Skip to content
2000
image of Serum Cortisol and Cardiovascular Disease Risk-A Potential Biomarker

Abstract

Cardiovascular Disease [CVD], the leading cause of death globally, poses a significant burden on the healthcare sector. Its association with stress and Cushing’s Syndrome has driven cortisol, the ‘stress hormone,’ to be a potential candidate in determining CVD risk. Cortisol synthesis and release through the hypothalamic-pituitary-adrenal [HPA] axis are regulated by several hormones and receptors involved in the pathological cascade towards CVD. Evidence suggests that metabolic syndrome plays a major role in cortisol-mediated CVD risk. On the other hand, non-metabolic features are also implicated when the association between cortisol and CVD risk remains significant upon normalisation of metabolic parameters. Correspondingly, the treatment for hypercortisolism is often found effective in lowering CVD risk. Despite available evidence, several factors continue to hinder the clinical use of cortisol as a risk biomarker for CVD. This review provides an insight into the role of serum cortisol in CVD progression and risk, with emphasis on the mechanistic features and parameters.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X328499241106064553
2025-01-01
2025-01-18
Loading full text...

Full text loading...

References

  1. Cardiovascular diseases (CVDs). 2021 Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. 2022 heart disease & stroke statistical update fact sheet global burden of disease. 2022 Available from: https://www.heart.org/-/media/PHD-Files-2/Science-News/2/2022-Heart-and-Stroke-Stat-Update/2022-Stat-Update-factsheet-GIobal-Burden-of-Disease.pdf
  3. Thau L. Gandhi J. Sharma S. Physiology, Cortisol. StatPearls StatPearls Publishing Treasure Island (FL) 30855827 2022
    [Google Scholar]
  4. Henley C. HPA axis. Foundations of Neuroscience Simple Book 2020
    [Google Scholar]
  5. Norman A. Henry H. Hormones. Hormones Elsevier 2015 1 25 10.1016/B978‑0‑08‑091906‑5.00001‑X
    [Google Scholar]
  6. De Leo M. Pivonello R. Auriemma R.S. Cozzolino A. Vitale P. Simeoli C. De Martino M.C. Lombardi G. Colao A. Cardiovascular disease in Cushing’s syndrome: Heart versus vasculature. Neuroendocrinology 2010 92 Suppl. 1 50 54 10.1159/000318566 20829618
    [Google Scholar]
  7. Coulden A. Hamblin R. Wass J. Karavitaki N. Cardiovascular health and mortality in Cushing’s disease. Pituitary 2022 25 5 750 753 10.1007/s11102‑022‑01258‑4 35869339
    [Google Scholar]
  8. Stephens M.A.C. Wand G. Stress and the HPA axis: Role of glucocorticoids in alcohol dependence. Alcohol Res. 2012 34 4 468 483 23584113
    [Google Scholar]
  9. Bongsebandhu-phubhakdi C. Supornsilchai V. Aroonparkmongkol S. Limothai U. Tachaboon S. Dinhuzen J. Chaisuriyong W. Trongkamolchai S. Wanpaisitkul M. Chulapornsiri C. Tiawilai A. Tiawilai T. Tantawichien T. Thisyakorn U. Srisawat N. Serum cortisol as a biomarker of severe dengue. Trop. Med. Infect. Dis. 2023 8 3 146 10.3390/tropicalmed8030146 36977147
    [Google Scholar]
  10. Jones C. Gwenin C. Cortisol level dysregulation and its prevalence - Is it nature’s alarm clock? Physiol. Rep. 2021 8 24 e14644 10.14814/phy2.14644 33340273
    [Google Scholar]
  11. Cohen B.E. Edmondson D. Kronish I.M. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Am. J. Hypertens. 2015 28 11 1295 1302 10.1093/ajh/hpv047 25911639
    [Google Scholar]
  12. Song H. Fang F. Arnberg F.K. Mataix-Cols D. Fernández de la Cruz L. Almqvist C. Fall K. Lichtenstein P. Thorgeirsson G. Valdimarsdóttir U.A. Stress related disorders and risk of cardiovascular disease: population based, sibling controlled cohort study. BMJ 2019 365 l1255 10.1136/bmj.l1255 30971390
    [Google Scholar]
  13. Ryder A.L. Cohen B.E. Evidence for depression and anxiety as risk factors for heart disease and stroke: Implications for primary care. Fam. Pract. 2021 38 3 365 367 10.1093/fampra/cmab031 34109973
    [Google Scholar]
  14. Osborne M.T. Shin L.M. Mehta N.N. Pitman R.K. Fayad Z.A. Tawakol A. Disentangling the links between psychosocial stress and cardiovascular disease. Circ. Cardiovasc. Imaging 2020 13 8 e010931 10.1161/CIRCIMAGING.120.010931 32791843
    [Google Scholar]
  15. Mac Giollabhui N. Ng T.H. Ellman L.M. Alloy L.B. The longitudinal associations of inflammatory biomarkers and depression revisited: Systematic review, meta-analysis, and meta-regression. Mol. Psychiatry 2021 26 7 3302 3314 10.1038/s41380‑020‑00867‑4 32807846
    [Google Scholar]
  16. Rao R. Androulakis I.P. Allostatic adaptation and personalized physiological trade-offs in the circadian regulation of the HPA axis: A mathematical modeling approach. Sci. Rep. 2019 9 1 11212 10.1038/s41598‑019‑47605‑7 31371802
    [Google Scholar]
  17. Cohen S. Janicki-Deverts D. Doyle W.J. Miller G.E. Frank E. Rabin B.S. Turner R.B. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. USA 2012 109 16 5995 5999 10.1073/pnas.1118355109 22474371
    [Google Scholar]
  18. Herman J.P. McKlveen J.M. Ghosal S. Kopp B. Wulsin A. Makinson R. Regulation of the hypothalamic‐pituitary‐adrenocortical stress response. Comprehensive Physiology Wiley 2016 603 621 10.1002/cphy.c150015
    [Google Scholar]
  19. Ulrich-Lai Y.M. Figueiredo H.F. Ostrander M.M. Choi D.C. Engeland W.C. Herman J.P. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am. J. Physiol. Endocrinol. Metab. 2006 291 5 E965 E973 10.1152/ajpendo.00070.2006 16772325
    [Google Scholar]
  20. Tawakol A. Ishai A. Takx R.A.P. Figueroa A.L. Ali A. Kaiser Y. Truong Q.A. Solomon C.J.E. Calcagno C. Mani V. Tang C.Y. Mulder W.J.M. Murrough J.W. Hoffmann U. Nahrendorf M. Shin L.M. Fayad Z.A. Pitman R.K. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study. Lancet 2017 389 10071 834 845 10.1016/S0140‑6736(16)31714‑7 28088338
    [Google Scholar]
  21. Avenatti E. Rebellato A. Iannaccone A. Battocchio M. Dassie F. Veglio F. Milan A. Fallo F. Left ventricular geometry and 24-h blood pressure profile in Cushing’s syndrome. Endocrine 2017 55 2 547 554 10.1007/s12020‑016‑0986‑6 27179657
    [Google Scholar]
  22. Kamenický P. Redheuil A. Roux C. Salenave S. Kachenoura N. Raissouni Z. Macron L. Guignat L. Jublanc C. Azarine A. Brailly S. Young J. Mousseaux E. Chanson P. Cardiac structure and function in Cushing’s syndrome: A cardiac magnetic resonance imaging study. J. Clin. Endocrinol. Metab. 2014 99 11 E2144 E2153 10.1210/jc.2014‑1783 25093618
    [Google Scholar]
  23. Faggiano A. Pivonello R. Spiezia S. De Martino M.C. Filippella M. Di Somma C. Lombardi G. Colao A. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission. J. Clin. Endocrinol. Metab. 2003 88 6 2527 2533 10.1210/jc.2002‑021558 12788849
    [Google Scholar]
  24. Patel S.A. Winkel M. Ali M.K. Narayan K.M.V. Mehta N.K. Cardiovascular mortality associated with 5 leading risk factors: national and state preventable fractions estimated from survey data. Ann. Intern. Med. 2015 163 4 245 253 10.7326/M14‑1753 26121190
    [Google Scholar]
  25. Virani S.S. Alonso A. Benjamin E.J. Bittencourt M.S. Callaway C.W. Carson A.P. Chamberlain A.M. Chang A.R. Cheng S. Delling F.N. Djousse L. Elkind M.S.V. Ferguson J.F. Fornage M. Khan S.S. Kissela B.M. Knutson K.L. Kwan T.W. Lackland D.T. Lewis T.T. Lichtman J.H. Longenecker C.T. Loop M.S. Lutsey P.L. Martin S.S. Matsushita K. Moran A.E. Mussolino M.E. Perak A.M. Rosamond W.D. Roth G.A. Sampson U.K.A. Satou G.M. Schroeder E.B. Shah S.H. Shay C.M. Spartano N.L. Stokes A. Tirschwell D.L. VanWagner L.B. Tsao C.W. Heart disease and stroke statistics - 2020 update: A report from the American Heart Association. Circulation 2020 141 9 e139 e596 10.1161/CIR.0000000000000757 31992061
    [Google Scholar]
  26. Cheng S. Claggett B. Correia A.W. Shah A.M. Gupta D.K. Skali H. Ni H. Rosamond W.D. Heiss G. Folsom A.R. Coresh J. Solomon S.D. Temporal trends in the population attributable risk for cardiovascular disease: The Atherosclerosis Risk in Communities Study. Circulation 2014 130 10 820 828 10.1161/CIRCULATIONAHA.113.008506 25210095
    [Google Scholar]
  27. Pivonello R. Isidori A.M. De Martino M.C. Newell-Price J. Biller B.M.K. Colao A. Complications of Cushing’s syndrome: State of the art. Lancet Diabetes Endocrinol. 2016 4 7 611 629 10.1016/S2213‑8587(16)00086‑3 27177728
    [Google Scholar]
  28. Mebrahtu T.F. Morgan A.W. West R.M. Stewart P.M. Pujades-Rodriguez M. Oral glucocorticoids and incidence of hypertension in people with chronic inflammatory diseases: A population-based cohort study. CMAJ 2020 192 12 E295 E301 10.1503/cmaj.191012 32392512
    [Google Scholar]
  29. Zilio M. Barbot M. Ceccato F. Camozzi V. Bilora F. Casonato A. Frigo A.C. Albiger N. Daidone V. Mazzai L. Mantero F. Scaroni C. Diagnosis and complications of Cushing’s disease: Gender‐related differences. Clin. Endocrinol. (Oxf.) 2014 80 3 403 410 10.1111/cen.12299 23889360
    [Google Scholar]
  30. Arruda M. Mello Ribeiro Cavalari E. Pessoa de Paula M. Fernandes Cordeiro de Morais F. Furtado Bilro G. Alves Coelho M.C. de Oliveira e Silva de Morais N.A. Choeri D. Moraes A. Vieira Neto L. The presence of nonfunctioning adrenal incidentalomas increases arterial hypertension frequency and severity, and is associated with cortisol levels after dexamethasone suppression test. J. Hum. Hypertens. 2018 32 1 3 11 10.1038/s41371‑017‑0011‑4 29176595
    [Google Scholar]
  31. Bruce I.N. van Vollenhoven R.F. Morand E.F. Furie R.A. Manzi S. White W.B. Abreu G. Tummala R. Sustained glucocorticoid tapering in the phase 3 trials of anifrolumab: A post hoc analysis of the TULIP-1 and TULIP-2 trials. Rheumatology (Oxford) 2023 62 4 1526 1534 10.1093/rheumatology/keac491 36018235
    [Google Scholar]
  32. Lee N.R. Kim B.J. Lee C.H. Lee Y.B. Lee S. Hwang H.J. Kim E. Kim S.H. Lee M.G. Lee S.E. Lavery G.G. Choi E.H. Role of 11β-hydroxysteroid dehydrogenase type 1 in the development of atopic dermatitis. Sci. Rep. 2020 10 1 20237 10.1038/s41598‑020‑77281‑x 33214595
    [Google Scholar]
  33. Bailey M.A. 11β-hydroxysteroid dehydrogenases and hypertension in the metabolic syndrome. Curr. Hypertens. Rep. 2017 19 12 100 10.1007/s11906‑017‑0797‑z 29138984
    [Google Scholar]
  34. Morgan S.A. McCabe E.L. Gathercole L.L. Hassan-Smith Z.K. Larner D.P. Bujalska I.J. Stewart P.M. Tomlinson J.W. Lavery G.G. 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess. Proc. Natl. Acad. Sci. USA 2014 111 24 E2482 E2491 10.1073/pnas.1323681111 24889609
    [Google Scholar]
  35. Victorio J.A. Clerici S.P. Palacios R. Alonso M.J. Vassallo D.V. Jaffe I.Z. Rossoni L.V. Davel A.P. Spironolactone prevents endothelial nitric oxide synthase uncoupling and vascular dysfunction induced by β-adrenergic overstimulation. Hypertension 2016 68 3 726 735 10.1161/HYPERTENSIONAHA.116.07911 27432866
    [Google Scholar]
  36. Evans L.C. Ivy J.R. Wyrwoll C. McNairn J.A. Menzies R.I. Christensen T.H. Al-Dujaili E.A.S. Kenyon C.J. Mullins J.J. Seckl J.R. Holmes M.C. Bailey M.A. Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 2016 133 14 1360 1370 10.1161/CIRCULATIONAHA.115.019341 26951843
    [Google Scholar]
  37. Magiakou M.A. Smyrnaki P. Chrousos G.P. Hypertension in Cushing’s syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 2006 20 3 467 482 10.1016/j.beem.2006.07.006 16980206
    [Google Scholar]
  38. Shibata H. Suzuki H. Maruyama T. Saruta T. Gene expression of angiotensin II receptor in blood cells of Cushing’s syndrome. Hypertension 1995 26 6 1003 1010 10.1161/01.HYP.26.6.1003 7490136
    [Google Scholar]
  39. Isidori A.M. Graziadio C. Paragliola R.M. Cozzolino A. Ambrogio A.G. Colao A. Corsello S.M. Pivonello R. The hypertension of Cushing’s syndrome. J. Hypertens. 2015 33 1 44 60 10.1097/HJH.0000000000000415 25415766
    [Google Scholar]
  40. Einarson T.R. Acs A. Ludwig C. Panton U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018 17 1 83 10.1186/s12933‑018‑0728‑6 29884191
    [Google Scholar]
  41. Ma C.X. Ma X.N. Guan C.H. Li Y.D. Mauricio D. Fu S.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management. Cardiovasc. Diabetol. 2022 21 1 74 10.1186/s12933‑022‑01516‑6 35568946
    [Google Scholar]
  42. Ormazabal V. Nair S. Elfeky O. Aguayo C. Salomon C. Zuñiga F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018 17 1 122 10.1186/s12933‑018‑0762‑4 30170598
    [Google Scholar]
  43. Scaroni C. Zilio M. Foti M. Boscaro M. Glucose metabolism abnormalities in cushing syndrome: From molecular basis to clinical management. Endocr. Rev. 2017 38 3 189 219 10.1210/er.2016‑1105 28368467
    [Google Scholar]
  44. Muscogiuri G. Sorice G.P. Prioletta A. Mezza T. Cipolla C. Salomone E. Giaccari A. Pontecorvi A. Della Casa S. The size of adrenal incidentalomas correlates with insulin resistance. Is there a cause-effect relationship? Clin. Endocrinol. (Oxf.) 2011 74 3 300 305 10.1111/j.1365‑2265.2010.03928.x 21070314
    [Google Scholar]
  45. Hackett R.A. Kivimäki M. Kumari M. Steptoe A. Diurnal cortisol patterns, future diabetes, and impaired glucose metabolism in the whitehall II cohort study. J. Clin. Endocrinol. Metab. 2016 101 2 619 625 10.1210/jc.2015‑2853 26647151
    [Google Scholar]
  46. Ortiz R. Kluwe B. Odei J.B. Echouffo Tcheugui J.B. Sims M. Kalyani R.R. Bertoni A.G. Golden S.H. Joseph J.J. The association of morning serum cortisol with glucose metabolism and diabetes: The Jackson Heart Study. Psychoneuroendocrinology 2019 103 25 32 10.1016/j.psyneuen.2018.12.237 30623794
    [Google Scholar]
  47. Dalle H. Garcia M. Antoine B. Boehm V. Do T.T.H. Buyse M. Ledent T. Lamazière A. Magnan C. Postic C. Denis R.G. Luquet S. Fève B. Moldes M. Adipocyte glucocorticoid receptor deficiency promotes adipose tissue expandability and improves the metabolic profile under corticosterone exposure. Diabetes 2019 68 2 305 317 10.2337/db17‑1577 30455377
    [Google Scholar]
  48. Guo C. Ricchiuti V. Lian B.Q. Yao T.M. Coutinho P. Romero J.R. Li J. Williams G.H. Adler G.K. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory adipokines. Circulation 2008 117 17 2253 2261 10.1161/CIRCULATIONAHA.107.748640 18427128
    [Google Scholar]
  49. Kamba A. Daimon M. Murakami H. Otaka H. Matsuki K. Sato E. Tanabe J. Takayasu S. Matsuhashi Y. Yanagimachi M. Terui K. Kageyama K. Tokuda I. Takahashi I. Nakaji S. Association between higher serum cortisol levels and decreased insulin secretion in a general population. PLoS One 2016 11 11 e0166077 10.1371/journal.pone.0166077 27861636
    [Google Scholar]
  50. Ross R. Neeland I.J. Yamashita S. Shai I. Seidell J. Magni P. Santos R.D. Arsenault B. Cuevas A. Hu F.B. Griffin B.A. Zambon A. Barter P. Fruchart J.C. Eckel R.H. Matsuzawa Y. Després J.P. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020 16 3 177 189 10.1038/s41574‑019‑0310‑7 32020062
    [Google Scholar]
  51. Giordano R. Picu A. Marinazzo E. D’Angelo V. Berardelli R. Karamouzis I. Forno D. Zinnà D. Maccario M. Ghigo E. Arvat E. Metabolic and cardiovascular outcomes in patients with Cushing’s syndrome of different aetiologies during active disease and 1 year after remission. Clin. Endocrinol. (Oxf.) 2011 75 3 354 360 10.1111/j.1365‑2265.2011.04055.x 21521323
    [Google Scholar]
  52. Savas M. Wester V.L. Staufenbiel S.M. Koper J.W. van den Akker E.L.T. Visser J.A. van der Lely A.J. Penninx B.W.J.H. van Rossum E.F.C. Systematic evaluation of corticosteroid use in obese and non-obese individuals: A multi-cohort study. Int. J. Med. Sci. 2017 14 7 615 621 10.7150/ijms.19213 28824292
    [Google Scholar]
  53. Preis S.R. Massaro J.M. Robins S.J. Hoffmann U. Vasan R.S. Irlbeck T. Meigs J.B. Sutherland P. D’Agostino R.B. O’Donnell C.J. Fox C.S. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study. Obesity (Silver Spring) 2010 18 11 2191 2198 10.1038/oby.2010.59 20339361
    [Google Scholar]
  54. Liu J. Fox C.S. Hickson D.A. May W.D. Hairston K.G. Carr J.J. Taylor H.A. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: The Jackson Heart Study. J. Clin. Endocrinol. Metab. 2010 95 12 5419 5426 10.1210/jc.2010‑1378 20843952
    [Google Scholar]
  55. Abraham T.M. Pedley A. Massaro J.M. Hoffmann U. Fox C.S. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors. Circulation 2015 132 17 1639 1647 10.1161/CIRCULATIONAHA.114.015000 26294660
    [Google Scholar]
  56. Larsson S.C. Lee W.H. Burgess S. Allara E. Plasma cortisol and risk of atrial fibrillation: A mendelian randomization study. J. Clin. Endocrinol. Metab. 2021 106 7 e2521 e2526 10.1210/clinem/dgab219 33822969
    [Google Scholar]
  57. Chait A. den Hartigh L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020 7 22 10.3389/fcvm.2020.00022 32158768
    [Google Scholar]
  58. Ruiz-Castell M. Samouda H. Bocquet V. Fagherazzi G. Stranges S. Huiart L. Estimated visceral adiposity is associated with risk of cardiometabolic conditions in a population based study. Sci. Rep. 2021 11 1 9121 10.1038/s41598‑021‑88587‑9 33907272
    [Google Scholar]
  59. Joseph J.J. Wang X. Diez Roux A.V. Sanchez B.N. Seeman T.E. Needham B.L. Golden S.H. Antecedent longitudinal changes in body mass index are associated with diurnal cortisol curve features: The multi-ethnic study of atherosclerosis. Metabolism 2017 68 95 107 10.1016/j.metabol.2016.12.001 28183457
    [Google Scholar]
  60. Kluwe B. Zhao S. Kline D. Ortiz R. Brock G. Echouffo-Tcheugui J.B. Sims M. Kalyani R.R. Golden S.H. Joseph J.J. Adiposity measures and morning serum cortisol in African Americans: Jackson heart study. Obesity (Silver Spring) 2021 29 2 418 427 10.1002/oby.23056 33491313
    [Google Scholar]
  61. Adam E.K. Quinn M.E. Tavernier R. McQuillan M.T. Dahlke K.A. Gilbert K.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis. Psychoneuroendocrinology 2017 83 25 41 10.1016/j.psyneuen.2017.05.018 28578301
    [Google Scholar]
  62. Fardet L. Fève B. Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events. Drugs 2014 74 15 1731 1745 10.1007/s40265‑014‑0282‑9 25204470
    [Google Scholar]
  63. McLaughlin T. Craig C. Liu L.F. Perelman D. Allister C. Spielman D. Cushman S.W. Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans. Diabetes 2016 65 5 1245 1254 10.2337/db15‑1213 26884438
    [Google Scholar]
  64. Roerink S.H.P.P. Wagenmakers M.A.E.M. Langenhuijsen J.F. Ballak D.B. Rooijackers H.M.M. d’Ancona F.C. van Dielen F.M. Smit J.W.A. Plantinga T.S. Netea-Maier R.T. Hermus A.R.M.M. Increased adipocyte size, macrophage infiltration, and adverse local adipokine profile in perirenal fat in cushing’s syndrome. Obesity (Silver Spring) 2017 25 8 1369 1374 10.1002/oby.21887 28594137
    [Google Scholar]
  65. Licinio J. Mantzoros C. Negrão A.B. Cizza G. Wong M.L. Bongiorno P.B. Chrousos G.P. Karp B. Allen C. Flier J.S. Gold P.W. Human leptin levels are pulsatile and inversely related to pituitary-ardenal function. Nat. Med. 1997 3 5 575 579 10.1038/nm0597‑575 9142131
    [Google Scholar]
  66. Berawi K.N. Hadi S. Lipoeto N.I. Wahid I. Jamsari J. Dyslipidemia incidents between general obesity and central obesity of employees with obesity at universitas lampung. Biomed. Pharmacol. J. 2018 11 1 201 207 10.13005/bpj/1364
    [Google Scholar]
  67. Arab Dolatabadi A Mahboubi M. A study of the influence of dexamethasone on lipid profile and enzyme lactate dehydrogenase. J. Med. Life 8 Spec Iss 3 72 76 2015 28316669
    [Google Scholar]
  68. Ama Moor V.J. Ndongo Amougou S. Ombotto S. Ntone F. Wouamba D.E. Ngo Nonga B. Dyslipidemia in patients with a cardiovascular risk and disease at the University Teaching Hospital of Yaoundé, Cameroon. Int. J. Vasc. Med. 2017 2017 6061306 10.1155/2017/6061306 28163932
    [Google Scholar]
  69. Kaze A.D. Santhanam P. Musani S.K. Ahima R. Echouffo-Tcheugui J.B. Metabolic dyslipidemia and cardiovascular outcomes in type 2 diabetes mellitus: Findings from the look AHEAD study. J. Am. Heart Assoc. 2021 10 7 e016947 10.1161/JAHA.120.016947 33728932
    [Google Scholar]
  70. Niroumand S. Khajedaluee M. Khadem-Rezaiyan M. Abrishami M. Juya M. Khodaee G. Dadgarmoghaddam M. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease. Med. J. Islam. Repub. Iran 2015 29 240 26793631
    [Google Scholar]
  71. Arnaldi G. Scandali V.M. Trementino L. Cardinaletti M. Appolloni G. Boscaro M. Pathophysiology of dyslipidemia in Cushing’s syndrome. Neuroendocrinology 2010 92 Suppl. 1 86 90 10.1159/000314213 20829625
    [Google Scholar]
  72. Linden M.A. Burke S.J. Pirzadah H.A. Huang T.Y. Batdorf H.M. Mohammed W.K. Jones K.A. Ghosh S. Campagna S.R. Collier J.J. Noland R.C. Pharmacological inhibition of lipolysis prevents adverse metabolic outcomes during glucocorticoid administration. Mol. Metab. 2023 74 101751 10.1016/j.molmet.2023.101751 37295745
    [Google Scholar]
  73. Stimson R.H. Anderson A.J. Ramage L.E. Macfarlane D.P. de Beaux A.C. Mole D.J. Andrew R. Walker B.R. Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct. Diabetes Obes. Metab. 2017 19 6 883 891 10.1111/dom.12899 28177189
    [Google Scholar]
  74. Lee H.W. Kim K.J. Jung K.S. Chon Y.E. Huh J.H. Park K.H. Chung J.B. Kim C.O. Han K.H. Park J.Y. The relationship between visceral obesity and hepatic steatosis measured by controlled attenuation parameter. PLoS One 2017 12 10 e0187066 10.1371/journal.pone.0187066 29077769
    [Google Scholar]
  75. Rockall A.G. Sohaib S.A. Evans D. Kaltsas G. Isidori A.M. Monson J.P. Besser G.M. Grossman A.B. Reznek R.H. Hepatic steatosis in Cushing’s syndrome: A radiological assessment using computed tomography. Eur. J. Endocrinol. 2003 149 6 543 548 10.1530/eje.0.1490543 14640995
    [Google Scholar]
  76. Wagner J. Langlois F. Lim D.S.T. McCartney S. Fleseriu M. Hypercoagulability and risk of venous thromboembolic events in endogenous cushing’s syndrome: A systematic meta-analysis. Front. Endocrinol. (Lausanne) 2019 9 805 10.3389/fendo.2018.00805 30745894
    [Google Scholar]
  77. Sarfraz A. Sarfraz Z. Razzack A.A. Patel G. Sarfraz M. Venous thromboembolism, corticosteroids and COVID-19: A systematic review and meta-analysis. Clin. Appl. Thromb. Hemost. 2021 27 1076029621993573 10.1177/1076029621993573 33571009
    [Google Scholar]
  78. Johannesdottir S.A. Horváth-Puhó E. Dekkers O.M. Cannegieter S.C. Jørgensen J.O.L. Ehrenstein V. Vandenbroucke J.P. Pedersen L. Sørensen H.T. Use of glucocorticoids and risk of venous thromboembolism: a nationwide population-based case-control study. JAMA Intern. Med. 2013 173 9 743 752 10.1001/jamainternmed.2013.122 23546607
    [Google Scholar]
  79. Fischli S. von Wyl V. Wuillemin W. von Känel R. Schütz P. Christ-Crain M. Studer F. Brander L. Schüpfer G. Metzger J. Henzen C. Impact of adrenal function on hemostasis/endothelial function in patients undergoing surgery. J. Endocr. Soc. 2021 5 5 bvab047 10.1210/jendso/bvab047 33928206
    [Google Scholar]
  80. Boffa M.B. Hamill J.D. Maret D. Brown D. Scott M.L. Nesheim M.E. Koschinsky M.L. Acute phase mediators modulate thrombin-activable fibrinolysis inhibitor (TAFI) gene expression in HepG2 cells. J. Biol. Chem. 2003 278 11 9250 9257 10.1074/jbc.M209588200 12645517
    [Google Scholar]
  81. Halleux C.M. Declerck P.J. Tran S.L. Detry R. Brichard S.M. Hormonal control of plasminogen activator inhibitor-1 gene expression and production in human adipose tissue: Stimulation by glucocorticoids and inhibition by catecholamines. J. Clin. Endocrinol. Metab. 1999 84 11 4097 4105 10566656
    [Google Scholar]
  82. Brotman D.J. Girod J.P. Posch A. Jani J.T. Patel J.V. Gupta M. Lip G.Y.H. Reddy S. Kickler T.S. Effects of short-term glucocorticoids on hemostatic factors in healthy volunteers. Thromb. Res. 2006 118 2 247 252 10.1016/j.thromres.2005.06.006 16005496
    [Google Scholar]
  83. Souverein P.C. Berard A. Van Staa T.P. Cooper C. Egberts A.C. Leufkens H.G. Walker B.R. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study. Heart 2004 90 8 859 865 10.1136/hrt.2003.020180 15253953
    [Google Scholar]
  84. Pimenta E. Wolley M. Stowasser M. Adverse cardiovascular outcomes of corticosteroid excess. Endocrinology 2012 153 11 5137 5142 10.1210/en.2012‑1573 22919065
    [Google Scholar]
  85. Pujades-Rodriguez M. Morgan A.W. Cubbon R.M. Wu J. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: A population-based cohort study. PLoS Med. 2020 17 12 e1003432 10.1371/journal.pmed.1003432 33270649
    [Google Scholar]
  86. Crawford A.A. Soderberg S. Kirschbaum C. Murphy L. Eliasson M. Ebrahim S. Davey Smith G. Olsson T. Sattar N. Lawlor D.A. Timpson N.J. Reynolds R.M. Walker B.R. Morning plasma cortisol as a cardiovascular risk factor: Findings from prospective cohort and Mendelian randomization studies. Eur. J. Endocrinol. 2019 181 4 429 438 10.1530/EJE‑19‑0161 31325907
    [Google Scholar]
  87. Jin Y. Wei D. Liu P. Chen F. Li R. Zhang J. Zhang R. Liu Z. Huo W. Li L. Wang C. Ban J. Mao Z. Serum cortisol, 25 (OH)D, and cardiovascular risk factors in patients with type 2 diabetes mellitus. Int. J. Endocrinol. 2022 2022 1 9 10.1155/2022/5680170 35761983
    [Google Scholar]
  88. Nieman L.K. Biller B.M.K. Findling J.W. Murad M.H. Newell-Price J. Savage M.O. Tabarin A. Treatment of cushing’s syndrome: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2015 100 8 2807 2831 10.1210/jc.2015‑1818 26222757
    [Google Scholar]
  89. Bancos I. Alahdab F. Crowley R.K. Chortis V. Delivanis D.A. Erickson D. Natt N. Terzolo M. Arlt W. Young W.F. Murad M.H. Therapy of endocrine disease: Improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: A systematic review and meta-analysis. Eur. J. Endocrinol. 2016 175 6 R283 R295 10.1530/EJE‑16‑0465 27450696
    [Google Scholar]
  90. Li D. El Kawkgi O.M. Henriquez A.F. Bancos I. Cardiovascular risk and mortality in patients with active and treated hypercortisolism. Gland Surg. 2020 9 1 43 58 10.21037/gs.2019.11.03 32206598
    [Google Scholar]
  91. Petersenn S. Salgado L.R. Schopohl J. Portocarrero-Ortiz L. Arnaldi G. Lacroix A. Scaroni C. Ravichandran S. Kandra A. Biller B.M.K. Long-term treatment of Cushing’s disease with pasireotide: 5-year results from an open-label extension study of a Phase III trial. Endocrine 2017 57 1 156 165 10.1007/s12020‑017‑1316‑3 28597198
    [Google Scholar]
  92. Albani A. Ferraù F. Ciresi A. Pivonello R. Scaroni C. Iacuaniello D. Zilio M. Guarnotta V. Alibrandi A. Messina E. Boscaro M. Giordano C. Colao A. Cannavo S. Pasireotide treatment reduces cardiometabolic risk in Cushing’s disease patients: An Italian, multicenter study. Endocrine 2018 61 1 118 124 10.1007/s12020‑018‑1524‑5 29383677
    [Google Scholar]
  93. Simeoli C. Ferrigno R. De Martino M.C. Iacuaniello D. Papa F. Angellotti D. Pivonello C. Patalano R. Negri M. Colao A. Pivonello R. The treatment with pasireotide in Cushing’s disease: Effect of long-term treatment on clinical picture and metabolic profile and management of adverse events in the experience of a single center. J. Endocrinol. Invest. 2020 43 1 57 73 10.1007/s40618‑019‑01077‑8 31313243
    [Google Scholar]
  94. Samson S.L. Gu F. Feldt-Rasmussen U. Zhang S. Yu Y. Witek P. Kalra P. Pedroncelli A.M. Pultar P. Jabbour N. Paul M. Bolanowski M. Managing pasireotide-associated hyperglycemia: A randomized, open-label, Phase IV study. Pituitary 2021 24 6 887 903 10.1007/s11102‑021‑01161‑4 34275099
    [Google Scholar]
  95. Fleseriu M. Biller B.M.K. Bertherat J. Young J. Arnaldi G. O’Connell P. Izquierdo M. Pedroncelli A.M. Pivonello R. Long-term control of urinary free cortisol with osilodrostat in patients with cushing’s disease: Final results from the LINC 2 study. J. Endocr. Soc. 2021 5 Suppl. 1 A521 A522 10.1210/jendso/bvab048.1063
    [Google Scholar]
  96. Pivonello R. Fleseriu M. Newell-Price J. Bertagna X. Findling J. Shimatsu A. Gu F. Auchus R. Leelawattana R. Lee E.J. Kim J.H. Lacroix A. Laplanche A. O’Connell P. Tauchmanova L. Pedroncelli A.M. Biller B.M.K. Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): A multicentre phase III study with a double-blind, randomised withdrawal phase. Lancet Diabetes Endocrinol. 2020 8 9 748 761 10.1016/S2213‑8587(20)30240‑0 32730798
    [Google Scholar]
  97. Gadelha M. Bex M. Feelders R.A. Heaney A.P. Auchus R.J. Gilis-Januszewska A. Witek P. Belaya Z. Yu Y. Liao Z. Ku C.H.C. Carvalho D. Roughton M. Wojna J. Pedroncelli A.M. Snyder P.J. Randomized trial of osilodrostat for the treatment of cushing disease. J. Clin. Endocrinol. Metab. 2022 107 7 e2882 e2895 10.1210/clinem/dgac178 35325149
    [Google Scholar]
  98. Fleseriu M. Newell-Price J. Pivonello R. Shimatsu A. Auchus R.J. Scaroni C. Belaya Z. Feelders R.A. Vila G. Houde G. Walia R. Izquierdo M. Roughton M. Pedroncelli A.M. Biller B.M.K. Long-term outcomes of osilodrostat in Cushing’s disease: LINC 3 study extension. Eur. J. Endocrinol. 2022 187 4 531 541 10.1530/EJE‑22‑0317 35980235
    [Google Scholar]
  99. Detomas M. Altieri B. Deutschbein T. Fassnacht M. Dischinger U. Metyrapone versus osilodrostat in the short-term therapy of endogenous cushing’s syndrome: Results from a single center cohort study. Front. Endocrinol. (Lausanne) 2022 13 903545 10.3389/fendo.2022.903545 35769081
    [Google Scholar]
  100. Díaz-Castro F. Monsalves-Álvarez M. Rojo L.E. del Campo A. Troncoso R. Mifepristone for treatment of metabolic syndrome: Beyond Cushing’s syndrome. Front. Pharmacol. 2020 11 429 10.3389/fphar.2020.00429 32390830
    [Google Scholar]
  101. Pickering G. Mazur A. Trousselard M. Bienkowski P. Yaltsewa N. Amessou M. Noah L. Pouteau E. Magnesium status and stress: The vicious circle concept revisited. Nutrients 2020 12 12 3672 10.3390/nu12123672 33260549
    [Google Scholar]
  102. Del Gobbo L.C. Imamura F. Wu J.H.Y. de Oliveira Otto M.C. Chiuve S.E. Mozaffarian D. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies. Am. J. Clin. Nutr. 2013 98 1 160 173 10.3945/ajcn.112.053132 23719551
    [Google Scholar]
  103. Schutten J.C. Joris P.J. Minović I. Post A. van Beek A.P. de Borst M.H. Mensink R.P. Bakker S.J.L. Long‐term magnesium supplementation improves glucocorticoid metabolism: A post‐hoc analysis of an intervention trial. Clin. Endocrinol. (Oxf.) 2021 94 2 150 157 10.1111/cen.14350 33030273
    [Google Scholar]
  104. Kwok M.K. Kawachi I. Rehkopf D. Schooling C.M. The role of cortisol in ischemic heart disease, ischemic stroke, type 2 diabetes, and cardiovascular disease risk factors: A bi-directional Mendelian randomization study. BMC Med. 2020 18 1 363 10.1186/s12916‑020‑01831‑3 33243239
    [Google Scholar]
  105. Trandafir L.M. Cojocaru E. Moscalu M. Leon Constantin M.M. Miron I. Mastaleru A. Teslariu O. Datcu M.E. Fotea S. Frăsinariu O. Predictive markers of early cardiovascular impairment and insulin resistance in obese pediatric patients. Diagnostics (Basel) 2021 11 4 735 10.3390/diagnostics11040735 33924229
    [Google Scholar]
  106. Allara E. Lee W.H. Burgess S. Larsson S.C. Genetically predicted cortisol levels and risk of venous thromboembolism. PLoS One 2022 17 8 e0272807 10.1371/journal.pone.0272807 35984822
    [Google Scholar]
  107. Matthews K. Schwartz J. Cohen S. Seeman T. Diurnal cortisol decline is related to coronary calcification: CARDIA study. Psychosom. Med. 2006 68 5 657 661 10.1097/01.psy.0000244071.42939.0e 17012518
    [Google Scholar]
  108. Tholen S. Patel R. Agas A. Kovary K.M. Rabiee A. Nicholls H.T. Bielczyk-Maczyńska E. Yang W. Kraemer F.B. Teruel M.N. Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Rep. 2022 39 13 111018 10.1016/j.celrep.2022.111018 35767959
    [Google Scholar]
  109. Tomasiuk R. Evaluation of Applicability of Novel Markers of Metabolic Syndrome in Adult Men. Am. J. Men Health 2022 16 4 15579883221108895 10.1177/15579883221108895 35962582
    [Google Scholar]
  110. Hornsby W.G. Haff G.G. Suarez D.G. Ramsey M.W. Triplett N.T. Hardee J.P. Stone M.E. Stone M.H. Alterations in Adiponectin, Leptin, Resistin, Testosterone, and Cortisol across Eleven Weeks of Training among Division One Collegiate Throwers: A Preliminary Study. J. Funct. Morphol. Kinesiol. 2020 5 2 44 10.3390/jfmk5020044 33467260
    [Google Scholar]
  111. Zhao S. Kusminski C.M. Scherer P.E. Adiponectin, leptin and cardiovascular disorders. Circ. Res. 2021 128 1 136 149 10.1161/CIRCRESAHA.120.314458 33411633
    [Google Scholar]
  112. Lopez D. Luque-Fernandez M.A. Steele A. Adler G.K. Turchin A. Vaidya A. “Nonfunctional” adrenal tumors and the risk for incident diabetes and cardiovascular outcomes. Ann. Intern. Med. 2016 165 8 533 542 10.7326/M16‑0547 27479926
    [Google Scholar]
  113. Podbregar A. Janez A. Goricar K. Jensterle M. The prevalence and characteristics of non-functioning and autonomous cortisol secreting adrenal incidentaloma after patients’ stratification by body mass index and age. BMC Endocr. Disord. 2020 20 1 118 10.1186/s12902‑020‑00599‑0 32736549
    [Google Scholar]
  114. Mazgelytė E. Mažeikienė A. Burokienė N. Matuzevičienė R. Linkevičiūtė A. Kučinskienė Z.A. Karčiauskaitė D. Association between hair cortisol concentration and metabolic syndrome. Open Med. (Wars.) 2021 16 1 873 881 10.1515/med‑2021‑0298 34179504
    [Google Scholar]
  115. Garcez A. Leite H.M. Weiderpass E. Paniz V.M.V. Watte G. Canuto R. Olinto M.T.A. Basal cortisol levels and metabolic syndrome: A systematic review and meta-analysis of observational studies. Psychoneuroendocrinology 2018 95 50 62 10.1016/j.psyneuen.2018.05.023 29800780
    [Google Scholar]
  116. Iob E. Steptoe A. Cardiovascular disease and hair cortisol: A novel biomarker of chronic stress. Curr. Cardiol. Rep. 2019 21 10 116 10.1007/s11886‑019‑1208‑7 31471749
    [Google Scholar]
  117. Stomby A. Strömberg S. Theodorsson E. Olsen Faresjö Å. Jones M. Faresjö T. Standard modifiable cardiovascular risk factors mediate the association between elevated hair cortisol concentrations and coronary artery disease. Front. Cardiovasc. Med. 2022 8 765000 10.3389/fcvm.2021.765000 35146006
    [Google Scholar]
  118. Gonzalez D. Jacobsen D. Ibar C. Pavan C. Monti J. Fernandez Machulsky N. Balbi A. Fritzler A. Jamardo J. Repetto E.M. Berg G. Fabre B. Hair Cortisol Measurement by an Automated Method. Sci. Rep. 2019 9 1 8213 10.1038/s41598‑019‑44693‑3 31160639
    [Google Scholar]
  119. Abell J.G. Stalder T. Ferrie J.E. Shipley M.J. Kirschbaum C. Kivimäki M. Kumari M. Assessing cortisol from hair samples in a large observational cohort: The Whitehall II study. Psychoneuroendocrinology 2016 73 148 156 10.1016/j.psyneuen.2016.07.214 27498290
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X328499241106064553
Loading
/content/journals/ccr/10.2174/011573403X328499241106064553
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: cardiovascular ; Serum cortisol ; stress ; hormone ; biomarker ; potential ; risk
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test