Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Platelets, tiny cell fragments measuring 2-4 μm in diameter without a nucleus, play a crucial role in blood clotting and maintaining vascular integrity. Abnormalities in platelets, whether genetic or acquired, are linked to bleeding disorders, increased risk of blood clots, and cardiovascular diseases. Advanced proteomic techniques offer profound insights into the roles of platelets in hemostasis and their involvement in processes such as inflammation, metastasis, and thrombosis. This knowledge is vital for drug development and identifying diagnostic markers for platelet activation. Platelet activation is an exceptionally rapid process characterized by various posttranslational modifications, including protein breakdown and phosphorylation. By utilizing multiomics technologies and biochemical methods, researchers can thoroughly investigate and define these posttranslational pathways. The absence of a nucleus in platelets significantly simplifies mass spectrometry-based proteomics and metabolomics, as there are fewer proteins to analyze, streamlining the identification process. Additionally, integrating multiomics approaches enables a comprehensive examination of the platelet proteome, lipidome, and metabolome, providing a holistic understanding of platelet biology. This multifaceted analysis is critical for elucidating the complex mechanisms underpinning platelet function and dysfunction. Ultimately, these insights are crucial for advancing therapeutic strategies and improving diagnostic tools for platelet-related disorders and cardiovascular diseases. The integration of multi-omics technologies is paving the way for a deeper understanding of platelet mechanisms, with significant implications for biomedical research and clinical applications.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X334382241210064101
2025-01-13
2025-05-22
Loading full text...

Full text loading...

References

  1. VenneA.S. VögtleF.N. MeisingerC. SickmannA. ZahediR.P. Novel highly sensitive, specific, and straightforward strategy for comprehensive N-terminal proteomics reveals unknown substrates of the mitochondrial peptidase Icp55.J. Proteome Res.20131293823383010.1021/pr400435d 23964590
    [Google Scholar]
  2. BurkhartJ.M. GambaryanS. WatsonS.P. What can proteomics tell us about platelets?Circ. Res.201411471204121910.1161/CIRCRESAHA.114.301598 24677239
    [Google Scholar]
  3. HuangJ. ZhangP. SolariF.A. Molecular proteomics and signaling of human platelets in health and disease.Int. J. Mol. Sci.20212218986010.3390/ijms22189860 34576024
    [Google Scholar]
  4. BurkhartJ.M. VaudelM. GambaryanS. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways.Blood201212015e73e8210.1182/blood‑2012‑04‑416594 22869793
    [Google Scholar]
  5. HaedkeU. KüttlerE.V. VosykaO. YangY. VerhelstS.H.L. Tuning probe selectivity for chemical proteomics applications.Curr. Opin. Chem. Biol.201317110210910.1016/j.cbpa.2012.11.024 23273613
    [Google Scholar]
  6. MastenbroekT.G. FeijgeM.A.H. KremersR.M.W. Platelet-associated matrix metalloproteinases regulate thrombus formation and exert local collagenolytic activity.Arterioscler. Thromb. Vasc. Biol.201535122554256110.1161/ATVBAHA.115.306153 26471268
    [Google Scholar]
  7. WuJ. HeemskerkJ.W.M. BaatenC.C.F.M.J. Platelet membrane receptor proteolysis: implications for platelet function.Front. Cardiovasc. Med.2021760839110.3389/fcvm.2020.608391 33490118
    [Google Scholar]
  8. van GeffenJ.P. SwieringaF. HeemskerkJ.W.M. Platelets and coagulation in thrombus formation: Aberrations in the Scott syndrome.Thromb. Res.2016141Suppl. 2S12S1610.1016/S0049‑3848(16)30355‑3 27207414
    [Google Scholar]
  9. KhorchidA. IkuraM. How calpain is activated by calcium.Nat. Struct. Biol.20029423924110.1038/nsb0402‑239 11914728
    [Google Scholar]
  10. GreseleP. FalcinelliE. MomiS. PetitoE. SebastianoM. Platelets and matrix metalloproteinases: A bidirectional interaction with multiple pathophysiologic implications.Hamostaseologie202141213614510.1055/a‑1393‑8339 33860521
    [Google Scholar]
  11. El-KadiryA.E.H. MerhiY. The role of the proteasome in platelet function.Int. J. Mol. Sci.2021228399910.3390/ijms22083999 33924425
    [Google Scholar]
  12. ChakrabartyS. KahlerJ.P. van de PlasscheM.A. VanhoutteR. VerhelstS.H. Recent advances in activity-based protein profiling of proteases.Activity-Based Protein Profiling. Springer Nature201925328110.1007/82_2018_138 30244324
    [Google Scholar]
  13. SanmanL.E. BogyoM. Activity-based profiling of proteases.Annu. Rev. Biochem.201483124927310.1146/annurev‑biochem‑060713‑035352 24905783
    [Google Scholar]
  14. OdaK. New families of carboxyl peptidases: Serine-carboxyl peptidases and glutamic peptidases.J. Biochem.20121511132510.1093/jb/mvr129 22016395
    [Google Scholar]
  15. WrightM.H. SieberS.A. Chemical proteomics approaches for identifying the cellular targets of natural products.Nat. Prod. Rep.201633568170810.1039/C6NP00001K 27098809
    [Google Scholar]
  16. ZhuH. TamuraT. HamachiI. Chemical proteomics for subcellular proteome analysis.Curr. Opin. Chem. Biol.2019481710.1016/j.cbpa.2018.08.001 30170243
    [Google Scholar]
  17. WongJ.W.H. McRedmondJ.P. CagneyG. Activity profiling of platelets by chemical proteomics.Proteomics200991405010.1002/pmic.200800185 19053083
    [Google Scholar]
  18. HollyS.P. ChangJ.W. LiW. Chemoproteomic discovery of AADACL1 as a regulator of human platelet activation.Chem. Biol.20132091125113410.1016/j.chembiol.2013.07.011 23993462
    [Google Scholar]
  19. ChangJ.W. ZuhlA.M. SpeersA.E. Selective inhibitor of platelet-activating factor acetylhydrolases 1b2 and 1b3 that impairs cancer cell survival.ACS Chem. Biol.201510492593210.1021/cb500893q 25602368
    [Google Scholar]
  20. O’DonnellV.B. MurphyR.C. WatsonS.P. Platelet lipidomics.Circ. Res.201411471185120310.1161/CIRCRESAHA.114.301597 24677238
    [Google Scholar]
  21. PengB. GeueS. ComanC. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome.Blood20181325e1e1210.1182/blood‑2017‑12‑822890 29784642
    [Google Scholar]
  22. van GeffenJ.P. SwieringaF. van KuijkK. Mild hyperlipidemia in mice aggravates platelet responsiveness in thrombus formation and exploration of platelet proteome and lipidome.Sci. Rep.20201012140710.1038/s41598‑020‑78522‑9 33293576
    [Google Scholar]
  23. SolariF.A. MattheijN.J.A. BurkhartJ.M. Combined quantification of the global proteome, phosphoproteome, and proteolytic cleavage to characterize altered platelet functions in the human Scott syndrome.Mol. Cell. Proteomics201615103154316910.1074/mcp.M116.060368 27535140
    [Google Scholar]
  24. SolariF.A. Two birds with one stone: Parallel quantification of proteome and phosphoproteome using iTRAQ.Methods Mol. Biol.20161394254110.1007/978‑1‑4939‑3341‑9_3
    [Google Scholar]
  25. Davizon-CastilloP. RowleyJ.W. RondinaM.T. Megakaryocyte and platelet transcriptomics for discoveries in human health and disease.Arterioscler. Thromb. Vasc. Biol.20204061432144010.1161/ATVBAHA.119.313280 32295424
    [Google Scholar]
  26. StunnenbergH.G. HirstM. AbrignaniS. A blueprint for scientific collaboration and discovery.Cell201616751145114910.1016/j.cell.2016.11.007 27863232
    [Google Scholar]
  27. GrassiL. Cell type specific novel lincRNAs and circRNAs in the blueprint hematopoietic transcriptomes atlas.Biorxiv7646132019
    [Google Scholar]
  28. HuangJ. SwieringaF. SolariF.A. Assessment of a complete and classified platelet proteome from genome-wide transcripts of human platelets and megakaryocytes covering platelet functions.Sci. Rep.20211111235810.1038/s41598‑021‑91661‑x 34117303
    [Google Scholar]
  29. DupreeE.J. JayathirthaM. YorkeyH. MihasanM. PetreB.A. DarieC.C. A critical review of bottom-up proteomics: the good, the bad, and the future of this field.Proteomes2020831410.3390/proteomes8030014 32640657
    [Google Scholar]
  30. ShahP. YangW. SunS. PasayJ. FaradayN. ZhangH. Platelet glycoproteins associated with aspirin‐treatment upon platelet activation.Proteomics2017176160019910.1002/pmic.201600199 27452734
    [Google Scholar]
  31. LewandrowskiU. MoebiusJ. WalterU. SickmannA. Elucidation of N-glycosylation sites on human platelet proteins: A glycoproteomic approach.Mol. Cell. Proteomics20065222623310.1074/mcp.M500324‑MCP200 16263699
    [Google Scholar]
  32. SolariF.A. Dell’AicaM. SickmannA. ZahediR.P. Why phosphoproteomics is still a challenge.Mol. Biosyst.20151161487149310.1039/C5MB00024F 25800119
    [Google Scholar]
  33. AlpertA.J. ShuklaM. ShuklaA.K. Hydrophilic-interaction chromatography of complex carbohydrates.J. Chromatogr. A1994676119120210.1016/0021‑9673(94)00467‑6 7921176
    [Google Scholar]
  34. Engholm-KellerK. BirckP. StørlingJ. PociotF. Mandrup-PoulsenT. LarsenM.R. TiSH — a robust and sensitive global phosphoproteomics strategy employing a combination of TiO2, SIMAC, and HILIC.J. Proteomics201275185749576110.1016/j.jprot.2012.08.007 22906719
    [Google Scholar]
  35. BeckF. GeigerJ. GambaryanS. Temporal quantitative phosphoproteomics of ADP stimulation reveals novel central nodes in platelet activation and inhibition.Blood20171292e1e1210.1182/blood‑2016‑05‑714048 28060719
    [Google Scholar]
  36. SwieringaF. SolariF.A. PagelO. Impaired iloprost-induced platelet inhibition and phosphoproteome changes in patients with confirmed pseudohypoparathyroidism type Ia, linked to genetic mutations in GNAS.Sci. Rep.20201011138910.1038/s41598‑020‑68379‑3 32647264
    [Google Scholar]
  37. KozasaT. ItohH. TsukamotoT. KaziroY. Isolation and characterization of the human Gs alpha gene.Proc. Natl. Acad. Sci. USA19888572081208510.1073/pnas.85.7.2081 3127824
    [Google Scholar]
  38. PetersJ. WilliamsonC.M. Control of imprinting at the Gnas cluster.Epigenetics20072420721310.4161/epi.2.4.5380 18094621
    [Google Scholar]
  39. LorochS. KopczynskiD. SchneiderA.C. Toward zero variance in proteomics sample preparation: positive-pressure FASP in 96-well format (PF96) enables highly reproducible, time-and cost-efficient analysis of sample cohorts.J. Proteome Res.20222141181118810.1021/acs.jproteome.1c00706 35316605
    [Google Scholar]
  40. NemkovT. HansenK.C. DumontL.J. D’AlessandroA. Metabolomics in transfusion medicine.Transfusion201656498099310.1111/trf.13442 26662506
    [Google Scholar]
  41. D’AlessandroA. Clinical metabolomics: The next stage of clinical biochemistry.Blood Transfus.201210S10S19S24
    [Google Scholar]
  42. VadaqN. SchirmerM. TunjungputriR.N. Untargeted plasma metabolomics and gut microbiome profiling provide novel insights into the regulation of platelet reactivity in healthy individuals.Thromb. Haemost.2022122452953910.1055/a‑1541‑3706 34192775
    [Google Scholar]
  43. HarmT. DittrichK. BrunA. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk.Clin. Res. Cardiol.2023112111664167810.1007/s00392‑023‑02260‑x 37470807
    [Google Scholar]
  44. ChatterjeeM. RathD. SchlotterbeckJ. Regulation of oxidized platelet lipidome: Implications for coronary artery disease.Eur. Heart J.201738251993200510.1093/eurheartj/ehx146 28431006
    [Google Scholar]
  45. XiaoH. SiddiquiR.A. Al-HassaniM.H. SlivaD. KovacsR.J. Phospholipids released from activated platelets improve platelet aggregation and endothelial cell migration.Platelets200112316317010.1080/09537100120039389 11304418
    [Google Scholar]
  46. SolariF.A. KrahnD. SwieringaF. Multi-omics approaches to study platelet mechanisms.Current Opin. Chem. Biol.20237310225310.1016/j.cbpa.2022.102253 36689818
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X334382241210064101
Loading
/content/journals/ccr/10.2174/011573403X334382241210064101
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test