Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

Atherosclerosis is a chronic disease caused by the accumulation of lipids, inflammatory cells, and fibrous elements in arterial walls, leading to plaque formation and cardiovascular conditions like coronary artery disease, stroke, and peripheral arterial disease. Factors like hyperlipidemia, hypertension, smoking, and diabetes contribute to its development. Diagnosis relies on imaging and biomarkers, while management includes lifestyle modifications, pharmacotherapy, and surgical interventions. Computational biology is transforming biological knowledge into clinical practice by identifying biomarkers that can predict clinical outcomes. This involves omics data, predictive modeling, and data integration. Statistical analysis-based methods are also being developed to develop and integrate methods for screening, diagnosing, and prognosing atherosclerosis.

Methodology

The present work aimed to uncover critical genes and pathways to enhance the understanding of the mechanism of atherosclerosis. GSE23746 was analyzed to find differentially expressed genes (DEGs) using 19 control samples and 76 atherosclerotic samples.

Results

A total of 76 DEGs were identified. Analysed DEGs using Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) to generate enrichment datasets. A Protein-protein Interaction (PPI) network of DEGs was created utilizing the Search Tool for the Retrieval of Interacting Genes (STRING).

Conclusion

Ten hub genes, namely EGR1, PTGS2, TNF, NFKBIA, CXCL8, TNFAIP3, CCL3, IL1B, PTPRC, and CD83, were found to be significantly linked to atherosclerosis. Furthermore, the metabolic pathway analysis through KEGG and STRING provides potential targets for therapeutic interventions through HUB genes to diagnose the illness at an early stage, which aids in the reduction of cardiovascular risk. From risk factor profiling to the discovery of novel biomarkers, several components such as phospholipids, ANGPTL3, LCAT, and the protein-encoded OCT-1 gene, play a vital role in crucial processes. These compounds are potential therapeutic targets for early diagnosis of atherosclerotic lesions and future novel biomarkers.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X340118241113025519
2025-01-03
2025-05-28
Loading full text...

Full text loading...

References

  1. CollB. Alonso-VillaverdeC. JovenJ. Monocyte chemoattractant protein-1 and atherosclerosis: Is there room for an additional biomarker?Clin. Chim. Acta20073831-2212910.1016/j.cca.2007.04.019 17521622
    [Google Scholar]
  2. MansouriF. Seyed MohammadzadM. Up-regulation of cell-free MicroRNA-1 and MicroRNA-221-3p levels in patients with myocardial infarction undergoing coronary angiography.Adv. Pharm. Bull.202011471972710.34172/apb.2021.081 34888219
    [Google Scholar]
  3. StonerL. LuceroA.A. PalmerB.R. JonesL.M. YoungJ.M. FaulknerJ. Inflammatory biomarkers for predicting cardiovascular disease.Clin. Biochem.201346151353137110.1016/j.clinbiochem.2013.05.070 23756129
    [Google Scholar]
  4. HanssonG.K. LibbyP. The immune response in atherosclerosis: A double-edged sword.Nat. Rev. Immunol.20066750851910.1038/nri1882 16778830
    [Google Scholar]
  5. KulloI.J. GauG.T. TajikA.J. Novel risk factors for atherosclerosis.Mayo Clin. Proc.200075436938010.4065/75.4.369 10761492
    [Google Scholar]
  6. NaghaviM. LibbyP. FalkE. From vulnerable plaque to vulnerable patient: A call for new definitions and risk assessment strategies: Part I.Circulation2003108141664167210.1161/01.CIR.0000087480.94275.97 14530185
    [Google Scholar]
  7. VivancoF PadialLR DardeVM Proteomic biomarkers of atherosclerosis.Biomark Insights2008310111310.4137/BMI.S488
    [Google Scholar]
  8. YinM LoyerX BoulangerCM Extracellular vesicles as new pharmacological targets to treat atherosclerosis.Eur J Pharmacol2015763Pt A9010310.1016/j.ejphar.2015.06.047 26142082
    [Google Scholar]
  9. WatanabeT. SatoK. ItohF. Emerging roles for vasoactive peptides in diagnostic and therapeutic strategies against atherosclerotic cardiovascular diseases.Curr. Protein Pept. Sci.201314647248010.2174/13892037113149990064 23968353
    [Google Scholar]
  10. ManolioT. Novel risk markers and clinical practice.N. Engl. J. Med.2003349171587158910.1056/NEJMp038136 14573728
    [Google Scholar]
  11. SzmitkoP.E. WangC.H. WeiselR.D. de AlmeidaJ.R. AndersonT.J. VermaS. New markers of inflammation and endothelial cell activation: Part I.Circulation2003108161917192310.1161/01.CIR.0000089190.95415.9F 14568885
    [Google Scholar]
  12. CollinsR.G. VeljiR. GuevaraN.V. HicksM.J. ChanL. BeaudetA.L. P-Selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice.J. Exp. Med.2000191118919410.1084/jem.191.1.189 10620617
    [Google Scholar]
  13. SpringerT.A. Adhesion receptors of the immune system.Nature1990346628342543410.1038/346425a0 1974032
    [Google Scholar]
  14. OkegawaT. PongR.C. LiY. HsiehJ.T. The role of cell adhesion molecule in cancer progression and its application in cancer therapy.Acta Biochim. Pol.200451244545710.18388/abp.2004_3583 15218541
    [Google Scholar]
  15. McDonaldB. KubesP. Cellular and molecular choreography of neutrophil recruitment to sites of sterile inflammation.J. Mol. Med. (Berl.)201189111079108810.1007/s00109‑011‑0784‑9 21751029
    [Google Scholar]
  16. AfonsoP.V. Janka-JunttilaM. LeeY.J. LTB4 is a signal-relay molecule during neutrophil chemotaxis.Dev. Cell20122251079109110.1016/j.devcel.2012.02.003 22542839
    [Google Scholar]
  17. HarayamaT. ShindouH. OgasawaraR. SuwabeA. ShimizuT. Identification of a novel noninflammatory biosynthetic pathway of platelet-activating factor.J. Biol. Chem.200828317110971110610.1074/jbc.M708909200 18285344
    [Google Scholar]
  18. SadikC.D. LusterA.D. Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation.J. Leukoc. Biol.201191220721510.1189/jlb.0811402 22058421
    [Google Scholar]
  19. PetriB. SanzM.J. Neutrophil chemotaxis.Cell Tissue Res.2018371342543610.1007/s00441‑017‑2776‑8 29350282
    [Google Scholar]
  20. LiR. CoulthardL.G. WuM.C.L. TaylorS.M. WoodruffT.M. C5L2: A controversial receptor of complement anaphylatoxin, C5a.FASEB J.201327385586410.1096/fj.12‑220509 23239822
    [Google Scholar]
  21. BaggioliniM. Chemokines in pathology and medicine.J. Intern. Med.200125029110410.1046/j.1365‑2796.2001.00867.x 11489059
    [Google Scholar]
  22. InokuboY. HanadaH. IshizakaH. FukushiT. KamadaT. OkumuraK. Plasma levels of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 are increased in the coronary circulation in patients with acute coronary syndrome.Am. Heart J.2001141221121710.1067/mhj.2001.112238 11174334
    [Google Scholar]
  23. MayerlC. LukasserM. SedivyR. NiedereggerH. SeilerR. WickG. Atherosclerosis research from past to present-on the track of two pathologists with opposing views, Carl von Rokitansky and Rudolf Virchow.Virchows Arch.200644919610310.1007/s00428‑006‑0176‑7 16612625
    [Google Scholar]
  24. TabasI. Consequences of cellular cholesterol accumulation: Basic concepts and physiological implications.J. Clin. Invest.2002110790591110.1172/JCI0216452 12370266
    [Google Scholar]
  25. MartinezE. MartorellJ. RiambauV. Review of serum biomarkers in carotid atherosclerosis.J. Vasc. Surg.202071132934110.1016/j.jvs.2019.04.488 31327598
    [Google Scholar]
  26. MadjidM. AwanI. WillersonJ.T. CasscellsS.W. Leukocyte count and coronary heart disease.J. Am. Coll. Cardiol.200444101945195610.1016/j.jacc.2004.07.056 15542275
    [Google Scholar]
  27. SertogluE. TapanS. UyanikM. Important details about the red cell distribution width.J. Atheroscler. Thromb.201522221922010.5551/jat.27573
    [Google Scholar]
  28. SoderholmM. BornéY. HedbladB. PerssonM. EngströmG. Red cell distribution width in relation to incidence of stroke and carotid atherosclerosis: A population-based cohort study.PLoS One2015105e012495710.1371/journal.pone.0124957
    [Google Scholar]
  29. PuertasM. Zayas-CastroJ.L. FabriP.J. Statistical and prognostic analysis of dynamic changes of platelet count in ICU patients.Physiol. Meas.201536593995310.1088/0967‑3334/36/5/939 25856296
    [Google Scholar]
  30. CroceK. LibbyP. Intertwining of thrombosis and inflammation in atherosclerosis.Curr. Opin. Hematol.2007141556110.1097/00062752‑200701000‑00011 17133101
    [Google Scholar]
  31. LarsenS.B. GroveE.L. HvasA.M. KristensenS.D. Platelet turnover in stable coronary artery disease influence of thrombopoietin and low-grade inflammation.PLoS One201491e8556610.1371/journal.pone.0085566 24465602
    [Google Scholar]
  32. FalkE. NakanoM. BentzonJ.F. FinnA.V. VirmaniR. Update on acute coronary syndromes: The pathologists’ view.Eur. Heart J.2013341071972810.1093/eurheartj/ehs411 23242196
    [Google Scholar]
  33. AshburnerM. BallC.A. BlakeJ.A. Gene ontology: Tool for the unification of biology.Nat. Genet.2000251252910.1038/75556 10802651
    [Google Scholar]
  34. OgataH. GotoS. SatoK. FujibuchiW. BonoH. KanehisaM. KEGG: Kyoto encyclopedia of genes and genomes.Nucleic Acids Res.1999271293410.1093/nar/27.1.29
    [Google Scholar]
  35. HuangD. ShermanB.T. TanQ. The David gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists.Genome Biol.200789R18310.1186/gb‑2007‑8‑9‑r183 17784955
    [Google Scholar]
  36. FengX. NiuJ. SongZ. Exploring the mechanism of antioxidant action of bitter almond based on network pharmacology and molecular docking techniques.J. Food Qual.202311010.1155/2023/9187692
    [Google Scholar]
  37. GaoF. PeiY. RenY. ChenZ. LuJ. ZhangY. Antiatherosclerotic mechanism of action of Flos Daturae based on network pharmacology and molecular docking technology.J. Pharm. Sci.20201126422650
    [Google Scholar]
  38. GorskiD. WalshK. Control of vascular cell differentiation by homeobox transcription factors.Trends Cardiovasc. Med.200313621322010.1016/S1050‑1738(03)00081‑1 12922016
    [Google Scholar]
  39. NikiE. YoshidaY. SaitoY. NoguchiN. Lipid peroxidation: Mechanisms, inhibition, and biological effects.Biochem. Biophys. Res. Commun.2005338166867610.1016/j.bbrc.2005.08.072 16126168
    [Google Scholar]
  40. HahnB.H. McMahonM. Atherosclerosis and systemic lupus erythematosus: The role of altered lipids and of autoantibodies.Lupus200817536837010.1177/0961203308089989 18490409
    [Google Scholar]
  41. BerlinerJ.A. GharaviN.M. Endothelial cell regulation by phospholipid oxidation products.Free Radic. Biol. Med.200845211912310.1016/j.freeradbiomed.2008.04.013 18460347
    [Google Scholar]
  42. PodrezE.A. PoliakovE. ShenZ. A novel family of atherogenic oxidized phospholipids promotes macrophage foam cell formation via the scavenger receptor CD36 and is enriched in atherosclerotic lesions.J. Biol. Chem.200227741385173852310.1074/jbc.M205924200 12145296
    [Google Scholar]
  43. BerlinerJ. SubbanagounderG. LeitingerN. WatsonA.D. VoraD. Evidence for a role of phospholipid oxidation products in atherogenesis.Trends Cardiovasc. Med.2001113-414214710.1016/S1050‑1738(01)00098‑6 11686004
    [Google Scholar]
  44. WangT. WangY. ZhangX. Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing.Ageing Res. Rev.20238610188810.1016/j.arr.2023.101888 36806379
    [Google Scholar]
  45. RahamanS.O. ZhouG. SilversteinR.L. Vav protein guanine nucleotide exchange factor regulates CD36 protein-mediated macrophage foam cell formation via calcium and dynamin-dependent processes.J. Biol. Chem.201128641360113601910.1074/jbc.M111.265082 21865158
    [Google Scholar]
  46. KadlA. SharmaP.R. ChenW. Oxidized phospholipid-induced inflammation is mediated by toll-like receptor 2.Free Radic. Biol. Med.201151101903190910.1016/j.freeradbiomed.2011.08.026 21925592
    [Google Scholar]
  47. WangX. MusunuruK. Angiopoietin-like 3.JACC Basic Transl. Sci.20194675576210.1016/j.jacbts.2019.05.008 31709322
    [Google Scholar]
  48. ZhangR. The ANGPTL3-4-8 model, A molecular mechanism for triglyceride trafficking.Open Biol.20166415027210.1098/rsob.150272 27053679
    [Google Scholar]
  49. DengM. KutrolliE. SadewasserA. ANGPTL4 silencing via antisense oligonucleotides reduces plasma triglycerides and glucose in mice without causing lymphadenopathy.J. Lipid Res.202263710023710.1016/j.jlr.2022.100237 35667416
    [Google Scholar]
  50. KoishiR. AndoY. OnoM. Angptl3 regulates lipid metabolism in mice.Nat. Genet.200230215115710.1038/ng814 11788823
    [Google Scholar]
  51. OnoM. ShimizugawaT. ShimamuraM. Protein region important for regulation of lipid metabolism in angiopoietin-like 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo.J. Biol. Chem.200327843418044180910.1074/jbc.M302861200 12909640
    [Google Scholar]
  52. AsztalosB.F. SchaeferE.J. HorvathK.V. Role of LCAT in HDL remodeling: Investigation of LCAT deficiency states.J. Lipid Res.200748359259910.1194/jlr.M600403‑JLR200 17183024
    [Google Scholar]
  53. JonasA. Lecithin cholesterol acyltransferase.Biochim. Biophys. Acta Mol. Cell Biol. Lipids200015291-324525610.1016/S1388‑1981(00)00153‑0 11111093
    [Google Scholar]
  54. BaylyG.R. In Clinical Biochemistry.3rd edMetabolic and Clinical Aspects2014
    [Google Scholar]
  55. NavabM ReddyST Van LentenBJ AnantharamaiahGM FogelmanAM The role of dysfunctional HDL in atherosclerosis.J Lipid Res200950(Suppl)(Suppl.): S145-9.10.1194/jlr.R800036‑JLR200 18955731
    [Google Scholar]
  56. YokoyamaK. TaniS. MatsuoR. MatsumotoN. Association of lecithin-cholesterol acyltransferase activity and low-density lipoprotein heterogeneity with atherosclerotic cardiovascular disease risk: A longitudinal pilot study.BMC Cardiovasc. Disord.201818122410.1186/s12872‑018‑0967‑1 30518338
    [Google Scholar]
  57. OhashiR. MuH. WangX. YaoQ. ChenC. Reverse cholesterol transport and cholesterol efflux in atherosclerosis.QJM2005981284585610.1093/qjmed/hci136 16258026
    [Google Scholar]
  58. EckM.V. PenningsM. HoekstraM. OutR. Van BerkelT.J.C. Scavenger receptor BI and ATP-binding cassette transporter A1 in reverse cholesterol transport and atherosclerosis.Curr. Opin. Lipidol.200516330731510.1097/01.mol.0000169351.28019.04 15891392
    [Google Scholar]
  59. JessupW. GelissenI.C. GausK. KritharidesL. Roles of ATP binding cassette transporters A1 and G1, scavenger receptor BI and membrane lipid domains in cholesterol export from macrophages.Curr. Opin. Lipidol.200617324725710.1097/01.mol.0000226116.35555.eb 16680029
    [Google Scholar]
  60. DesforgesJ.F. GordonD.J. RifkindB.M. High-density lipoprotein--the clinical implications of recent studies.N. Engl. J. Med.1989321191311131610.1056/NEJM198911093211907 2677733
    [Google Scholar]
  61. OssoliA. SimonelliS. VitaliC. FranceschiniG. CalabresiL. Role of LCAT in atherosclerosis.J. Atheroscler. Thromb.201623211912710.5551/jat.32854 26607351
    [Google Scholar]
  62. SzklarczykD. GableA.L. LyonD. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  63. CarboneC. PiroG. MerzV. Angiopoietin-like proteins inangiogenesis, inflammation and cancer.Int. J. Mol. Sci.201819243110.3390/ijms19020431 29389861
    [Google Scholar]
  64. BandarianF. HedayatiM. DaneshpourM.S. NaseriM. AziziF. Genetic polymorphisms in the APOA1 gene and their relationship with serum HDL cholesterol levels.Lipids201348121207121610.1007/s11745‑013‑3847‑6 24081495
    [Google Scholar]
  65. DominiczakM.H. CaslakeM.J. Apolipoproteins: Metabolic role and clinical biochemistry applications.Ann. Clin. Biochem.201148649851510.1258/acb.2011.011111 22028427
    [Google Scholar]
  66. ContoisJ.H. LangloisM.R. CobbaertC. SnidermanA.D. Standardization of Apolipoprotein B, LDL‐Cholesterol, and Non‐HDL‐Cholesterol.J. Am. Heart Assoc.20231215e03040510.1161/JAHA.123.030405 37489721
    [Google Scholar]
  67. HuangZ.H. ReardonC.A. MazzoneT. Endogenous ApoE expression modulates adipocyte triglyceride content and turnover.Diabetes200655123394340210.2337/db06‑0354 17130485
    [Google Scholar]
  68. DavidsonW.S. ThompsonT.B. The structure of apolipoprotein A-I in high density lipoproteins.J. Biol. Chem.200728231222492225310.1074/jbc.R700014200 17526499
    [Google Scholar]
  69. MacknessB. MacknessM. Anti-inflammatory properties of paraoxonase-1 in atherosclerosis.Adv. Exp. Med. Biol.201066014315110.1007/978‑1‑60761‑350‑3_13 20221877
    [Google Scholar]
  70. MacknessM.I. DurringtonP.N. MacknessB. The role of paraoxonase 1 activity in cardiovascular disease: Potential for therapeutic intervention.Am. J. Cardiovasc. Drugs20044421121710.2165/00129784‑200404040‑00002 15285696
    [Google Scholar]
  71. BrinholiF.F. NotoC. MaesM. Lowered paraoxonase 1 (PON1) activity is associated with increased cytokine levels in drug naïve first episode psychosis.Schizophr. Res.20151661-322523010.1016/j.schres.2015.06.009 26123170
    [Google Scholar]
  72. BrownM.S. GoldsteinJ.L. The receptor model for transport of cholesterol in plasma.Ann. N. Y. Acad. Sci.1985454117818210.1111/j.1749‑6632.1985.tb11856.x 3907461
    [Google Scholar]
  73. HafianeA. GenestJ. HDL, atherosclerosis, and emerging therapies.Cholesterol20132013111810.1155/2013/891403 23781332
    [Google Scholar]
  74. FoxW.R. DiercksD.B. Troponin assay use in the emergency department for management of patients with potential acute coronary syndrome: Current use and future directions.Clin. Exp. Emerg. Med.2016311810.15441/ceem.16.120 27752608
    [Google Scholar]
  75. CollinsF.S. VarmusH. A new initiative on precision medicine.N. Engl. J. Med.2015372979379510.1056/NEJMp1500523 25635347
    [Google Scholar]
  76. DhingraR. VasanR.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers.Trends Cardiovasc. Med.201727212313310.1016/j.tcm.2016.07.005 27576060
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X340118241113025519
Loading
/content/journals/ccr/10.2174/011573403X340118241113025519
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Atherosclerosis; biomarker; cardiovascular disease; hyperlipidemia; KEGG; STRING
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test