Skip to content
2000
image of The Role of Red Blood Cells in Cholesterol Accumulation and Atherosclerotic Plaque Instability: A Perspective on Atherosclerosis

Abstract

Atherosclerosis stands as the primary cause of CVD, characterized by the accumulation of cholesterol deposits within macrophages in medium and large arteries. This deposition promotes the proliferation of specific cell types within the arterial wall, gradually narrowing the vessel lumen and impeding blood flow. Intra-plaque hemorrhages are recognized as critical events in atherosclerotic plaques, leading to the deposition of red blood cells (RBCs) and the release of hemoglobin (Hb). Approximately 40% of high-risk plaques exhibit intra-plaque hemorrhage. Recent studies have demonstrated that intra-plaque hemorrhage is closely linked to plaque progression and increased vulnerability, establishing it as a critical factor in the development of acute clinical symptoms associated with atherosclerosis. The presence of RBC membranes within atherosclerotic plaques contributes significantly to lipid accumulation, indicating a pivotal role in plaque instability. Upon RBC degradation, cholesterol from both the membrane and its interior can profoundly impact atherosclerotic plaque development. Considering that red blood cells (RBCs) can contribute to the excretion of cholesterol through the hepatobiliary system alongside HDL, and given that elevated cholesterol levels are a risk factor for the development and progression of atherosclerotic plaques, RBCs may play a protective role in cardiovascular health. However, when bleeding occurs within a plaque, RBCs that are trapped in the plaque environment, an environment rich in oxidant compounds, can rupture. The cholesterol released from these ruptured RBCs can significantly promote inflammatory reactions. This study aims to explore the inconsistent role of RBCs and their cholesterol content in the progression of atherosclerotic plaques.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X358572250128104335
2025-02-11
2025-04-10
Loading full text...

Full text loading...

References

  1. Momeni-Moghaddam M.A. Asadikaram G. Akbari H. Abolhassani M. Masoumi M. Nadimy Z. Khaksari M. CD36 gene polymorphism rs1761667 (G > A) is associated with hypertension and coronary artery disease in an Iranian population. BMC Cardiovasc. Disord. 2019 19 1 140 10.1186/s12872‑019‑1111‑6 31185924
    [Google Scholar]
  2. Vakili S. Savardashtaki A. Momeni Moghaddam M.A. Nowrouzi P. Khabbaz Shirazi M. Ebrahimi G. The effects of saffron consumption on lipid profile, liver enzymes, and oxidative stress in male hamsters with high fat diet. Trends Pharmacol. Sci. 2017 3 201 208
    [Google Scholar]
  3. Badimon L. Vilahur G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014 276 6 618 632 10.1111/joim.12296 25156650
    [Google Scholar]
  4. Poznyak A.V. Sadykhov N.K. Kartuesov A.G. Borisov E.E. Melnichenko A.A. Grechko A.V. Orekhov A.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment. Front. Cardiovasc. Med. 2022 9 959285 10.3389/fcvm.2022.959285 36072873
    [Google Scholar]
  5. Momeni-Moghaddam M.A. Asadikaram G. Masoumi M. Sadeghi E. Akbari H. Abolhassani M. Farsinejad A. Khaleghi M. Nematollahi M.H. Dabiri S. Arababadi M.K. Opium may affect coronary artery disease by inducing inflammation but not through the expression of CD9, CD36, and CD68. J. Investig. Med. 2022 70 8 1728 1735 10.1136/jim‑2021‑001935 34872933
    [Google Scholar]
  6. Stocker R. Keaney J.F. Jr Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004 84 4 1381 1478 10.1152/physrev.00047.2003 15383655
    [Google Scholar]
  7. Mahdi A. Wodaje T. Kövamees O. Tengbom J. Zhao A. Jiao T. Henricsson M. Yang J. Zhou Z. Nieminen A.I. Levin M. Collado A. Brinck J. Pernow J. The red blood cell as a mediator of endothelial dysfunction in patients with familial hypercholesterolemia and dyslipidemia. J. Intern. Med. 2023 293 2 228 245 10.1111/joim.13580 36324273
    [Google Scholar]
  8. Asada Y. Yamashita A. Sato Y. Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol. Int. 2020 70 6 309 322 10.1111/pin.12921 32166823
    [Google Scholar]
  9. Tang C. Deng L. Luo Q. He G. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front. Genet. 2023 13 998954 10.3389/fgene.2022.998954 36685865
    [Google Scholar]
  10. Momeni-Moghaddam M.A. Asadikaram G. Nematollahi M.H. Esmaeili Tarzi M. Faramarz-Gaznagh S. Mohammadpour-Gharehbagh A. Kazemi Arababadi M. Effects of cigarette smoke and opium on the expression of CD9, CD36, and CD68 at mRNA and protein levels in human macrophage cell line THP-1. Iran. J. Allergy Asthma Immunol. 2020 19 1 45 55 10.18502/ijaai.v19i1.2417 32245320
    [Google Scholar]
  11. Gwozdzinski K. Pieniazek A. Gwozdzinski L. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxid. Med. Cell. Longev. 2021 2021 1 6639199 10.1155/2021/6639199 33708334
    [Google Scholar]
  12. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  13. Tziakas D.N. Chalikias G.K. Stakos D. Boudoulas H. The role of red blood cells in the progression and instability of atherosclerotic plaque. Int. J. Cardiol. 2010 142 1 2 7 10.1016/j.ijcard.2009.10.031 19906450
    [Google Scholar]
  14. Buttari B Profumo E Riganò R Cross-talk between red blood cells and the immune system and its impact on atherosclerosis. Biomed. Res. Int. 2015 2015 616834 10.1155/2015/616834 25722984
    [Google Scholar]
  15. Camaré C. Pucelle M. Nègre-Salvayre A. Salvayre R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017 12 18 34 10.1016/j.redox.2017.01.007 28212521
    [Google Scholar]
  16. Moore K.J. Tabas I. Macrophages in the pathogenesis of atherosclerosis. Cell 2011 145 3 341 355 10.1016/j.cell.2011.04.005 21529710
    [Google Scholar]
  17. Bernecker C. Köfeler H. Pabst G. Trötzmüller M. Kolb D. Strohmayer K. Trajanoski S. Holzapfel G.A. Schlenke P. Dorn I. Cholesterol deficiency causes impaired osmotic stability of cultured red blood cells. Front. Physiol. 2019 10 1529 10.3389/fphys.2019.01529 31920725
    [Google Scholar]
  18. Claessen M.J.A.G. Yagci N. Fu K. Brandsma E. Kersten M.J. von Lindern M. van den Akker E. Production and stability of cultured red blood cells depends on the concentration of cholesterol in culture medium. Sci. Rep. 2024 14 1 15592 10.1038/s41598‑024‑66440‑z 38971841
    [Google Scholar]
  19. Sankaranarayanan S. de la Llera-Moya M. Drazul-Schrader D. Phillips M.C. Kellner-Weibel G. Rothblat G.H. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells. J. Lipid Res. 2013 54 3 671 676 10.1194/jlr.M031336 23288948
    [Google Scholar]
  20. Lai S.J. Ohkawa R. Horiuchi Y. Kubota T. Tozuka M. Red blood cells participate in reverse cholesterol transport by mediating cholesterol efflux of high-density lipoprotein and apolipoprotein A-I from THP-1 macrophages. Biol. Chem. 2019 400 12 1593 1602 10.1515/hsz‑2019‑0244 31188743
    [Google Scholar]
  21. Schaffer A. Verdoia M. Cassetti E. Barbieri L. Perrone-Filardi P. Marino P. De Luca G. Impact of red blood cells count and high density lipoproteins with the prevalence and extent of coronary artery disease. J. Thromb. Thrombolysis 2015 40 1 61 68 10.1007/s11239‑015‑1174‑x 25680891
    [Google Scholar]
  22. Hung K.T. Berisha S.Z. Ritchey B.M. Santore J. Smith J.D. Red blood cells play a role in reverse cholesterol transport. Arterioscler. Thromb. Vasc. Biol. 2012 32 6 1460 1465 10.1161/ATVBAHA.112.248971 22499994
    [Google Scholar]
  23. Ohkawa R. Low H. Mukhamedova N. Fu Y. Lai S.J. Sasaoka M. Hara A. Yamazaki A. Kameda T. Horiuchi Y. Meikle P.J. Pernes G. Lancaster G. Ditiatkovski M. Nestel P. Vaisman B. Sviridov D. Murphy A. Remaley A.T. Sviridov D. Tozuka M. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J. Lipid Res. 2020 61 12 1577 1588 10.1194/jlr.RA120000635 32907987
    [Google Scholar]
  24. Shirvani M. Vakili Sadeghi M. Hosseini S.R. Bijani A. Ghadimi R. Does Serum lipid profile differ in anemia and non-anemic older subjects? Caspian J. Intern. Med. 2017 8 4 305 310 29201323
    [Google Scholar]
  25. Choi J.W. Kim S.K. Pai S.H. Changes in serum lipid concentrations during iron depletion and after iron supplementation. Ann. Clin. Lab. Sci. 2001 31 2 151 156 11337904
    [Google Scholar]
  26. da Silva Garrote-Filho M. Bernardino-Neto M. Penha-Silva N. Influence of erythrocyte membrane stability in atherosclerosis. Curr. Atheroscler. Rep. 2017 19 4 17 10.1007/s11883‑017‑0653‑2 28243806
    [Google Scholar]
  27. Nikolić M. Stanić D. Baričević I. Jones D.R. Nedić O. Niketić V. Efflux of cholesterol and phospholipids derived from the haemoglobin-lipid adduct in human red blood cells into plasma. Clin. Biochem. 2007 40 5-6 305 309 10.1016/j.clinbiochem.2006.11.005 17291471
    [Google Scholar]
  28. Mekke J.M. Sakkers T.R. Verwer M.C. van den Dungen N.A.M. Song Y. Miller C.L. Finn A.V. Pasterkamp G. Mokry M. den Ruijter H.M. Vink A. de Kleijn D.P.V. de Borst G.J. Haitjema S. van der Laan S.W. The accumulation of erythrocytes quantified and visualized by Glycophorin C in carotid atherosclerotic plaque reflects intraplaque hemorrhage and pre-procedural neurological symptoms. Sci. Rep. 2023 13 1 17104 10.1038/s41598‑023‑43369‑3 37816779
    [Google Scholar]
  29. Van Der Laan SW Mekke JM Pasterkamp G De Kleijn DP De Borst GJ Sakkers TR Verwer MC Van Den Dungen NA Song Y Miller CL Glycophorin C in carotid atherosclerotic plaque reflects intraplaque hemorrhage and pre-procedural neurological symptoms. medRxiv 2023 1 1 27 10.1101/2021.07.15.21260570
    [Google Scholar]
  30. Turpin C. Catan A. Meilhac O. Bourdon E. Canonne-Hergaux F. Rondeau P. Erythrocytes: Central actors in multiple scenes of atherosclerosis. Int. J. Mol. Sci. 2021 22 11 5843 10.3390/ijms22115843 34072544
    [Google Scholar]
  31. Arbustini E. Morbini P. D’Armini A.M. Repetto A. Minzioni G. Piovella F. Viganó M. Tavazzi L. Plaque composition in plexogenic and thromboembolic pulmonary hypertension: The critical role of thrombotic material in pultaceous core formation. Br. Heart J. 2002 88 2 177 182 10.1136/heart.88.2.177 12117850
    [Google Scholar]
  32. Kolodgie F.D. Gold H.K. Burke A.P. Fowler D.R. Kruth H.S. Weber D.K. Farb A. Guerrero L.J. Hayase M. Kutys R. Narula J. Finn A.V. Virmani R. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med. 2003 349 24 2316 2325 10.1056/NEJMoa035655 14668457
    [Google Scholar]
  33. Tziakas D.N. Kaski J.C. Chalikias G.K. Romero C. Fredericks S. Tentes I.K. Kortsaris A.X. Hatseras D.I. Holt D.W. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: A new marker of clinical instability? J. Am. Coll. Cardiol. 2007 49 21 2081 2089 10.1016/j.jacc.2006.08.069 17531656
    [Google Scholar]
  34. Lin H. Xu X. Lu H. Zhang L. Li C. Tang M. Sun H. Liu Y. Zhang Y. Pathological mechanisms and dose dependency of erythrocyte-induced vulnerability of atherosclerotic plaques. J. Mol. Cell. Cardiol. 2007 43 3 272 280 10.1016/j.yjmcc.2007.05.023 17628589
    [Google Scholar]
  35. Unruh D. Srinivasan R. Benson T. Haigh S. Coyle D. Batra N. Keil R. Sturm R. Blanco V. Palascak M. Franco R.S. Tong W. Chatterjee T. Hui D.Y. Davidson W.S. Aronow B.J. Kalfa T. Manka D. Peairs A. Blomkalns A. Fulton D.J. Brittain J.E. Weintraub N.L. Bogdanov V.Y. Red blood cell dysfunction induced by high-fat diet: Potential implications for obesity-related atherosclerosis. Circulation 2015 132 20 1898 1908 10.1161/CIRCULATIONAHA.115.017313 26467254
    [Google Scholar]
  36. Purushothaman K.R. Purushothaman M. Muntner P. Lento P.A. O’Connor W.N. Sharma S.K. Fuster V. Moreno P.R. Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: Implication for plaque progression in diabetic atherosclerosis. Vasc. Med. 2011 16 2 103 108 10.1177/1358863X11402249 21511672
    [Google Scholar]
  37. Crombag G.A.J.C. Aizaz M. Schreuder F.H.B.M. Benali F. van Dam-Nolen D.H.K. Liem M.I. Lucci C. van der Steen A.F. Daemen M.J.A.P. Mess W.H. van der Lugt A. Nederkoorn P.J. Hendrikse J. Hofman P.A.M. van Oostenbrugge R.J. Wildberger J.E. Kooi M.E. Proximal region of carotid atherosclerotic plaque shows more intraplaque hemorrhage: The plaque at risk study. AJNR Am. J. Neuroradiol. 2022 43 2 265 271 10.3174/ajnr.A7384 35121587
    [Google Scholar]
  38. Mura M. Della Schiava N. Long A. Chirico E.N. Pialoux V. Millon A. Carotid intraplaque haemorrhage: Pathogenesis, histological classification, imaging methods and clinical value. Ann. Transl. Med. 2020 8 19 1273 10.21037/atm‑20‑1974 33178805
    [Google Scholar]
  39. de Vries M.R. Quax P.H.A. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization. Curr. Opin. Lipidol. 2016 27 5 499 506 10.1097/MOL.0000000000000339 27472406
    [Google Scholar]
  40. Michel J-B. Libby P. Franck G. Internal bleeding: Is intraplaque hemorrhage a decoration or a driver? Washington, DC American College of Cardiology Foundation 2018 481 484
    [Google Scholar]
  41. Shoeibi S. Mozdziak P. Mohammadi S. Important signals regulating coronary artery angiogenesis. Microvasc. Res. 2018 117 1 9 10.1016/j.mvr.2017.12.002 29247718
    [Google Scholar]
  42. Fong G.H. Potential contributions of intimal and plaque hypoxia to atherosclerosis. Curr. Atheroscler. Rep. 2015 17 6 32 10.1007/s11883‑015‑0510‑0 25876920
    [Google Scholar]
  43. Sedding D.G. Boyle E.C. Demandt J.A.F. Sluimer J.C. Dutzmann J. Haverich A. Bauersachs J. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease. Front. Immunol. 2018 9 706 10.3389/fimmu.2018.00706 29719532
    [Google Scholar]
  44. Jeney V. Balla G. Balla J.Ã. Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front. Physiol. 2014 5 379 10.3389/fphys.2014.00379 25324785
    [Google Scholar]
  45. Guo M. Cai Y. Yao X. Li Z. Mathematical modeling of atherosclerotic plaque destabilization: Role of neovascularization and intraplaque hemorrhage. J. Theor. Biol. 2018 450 53 65 10.1016/j.jtbi.2018.04.031 29704490
    [Google Scholar]
  46. Moreno P.R. Purushothaman K.R. Sirol M. Levy A.P. Fuster V. Neovascularization in human atherosclerosis. Circulation 2006 113 18 2245 2252 10.1161/CIRCULATIONAHA.105.578955 16684874
    [Google Scholar]
  47. Michel J.B. Virmani R. Arbustini E. Pasterkamp G. Intraplaque haemorrhages as the trigger of plaque vulnerability. Eur. Heart J. 2011 32 16 1977 1985, 1985a, 1985b, 1985c 10.1093/eurheartj/ehr054 21398643
    [Google Scholar]
  48. Sakamoto A. Suwa K. Kawakami R. Finn A.V. Maekawa Y. Virmani R. Finn A.V. Significance of intra-plaque hemorrhage for the development of high-risk vulnerable plaque: Current understanding from basic to clinical points of view. Int. J. Mol. Sci. 2023 24 17 13298 10.3390/ijms241713298 37686106
    [Google Scholar]
  49. de Vries M.R. Parma L. Peters H.A.B. Schepers A. Hamming J.F. Jukema J.W. Goumans M.J.T.H. Guo L. Finn A.V. Virmani R. Ozaki C.K. Quax P.H.A. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels. J. Intern. Med. 2019 285 1 59 74 10.1111/joim.12821 30102798
    [Google Scholar]
  50. Balligand J.L. Feron O. Dessy C. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues. Physiol. Rev. 2009 89 2 481 534 10.1152/physrev.00042.2007 19342613
    [Google Scholar]
  51. Perrotta P. Emini Veseli B. Van der Veken B. Roth L. Martinet W. De Meyer G.R.Y. Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis. Vascul. Pharmacol. 2019 112 72 78 10.1016/j.vph.2018.06.014 29933080
    [Google Scholar]
  52. Kim Y.W. Byzova T.V. Oxidative stress in angiogenesis and vascular disease. Blood 2014 123 5 625 631 10.1182/blood‑2013‑09‑512749 24300855
    [Google Scholar]
  53. Puylaert P. Roth L. Van Praet M. Pintelon I. Dumitrascu C. van Nuijs A. Klejborowska G. Guns P.J. Berghe T.V. Augustyns K. De Meyer G.R.Y. Martinet W. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis 2023 26 4 505 522 10.1007/s10456‑023‑09877‑6 37120604
    [Google Scholar]
  54. Liu W. Östberg N. Yalcinkaya M. Dou H. Endo-Umeda K. Tang Y. Hou X. Xiao T. Fidler T.P. Abramowicz S. Erythroid lineage Jak2 V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J. Clin. Invest. 2022 ••• 132
    [Google Scholar]
  55. Guo X. Ma L. Inflammation in coronary artery disease-clinical implications of novel HDL-cholesterol-related inflammatory parameters as predictors. Coron. Artery Dis. 2023 34 1 66 77 36317383
    [Google Scholar]
  56. Janoudi A. Shamoun F.E. Kalavakunta J.K. Abela G.S. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur. Heart J. 2016 37 25 1959 1967 10.1093/eurheartj/ehv653 26705388
    [Google Scholar]
  57. Salloum Z. Dauner K. Li Y. Verma N. Valdivieso-González D. Almendro-Vedia V. Zhang J.D. Nakka K. Chen M.X. McDonald J. Corley C.D. Sorisky A. Song B.L. López-Montero I. Luo J. Dilworth J.F. Zha X. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating Jmjd3. eLife 2024 13 e85964 10.7554/eLife.85964 38602170
    [Google Scholar]
  58. Yalcinkaya M. Liu W. Xiao T. Abramowicz S. Wang R. Wang N. Westerterp M. Tall A.R. Cholesterol trafficking to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis. J. Lipid Res. 2024 65 4 100534 10.1016/j.jlr.2024.100534 38522750
    [Google Scholar]
  59. Pilely K. Bakke S.S. Palarasah Y. Skjoedt M.O. Bartels E.D. Espevik T. Garred P. Alpha-cyclodextrin inhibits cholesterol crystal-induced complement-mediated inflammation: A potential new compound for treatment of atherosclerosis. Atherosclerosis 2019 283 35 42 10.1016/j.atherosclerosis.2019.01.034 30772772
    [Google Scholar]
  60. Grebe A. Latz E. Cholesterol crystals and inflammation. Curr. Rheumatol. Rep. 2013 15 3 313 10.1007/s11926‑012‑0313‑z 23412688
    [Google Scholar]
  61. Komatsu S. Yutani C. Takahashi S. Takewa M. Iwa N. Ohara T. Kodama K. Cholesterol crystals as the main trigger of interleukin-6 production through innate inflammatory response in human spontaneously ruptured aortic plaques. J. Atheroscler. Thromb. 2023 30 11 1715 1726 10.5551/jat.64098 37081615
    [Google Scholar]
  62. Zeng X. Liu D. Huo X. Wu Y. Liu C. Sun Q. Pyroptosis in NLRP3 inflammasome-related atherosclerosis. Cell Stress 2022 6 10 79 88 10.15698/cst2022.10.272 36304814
    [Google Scholar]
  63. Firas G. Deepthi V. Jagadeesh K. Sridevi D. Noah T. Prem S. Scott A. George S. Cholesterol crystal embolization following plaque rupture: A systemic disease with unusual features. J. Biomed. Res. 2017 31 2 82 94 10.7555/JBR.31.20160100 28808190
    [Google Scholar]
  64. Yalcinkaya M. Fotakis P. Liu W. Endo-Umeda K. Dou H. Abramowicz S. Xiao T. Libby P. Wang N. Tall A.R. Westerterp M. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion. Cardiovasc. Res. 2023 119 4 969 981 10.1093/cvr/cvac189 36537208
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X358572250128104335
Loading

  • Article Type:
    Review Article
Keywords: atherosclerosis ; Red blood cells ; plaque ; cholesterol ; cardiovascular ; angiogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test