Kong F. Ge X. Wang B. Guo L. Liu Z. You J. A smart bioresponsive nanosystem with dual-modal imaging for drug visual loading and targeted delivery. Chem. Eng. J. 2020 391 123619 [Internet]. 10.1016/j.cej.2019.123619
    [Google Scholar]
  25. Peng J. Gong P. Song S. Zhao K. Zheng X. Liu J. Liu Z. Biomineralized synthesis of a smart O2-regenerating nanoreactor for highly efficient starvation/gas therapy. Mater. Sci. Eng. C 2021 126 112132 10.1016/j.msec.2021.112132 34082949
    [Google Scholar]
  26. Bhaskaran N.A. Kumar L. Treating colon cancers with a non-conventional yet strategic approach: An overview of various nanoparticulate systems. J. Control. Release 2021 336 16 39 10.1016/j.jconrel.2021.06.008 34118336
    [Google Scholar]
  27. Wang T. Zhang Y. Taaffe D.R. Kim J.S. Luo H. Yang L. Fairman C.M. Qiao Y. Newton R.U. Galvão D.A. Protective effects of physical activity in colon cancer and underlying mechanisms: A review of epidemiological and biological evidence. Crit. Rev. Oncol. Hematol. 2022 a 170 103578 10.1016/j.critrevonc.2022.103578 35007701
    [Google Scholar]
  28. Kasi A. Handa S. Bhatti S. Umar S. Bansal A. Sun W. Molecular pathogenesis and classification of colorectal carcinoma. Curr. Colorectal Cancer Rep. 2020 16 5 97 106 10.1007/s11888‑020‑00458‑z 32905465
    [Google Scholar]
  29. Azzouz L.L. Sharma S. Physiology, large intestine. StatPearls. Treasure Island, FL StatPearls Publishing 2022
    [Google Scholar]
  30. Saridaki Z. Souglakos J. Genetic alterations in colorectal cancer in older patients. Management of Colorectal Cancers in Older People. Springer. London 2013 9 20 10.1007/978‑0‑85729‑984‑0_2
    [Google Scholar]
  31. Compton C.C. Colorectal carcinoma: Diagnostic, prognostic, and molecular features. Mod. Pathol. 2003 16 4 376 388 10.1097/01.MP.0000062859.46942.93 12692203
    [Google Scholar]
  32. Simmang C.L. Huber P.J. Chapter 64 - management of cancer of the colon (including adjuvant therapy). Delaney CPBT-CT in C and RS Mosby Philadelphia 2005 379 388
    [Google Scholar]
  33. Bosman F.T. Yan P. The many faces of colorectal cancer. Pathobiology of Human Disease Academic Press San Diego 2014 10.1016/B978‑0‑12‑386456‑7.03810‑7
    [Google Scholar]
  34. Keighley M.R. Williams N.S. Church J.M. Pahlman L. Scholefield J.H. Colorectal cancer: Epidemiology, aetiology, pathology, staging systems, clinical features, diagnosis. W.B. Saunders Edinburgh 2008 979 1027
    [Google Scholar]
  35. Petras R.E. Frankel W.L. Large Intestine (Colon). Weidner N, Cote RJ, Suster S, Weiss LMBT-MSP. Chapter 23 Second E. Philadelphia W.B. Saunders 2009 755 836
    [Google Scholar]
  36. Bansal M. Singh N. Pal S. Dev I. Ansari K.M. Chapter three - Chemopreventive role of dietary phytochemicals in colorectal cancer. Advances in Molecular Toxicology Elsevier 2018 12 69 121
    [Google Scholar]
  37. Smit W.L. Spaan C.N. Johannes de Boer R. Ramesh P. Martins Garcia T. Meijer B.J. Vermeulen J.L.M. Lezzerini M. MacInnes A.W. Koster J. Medema J.P. van den Brink G.R. Muncan V. Heijmans J. Driver mutations of the adenoma-carcinoma sequence govern the intestinal epithelial global translational capacity. Proc. Natl. Acad. Sci. USA 2020 117 41 25560 25570 10.1073/pnas.1912772117 32989144
    [Google Scholar]
  38. Safiejko K. Tarkowski R. Koselak M. Juchimiuk M. Tarasik A. Pruc M. Smereka J. Szarpak L. Robotic-assisted vs. Standard laparoscopic surgery for rectal cancer resection: A systematic review and meta-analysis of 19,731 patients. Cancers 2021 14 1 180 10.3390/cancers14010180 35008344
    [Google Scholar]
  39. Dawson H. Kirsch R. Messenger D. Driman D. A review of current challenges in colorectal cancer reporting. Arch. Pathol. Lab. Med. 2019 143 7 869 882 10.5858/arpa.2017‑0475‑RA 30672337
    [Google Scholar]
  40. Hu T. Li Z. Gao C.Y. Cho C.H. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J. Gastroenterol. 2016 22 30 6876 6889 10.3748/wjg.v22.i30.6876 27570424
    [Google Scholar]
  41. Malki A. ElRuz R.A. Gupta I. Allouch A. Vranic S. Al Moustafa A.E. Molecular mechanisms of colon cancer progression and metastasis: Recent insights and advancements. Int. J. Mol. Sci. 2020 22 1 130 10.3390/ijms22010130 33374459
    [Google Scholar]
  42. Hagland H.R. Berg M. Jolma I.W. Carlsen A. Søreide K. Molecular pathways and cellular metabolism in colorectal cancer. Dig. Surg. 2013 30 1 12 25 10.1159/000347166 23595116
    [Google Scholar]
  43. Yamagishi H. Kuroda H. Imai Y. Hiraishi H. Molecular pathogenesis of sporadic colorectal cancers. Chin. J. Cancer 2016 35 1 4 10.1186/s40880‑015‑0066‑y 26738600
    [Google Scholar]
  44. Müller M.F. Ibrahim A.E.K. Arends M.J. Molecular pathological classification of colorectal cancer. Virchows Arch. 2016 469 2 125 134 10.1007/s00428‑016‑1956‑3 27325016
    [Google Scholar]
  45. Pino M.S. Chung D.C. The chromosomal instability pathway in colon cancer. Gastroenterology 2010 138 6 2059 2072 10.1053/j.gastro.2009.12.065 20420946
    [Google Scholar]
  46. Migliore L. Migheli F. Spisni R. Coppedè F. Genetics, cytogenetics, and epigenetics of colorectal cancer. J. Biomed. Biotechnol. 2011 792362
    [Google Scholar]
  47. Aghabozorgi A.S. Bahreyni A. Soleimani A. Bahrami A. Khazaei M. Ferns G.A. Avan A. Hassanian S.M. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; Current status and perspectives. Biochimie 2019 157 64 71 10.1016/j.biochi.2018.11.003 30414835
    [Google Scholar]
  48. Yang V.W. APC as a checkpoint gene: The beginning or the end? Gastroenterology 2002 123 3 935 939 10.1053/gast.2002.35773 12198717
    [Google Scholar]
  49. Feldman M. Hershkovitz I. Sklan E.H. Kahila Bar-Gal G. Pap I. Szikossy I. Rosin-Arbesfeld R. Detection of a tumor suppressor gene variant predisposing to colorectal cancer in an 18th century hungarian mummy. PLoS One 2016 11 2 e0147217 10.1371/journal.pone.0147217 26863316
    [Google Scholar]
  50. Preisler L. Habib A. Shapira G. Kuznitsov-Yanovsky L. Mayshar Y. Carmel-Gross I. Malcov M. Azem F. Shomron N. Kariv R. Hershkovitz D. Ben-Yosef D. Heterozygous APC germline mutations impart predisposition to colorectal cancer. Sci. Rep. 2021 11 1 5113 10.1038/s41598‑021‑84564‑4 33664379
    [Google Scholar]
  51. Nazemalhosseini Mojarad E. Kuppen P.J. Aghdaei H.A. Zali M.R. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol. Hepatol. Bed Bench 2013 6 3 120 128 24834258
    [Google Scholar]
  52. Advani S.M. Advani P. DeSantis S.M. Brown D. VonVille H.M. Lam M. Loree J.M. Mehrvarz Sarshekeh A. Bressler J. Lopez D.S. Daniel C.R. Swartz M.D. Kopetz S. Clinical, pathological, and molecular characteristics of CpG island methylator phenotype in colorectal cancer: A systematic review and meta-analysis. Transl. Oncol. 2018 11 5 1188 1201 10.1016/j.tranon.2018.07.008 30071442
    [Google Scholar]
  53. Jia M. Gao X. Zhang Y. Hoffmeister M. Brenner H. Different definitions of CpG island methylator phenotype and outcomes of colorectal cancer: A systematic review. Clin. Epigenetics 2016 8 1 25 10.1186/s13148‑016‑0191‑8 26941852
    [Google Scholar]
  54. Advani S.M. Advani P.S. Brown D.W. DeSantis S.M. Korphaisarn K. VonVille H.M. Bressler J. Lopez D.S. Davis J.S. Daniel C.R. Sarshekeh A.M. Braithwaite D. Swartz M.D. Kopetz S. Global differences in the prevalence of the CpG island methylator phenotype of colorectal cancer. BMC Cancer 2019 19 1 964 10.1186/s12885‑019‑6144‑9 31623592
    [Google Scholar]
  55. Zhang X. Zhang W. Cao P. Advances in CpG island methylator phenotype colorectal cancer therapies. Front. Oncol. 2021 11 629390 10.3389/fonc.2021.629390 33718206
    [Google Scholar]
  56. Roman-Gomez J. Jimenez-Velasco A. Agirre X. Prosper F. Heiniger A. Torres A. Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J. Clin. Oncol. 2005 23 28 7043 7049 10.1200/JCO.2005.01.4944 16192589
    [Google Scholar]
  57. Curtin K. Slattery M.L. Samowitz W.S. CpG island methylation in colorectal cancer: Past, present and future. Pathol. Res. Int. 2011 902674
    [Google Scholar]
  58. Smith G. Carey F.A. Beattie J. Wilkie M.J.V. Lightfoot T.J. Coxhead J. Garner R.C. Steele R.J.C. Wolf C.R. Mutations in APC, Kirsten-ras, and p53—alternative genetic pathways to colorectal cancer. Proc. Natl. Acad. Sci. USA 2002 99 14 9433 9438 10.1073/pnas.122612899 12093899
    [Google Scholar]
  59. Roberti M.P. Rauber C. Kroemer G. Zitvogel L. Impact of the ileal microbiota on colon cancer. Semin. Cancer Biol. 2021 34624451
    [Google Scholar]
  60. Mackowiak P.A. Recycling metchnikoff: Probiotics, the intestinal microbiome and the quest for long life. Front. Public Health 2013 1 52 10.3389/fpubh.2013.00052 24350221
    [Google Scholar]
  61. Fong W. Li Q. Yu J. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer. Oncogene 2020 39 26 4925 4943 10.1038/s41388‑020‑1341‑1 32514151
    [Google Scholar]
  62. Gibson G.R. Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995 125 6 1401 1412 10.1093/jn/125.6.1401 7782892
    [Google Scholar]
  63. Gibson G.R. Hutkins R. Sanders M.E. Prescott S.L. Reimer R.A. Salminen S.J. Scott K. Stanton C. Swanson K.S. Cani P.D. Verbeke K. Reid G. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017 14 8 491 502 10.1038/nrgastro.2017.75 28611480
    [Google Scholar]
  64. Gill P. Staudacher H.M. Are postbiotics key to the potential benefits of fermented foods? Lancet Gastroenterol. Hepatol. 2023 8 6 509 10.1016/S2468‑1253(23)00120‑6
    [Google Scholar]
  65. Nigam M. Panwar A.S. Singh R.K. Orchestrating the fecal microbiota transplantation: Current technological advancements and potential biomedical application. Frontiers in Medical Technology 2022 4 961569 10.3389/fmedt.2022.961569 36212607
    [Google Scholar]
  66. Zappavigna S. Cossu A.M. Grimaldi A. Bocchetti M. Ferraro G.A. Nicoletti G.F. Filosa R. Caraglia M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci. 2020 21 7 2605 10.3390/ijms21072605 32283655
    [Google Scholar]
  67. Tinsley H.N. Grizzle W.E. Abadi A. Keeton A. Zhu B. Xi Y. Piazza G.A. New NSAID targets and derivatives for colorectal cancer chemoprevention. Recent Results Cancer Res. 2013 191 105 120 10.1007/978‑3‑642‑30331‑9_6 22893202
    [Google Scholar]
  68. Kolawole O.R. Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int. J. Mol. Sci. 2022 23 3 1432 10.3390/ijms23031432 35163356
    [Google Scholar]
  69. Finetti F. Travelli C. Ercoli J. Colombo G. Buoso E. Trabalzini L. Prostaglandin E2 and cancer: Insight into tumor progression and immunity. Biology 2020 9 12 434 10.3390/biology9120434 33271839
    [Google Scholar]
  70. Jara-Gutiérrez Á. Baladrón V. The role of prostaglandins in different types of cancer. Cells 2021 10 6 1487 10.3390/cells10061487 34199169
    [Google Scholar]
  71. Jeon S.M. Shin E.A. Exploring vitamin D metabolism and function in cancer. Exp. Mol. Med. 2018 50 4 1 14 10.1038/s12276‑018‑0038‑9 29657326
    [Google Scholar]
  72. Karpisheh V. Joshi N. Zekiy A.O. Beyzai B. Hojjat-Farsangi M. Namdar A. Edalati M. Jadidi-Niaragh F. EP4 receptor as a novel promising therapeutic target in colon cancer. Pathol. Res. Pract. 2020 216 12 153247 10.1016/j.prp.2020.153247 33190014
    [Google Scholar]
  73. Konya V. Marsche G. Schuligoi R. Heinemann A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol. Ther. 2013 138 3 485 502 10.1016/j.pharmthera.2013.03.006 23523686
    [Google Scholar]
  74. Oneda E. Zaniboni A. Adjuvant treatment of colon cancer with microsatellite instability – the state of the art. Crit. Rev. Oncol. Hematol. 2022 169 103537 10.1016/j.critrevonc.2021.103537 34801698
    [Google Scholar]
  75. Cohen M.H. Gootenberg J. Keegan P. Pazdur R. FDA drug approval summary: Bevacizumab plus FOLFOX4 as second-line treatment of colorectal cancer. Oncologist 2007 12 3 356 361 10.1634/theoncologist.12‑3‑356 17405901
    [Google Scholar]
  76. Verdaguer H. Tabernero J. Macarulla T. Ramucirumab in metastatic colorectal cancer: Evidence to date and place in therapy. Ther. Adv. Med. Oncol. 2016 8 3 230 242 10.1177/1758834016635888 27239240
    [Google Scholar]
  77. Lenz H.J. Cetuximab in the management of colorectal cancer. Biologics 2007 1 2 77 91 19707318
    [Google Scholar]
  78. Cai W.Q. Zeng L.S. Wang L.F. Wang Y.Y. Cheng J.T. Zhang Y. Han Z.W. Zhou Y. Huang S.L. Wang X.W. Peng X.C. Xiang Y. Ma Z. Cui S.Z. Xin H.W. The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front. Oncol. 2020 10 1249 10.3389/fonc.2020.01249 32793499
    [Google Scholar]
  79. García-Foncillas J. Sunakawa Y. Aderka D. Wainberg Z. Ronga P. Witzler P. Stintzing S. Distinguishing features of cetuximab and panitumumab in colorectal cancer and other solid tumors. Front. Oncol. 2019 9 849 10.3389/fonc.2019.00849 31616627
    [Google Scholar]
  80. Sarshekeh A.M. Overman M.J. Kopetz S. Nivolumab in the treatment of microsatellite instability high metastatic colorectal cancer. Future Oncol. 2018 14 18 1869 1874 10.2217/fon‑2017‑0696 29473436
    [Google Scholar]
  81. Casak S.J. Marcus L. Fashoyin-Aje L. Mushti S.L. Cheng J. Shen Y.L. Pierce W.F. Her L. Goldberg K.B. Theoret M.R. Kluetz P.G. Pazdur R. Lemery S.J. FDA approval summary: Pembrolizumab for the first-line treatment of patients with MSI-H/dMMR advanced unresectable or metastatic colorectal carcinoma. Clin. Cancer Res. 2021 27 17 4680 4684 10.1158/1078‑0432.CCR‑21‑0557 33846198
    [Google Scholar]
  82. DeStefano Shields C.E. Van Meerbeke S.W. Housseau F. Wang H. Huso D.L. Casero R.A. Jr O’Hagan H.M. Sears C.L. Reduction of murine colon tumorigenesis driven by enterotoxigenic Bacteroides fragilis using cefoxitin treatment. J. Infect. Dis. 2016 214 1 122 129 10.1093/infdis/jiw069 26908749
    [Google Scholar]
  83. Geller L.T. Barzily-Rokni M. Danino T. Jonas O.H. Shental N. Nejman D. Gavert N. Zwang Y. Cooper Z.A. Shee K. Thaiss C.A. Reuben A. Livny J. Avraham R. Frederick D.T. Ligorio M. Chatman K. Johnston S.E. Mosher C.M. Brandis A. Fuks G. Gurbatri C. Gopalakrishnan V. Kim M. Hurd M.W. Katz M. Fleming J. Maitra A. Smith D.A. Skalak M. Bu J. Michaud M. Trauger S.A. Barshack I. Golan T. Sandbank J. Flaherty K.T. Mandinova A. Garrett W.S. Thayer S.P. Ferrone C.R. Huttenhower C. Bhatia S.N. Gevers D. Wargo J.A. Golub T.R. Straussman R. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 2017 357 6356 1156 1160 10.1126/science.aah5043 28912244
    [Google Scholar]
  84. Kim S.K. Cho S.W. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front. Pharmacol. 2022 13 868695 10.3389/fphar.2022.868695 35685630
    [Google Scholar]
  85. Daillère R. Vétizou M. Waldschmitt N. Yamazaki T. Isnard C. Poirier-Colame V. Duong C.P.M. Flament C. Lepage P. Roberti M.P. Routy B. Jacquelot N. Apetoh L. Becharef S. Rusakiewicz S. Langella P. Sokol H. Kroemer G. Enot D. Roux A. Eggermont A. Tartour E. Johannes L. Woerther P.L. Chachaty E. Soria J.C. Golden E. Formenti S. Plebanski M. Madondo M. Rosenstiel P. Raoult D. Cattoir V. Boneca I.G. Chamaillard M. Zitvogel L. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 2016 45 4 931 943 10.1016/j.immuni.2016.09.009 27717798
    [Google Scholar]
  86. Van Cutsem E. Köhne C.H. Hitre E. Zaluski J. Chang Chien C.R. Makhson A. D’Haens G. Pintér T. Lim R. Bodoky G. Roh J.K. Folprecht G. Ruff P. Stroh C. Tejpar S. Schlichting M. Nippgen J. Rougier P. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N. Engl. J. Med. 2009 360 14 1408 1417 10.1056/NEJMoa0805019 19339720
    [Google Scholar]
  87. Leowattana W. Leowattana P. Leowattana T. Systemic treatment for metastatic colorectal cancer. World J. Gastroenterol. 2023 29 10 1569 1588 10.3748/wjg.v29.i10.1569 36970592
    [Google Scholar]
  88. Morris V.K. Kennedy E.B. Baxter N.N. Benson A.B. III Cercek A. Cho M. Ciombor K.K. Cremolini C. Davis A. Deming D.A. Fakih M.G. Gholami S. Hong T.S. Jaiyesimi I. Klute K. Lieu C. Sanoff H. Strickler J.H. White S. Willis J.A. Eng C. Treatment of metastatic colorectal cancer: ASCO guideline. J. Clin. Oncol. 2023 41 3 678 700 10.1200/JCO.22.01690 36252154
    [Google Scholar]
  89. Wang Z. Qin B.D. Ye C.Y. Wang M.M. Yuan L.Y. Dai W.P. Sun L. Liu K. Qin W.X. Jiao X.D. Li X.N. Zang Y.S. Cetuximab and vemurafenib plus FOLFIRI (5-fluorouracil/leucovorin/irinotecan) for BRAF V600E-mutated advanced colorectal cancer (IMPROVEMENT): An open-label, single-arm, phase II trial. Eur. J. Cancer 2022 163 152 162 10.1016/j.ejca.2021.12.028 35074651
    [Google Scholar]
  90. Yuan C. Ng K. Vitamin D supplementation: A potential therapeutic agent for metastatic colorectal cancer. Br. J. Cancer 2020 123 8 1205 1206 10.1038/s41416‑020‑0958‑8 32624575
    [Google Scholar]
  91. Casak S.J. Horiba M.N. Yuan M. Cheng J. Lemery S.J. Shen Y.L. Fu W. Moore J.N. Li Y. Bi Y. Auth D. Fesenko N. Kluetz P.G. Pazdur R. Fashoyin-Aje L.A. FDA approval summary: Tucatinib with trastuzumab for advanced unresectable or metastatic, chemotherapy refractory, HER2 -positive RAS wild-type colorectal cancer. Clin. Cancer Res. 2023 29 21 4326 4330 10.1158/1078‑0432.CCR‑23‑1041 37318379
    [Google Scholar]
  92. Koroukian S.M. Booker B.D. Vu L. Schumacher F.R. Rose J. Cooper G.S. Selfridge J.E. Markt S.C. Receipt of targeted therapy and survival outcomes in patients with metastatic colorectal cancer. JAMA Netw. Open 2023 6 1 e2250030 10.1001/jamanetworkopen.2022.50030 36656585
    [Google Scholar]
  93. Corcoran R.B. André T. Atreya C.E. Schellens J.H.M. Yoshino T. Bendell J.C. Hollebecque A. McRee A.J. Siena S. Middleton G. Muro K. Gordon M.S. Tabernero J. Yaeger R. O’Dwyer P.J. Humblet Y. De Vos F. Jung A.S. Brase J.C. Jaeger S. Bettinger S. Mookerjee B. Rangwala F. Van Cutsem E. Combined BRAF, EGFR, and MEK inhibition in patients with BRAF(V600E)-mutant colorectal cancer. Cancer Discov. 2018 8 4 428 443 10.1158/2159‑8290.CD‑17‑1226 29431699
    [Google Scholar]
  94. Sartore-Bianchi A. Trusolino L. Martino C. Bencardino K. Lonardi S. Bergamo F. Zagonel V. Leone F. Depetris I. Martinelli E. Troiani T. Ciardiello F. Racca P. Bertotti A. Siravegna G. Torri V. Amatu A. Ghezzi S. Marrapese G. Palmeri L. Valtorta E. Cassingena A. Lauricella C. Vanzulli A. Regge D. Veronese S. Comoglio P.M. Bardelli A. Marsoni S. Siena S. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept, multicentre, open-label, phase 2 trial. Lancet Oncol. 2016 17 6 738 746 10.1016/S1470‑2045(16)00150‑9 27108243
    [Google Scholar]
  95. Sclafani F. Kim T.Y. Cunningham D. Kim T.W. Tabernero J. Schmoll H.J. Roh J.K. Kim S.Y. Park Y.S. Guren T.K. Hawkes E. Clarke S.J. Ferry D. Frödin J.E. Ayers M. Nebozhyn M. Peckitt C. Loboda A. Mauro D.J. Watkins D.J. A randomized phase II/III study of dalotuzumab in combination with cetuximab and irinotecan in chemorefractory, KRAS wild-type, metastatic colorectal cancer. J. Natl. Cancer Inst. 2015 107 12 djv258 10.1093/jnci/djv258 26405092
    [Google Scholar]
  96. Reidy D.L. Vakiani E. Fakih M.G. Saif M.W. Hecht J.R. Goodman-Davis N. Hollywood E. Shia J. Schwartz J. Chandrawansa K. Dontabhaktuni A. Youssoufian H. Solit D.B. Saltz L.B. Randomized, phase II study of the insulin-like growth factor-1 receptor inhibitor IMC-A12, with or without cetuximab, in patients with cetuximab- or panitumumab-refractory metastatic colorectal cancer. J. Clin. Oncol. 2010 28 27 4240 4246 10.1200/JCO.2010.30.4154 20713879
    [Google Scholar]
  97. Tabernero J. Yoshino T. Cohn A.L. Obermannova R. Bodoky G. Garcia-Carbonero R. Ciuleanu T.E. Portnoy D.C. Van Cutsem E. Grothey A. Prausová J. Garcia-Alfonso P. Yamazaki K. Clingan P.R. Lonardi S. Kim T.W. Simms L. Chang S.C. Nasroulah F. RAISE Study Investigators Ramucirumab versus placebo in combination with second-line FOLFIRI in patients with metastatic colorectal carcinoma that progressed during or after first-line therapy with bevacizumab, oxaliplatin, and a fluoropyrimidine (RAISE): A randomised, double-blind, multicentre, phase 3 study. Lancet Oncol. 2015 16 5 499 508 10.1016/S1470‑2045(15)70127‑0 25877855
    [Google Scholar]
  98. Louis P. Hold G.L. Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014 12 10 661 672 10.1038/nrmicro3344 25198138
    [Google Scholar]
  99. Suh S.H. Choe K. Hong S.P. Jeong S. Mäkinen T. Kim K.S. Alitalo K. Surh C.D. Koh G.Y. Song J.H. Gut microbiota regulates lacteal integrity by inducing VEGF‐C in intestinal villus macrophages. EMBO Rep. 2019 20 4 e46927 10.15252/embr.201846927 30783017
    [Google Scholar]
  100. Ding L. Gong Y. Yang Z. Zou B. Liu X. Zhang B. Li J. Lactobacillus rhamnosus GG ameliorates liver injury and hypoxic hepatitis in rat model of CLP-induced sepsis. Dig. Dis. Sci. 2019 64 10 2867 2877 10.1007/s10620‑019‑05628‑0 31049763
    [Google Scholar]
  101. Jain A. Jain P. Soni P. Tiwari A. Tiwari S.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29). J. Gastrointest. Cancer 2023 54 1 90 95 10.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  102. Singh R Prasad J Satapathy T Jain P Singh S Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles. Indian J. Biochem. Biophys. 2021 58 156 161
    [Google Scholar]
  103. Sudhir Dhote N. Dineshbhai Patel R. Kuwar U. Agrawal M. Alexander A. Jain P. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting. Curr. Cancer Drug Targets 2024 24 1 22
    [Google Scholar]
  104. Patel R. Kuwar U. Dhote N. Alexander A. Nakhate K. Jain P. Ajazuddin Natural polymers as a carrier for the effective delivery of antineoplastic drugs. Curr. Drug Deliv. 2024 21 2 193 210 10.2174/1567201820666230112170035 36644864
    [Google Scholar]
  105. Bhairam M. Prasad J. Verma K. Jain P. Gidwani B. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes. Mater. Today Proc. 2023 83 59 68 10.1016/j.matpr.2023.01.147
    [Google Scholar]
  106. Netam A.K. Prasad J. Satapathy T. Jain P. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT. Advances in Biomedical Engineering and Technology. Rizvanov A.A. Singh B.K. Ganasala P. Singapore Springer Singapore 2021 207 220
    [Google Scholar]
  107. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  108. Trivedi P.J. Adams D.H. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; Pitfalls and promise. J. Crohn’s Colitis 2018 12 Suppl. 2 S641 S652 10.1093/ecco‑jcc/jjx145 30137309
    [Google Scholar]
  109. Wang C. Feng H. Cheng X. Liu K. Cai D. Zhao R. Potential therapeutic targets of B7 family in colorectal cancer. Front. Immunol. 2020 11 681 10.3389/fimmu.2020.00681 32477326
    [Google Scholar]
  110. Cheng W.Y. Wu C.Y. Yu J. The role of gut microbiota in cancer treatment: Friend or foe? Gut 2020 69 10 1867 1876 10.1136/gutjnl‑2020‑321153 32759302
    [Google Scholar]
  111. Wu J. Wang S. Zheng B. Qiu X. Wang H. Chen L. Modulation of gut microbiota to enhance effect of checkpoint inhibitor immunotherapy. Front. Immunol. 2021 12 669150 10.3389/fimmu.2021.669150 34267748
    [Google Scholar]
  112. Tiwari A. Saraf S. Verma A. Panda P.K. Jain S.K. Novel targeting approaches and signaling pathways of colorectal cancer: An insight. World J. Gastroenterol. 2018 24 39 4428 4435 10.3748/wjg.v24.i39.4428 30357011
    [Google Scholar]
  113. Krishnamurthy N. Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: Update on effectors and inhibitors. Cancer Treat. Rev. 2018 62 50 60 10.1016/j.ctrv.2017.11.002 29169144
    [Google Scholar]
  114. Kim E.K. Choi E.J. Compromised MAPK signaling in human diseases: An update. Arch. Toxicol. 2015 89 6 867 882 10.1007/s00204‑015‑1472‑2 25690731
    [Google Scholar]
/content/journals/cctr/10.2174/0115733947302126240924050845
Loading
/content/journals/cctr/10.2174/0115733947302126240924050845
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anticancer ; colorectal cancer ; microbiome ; Gut microbiota ; dysbiosis ; drug delivery ; antibiotics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test