Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Cardiovascular disease (CVD), the leading cause of death globally, poses a significant burden on the healthcare sector. Its association with stress and Cushing’s Syndrome has driven cortisol, the ‘stress hormone,’ to be a potential candidate in determining CVD risk. Cortisol synthesis and release through the hypothalamic-pituitary-adrenal (HPA) axis are regulated by several hormones and receptors involved in the pathological cascade towards CVD. Evidence suggests that metabolic syndrome plays a major role in cortisol-mediated CVD risk. On the other hand, non-metabolic features are also implicated when the association between cortisol and CVD risk remains significant upon normalisation of metabolic parameters. Correspondingly, the treatment for hypercortisolism is often found effective in lowering CVD risk. Despite available evidence, several factors continue to hinder the clinical use of cortisol as a risk biomarker for CVD. This review provides an insight into the role of serum cortisol in CVD progression and risk, with emphasis on the mechanistic features and parameters.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X328499241106064553
2025-01-01
2025-06-01
Loading full text...

Full text loading...

References

  1. Cardiovascular diseases (CVDs).2021Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
  2. American Heart Association 2022 heart disease & stroke statistical update fact sheet global burden of disease.2022Available from: https://www.heart.org/-/media/PHD-Files-2/Science-News/2/2022-Heart-and-Stroke-Stat-Update/2022-Stat-Update-factsheet-GIobal-Burden-of-Disease.pdf
    [Google Scholar]
  3. ThauL. GandhiJ. SharmaS. Physiology, Cortisol.Treasure Island, FLStatPearls2022 30855827
    [Google Scholar]
  4. HenleyC. HPA axis. Foundations of Neuroscience. Simple Book.2020Available from: https://openbooks.lib.msu.edu/neuroscience/chapter/hpa-axis/
    [Google Scholar]
  5. NormanA. HenryH. Hormones.3rd edElsevier201512510.1016/B978‑0‑08‑091906‑5.00001‑X
    [Google Scholar]
  6. De LeoM. PivonelloR. AuriemmaR.S. Cardiovascular disease in Cushing’s syndrome: Heart versus vasculature.Neuroendocrinology201092Suppl. 1505410.1159/000318566 20829618
    [Google Scholar]
  7. CouldenA. HamblinR. WassJ. KaravitakiN. Cardiovascular health and mortality in Cushing’s disease.Pituitary202225575075310.1007/s11102‑022‑01258‑4 35869339
    [Google Scholar]
  8. StephensM.A.C. WandG. Stress and the HPA axis: Role of glucocorticoids in alcohol dependence.Alcohol Res.2012344468483 23584113
    [Google Scholar]
  9. Bongsebandhu-phubhakdiC. SupornsilchaiV. AroonparkmongkolS. Serum cortisol as a biomarker of severe dengue.Trop. Med. Infect. Dis.20238314610.3390/tropicalmed8030146 36977147
    [Google Scholar]
  10. JonesC. GweninC. Cortisol level dysregulation and its prevalence - Is it nature’s alarm clock?Physiol. Rep.2021824e1464410.14814/phy2.14644 33340273
    [Google Scholar]
  11. CohenB.E. EdmondsonD. KronishI.M. State of the art review: Depression, stress, anxiety, and cardiovascular disease.Am. J. Hypertens.201528111295130210.1093/ajh/hpv047 25911639
    [Google Scholar]
  12. SongH. FangF. ArnbergF.K. Stress related disorders and risk of cardiovascular disease: Population based, sibling controlled cohort study.BMJ2019365l125510.1136/bmj.l1255 30971390
    [Google Scholar]
  13. RyderA.L. CohenB.E. Evidence for depression and anxiety as risk factors for heart disease and stroke: Implications for primary care.Fam. Pract.202138336536710.1093/fampra/cmab031 34109973
    [Google Scholar]
  14. OsborneM.T. ShinL.M. MehtaN.N. PitmanR.K. FayadZ.A. TawakolA. Disentangling the links between psychosocial stress and cardiovascular disease.Circ. Cardiovasc. Imaging2020138e01093110.1161/CIRCIMAGING.120.010931 32791843
    [Google Scholar]
  15. Mac GiollabhuiN. NgT.H. EllmanL.M. AlloyL.B. The longitudinal associations of inflammatory biomarkers and depression revisited: Systematic review, meta-analysis, and meta-regression.Mol. Psychiatry20212673302331410.1038/s41380‑020‑00867‑4 32807846
    [Google Scholar]
  16. RaoR. AndroulakisI.P. Allostatic adaptation and personalized physiological trade-offs in the circadian regulation of the HPA axis: A mathematical modeling approach.Sci. Rep.2019911121210.1038/s41598‑019‑47605‑7 31371802
    [Google Scholar]
  17. CohenS. Janicki-DevertsD. DoyleW.J. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk.Proc. Natl. Acad. Sci. USA2012109165995599910.1073/pnas.1118355109 22474371
    [Google Scholar]
  18. HermanJ.P. McKlveenJ.M. GhosalS. Regulation of the hypothalamic‐pituitary-adrenocortical stress response.Comprehensive Physiology.Wiley201660362110.1002/cphy.c150015
    [Google Scholar]
  19. Ulrich-LaiY.M. FigueiredoH.F. OstranderM.M. ChoiD.C. EngelandW.C. HermanJ.P. Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner.Am. J. Physiol. Endocrinol. Metab.20062915E965E97310.1152/ajpendo.00070.2006 16772325
    [Google Scholar]
  20. TawakolA. IshaiA. TakxR.A.P. Relation between resting amygdalar activity and cardiovascular events: A longitudinal and cohort study.Lancet20173891007183484510.1016/S0140‑6736(16)31714‑7 28088338
    [Google Scholar]
  21. AvenattiE. RebellatoA. IannacconeA. Left ventricular geometry and 24-h blood pressure profile in Cushing’s syndrome.Endocrine201755254755410.1007/s12020‑016‑0986‑6 27179657
    [Google Scholar]
  22. KamenickýP. RedheuilA. RouxC. Cardiac structure and function in Cushing’s syndrome: A cardiac magnetic resonance imaging study.J. Clin. Endocrinol. Metab.20149911E2144E215310.1210/jc.2014‑1783 25093618
    [Google Scholar]
  23. FaggianoA. PivonelloR. SpieziaS. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing’s disease during active disease and 1 year after disease remission.J. Clin. Endocrinol. Metab.20038862527253310.1210/jc.2002‑021558 12788849
    [Google Scholar]
  24. PatelS.A. WinkelM. AliM.K. NarayanK.M.V. MehtaN.K. Cardiovascular mortality associated with 5 leading risk factors: National and state preventable fractions estimated from survey data.Ann. Intern. Med.2015163424525310.7326/M14‑1753 26121190
    [Google Scholar]
  25. ViraniS.S. AlonsoA. BenjaminE.J. Heart disease and stroke statistics - 2020 update: A report from the American Heart Association.Circulation20201419e139e59610.1161/CIR.0000000000000757 31992061
    [Google Scholar]
  26. ChengS. ClaggettB. CorreiaA.W. Temporal trends in the population attributable risk for cardiovascular disease: The Atherosclerosis Risk in Communities Study.Circulation20141301082082810.1161/CIRCULATIONAHA.113.008506 25210095
    [Google Scholar]
  27. PivonelloR. IsidoriA.M. De MartinoM.C. Newell-PriceJ. BillerB.M.K. ColaoA. Complications of Cushing’s syndrome: State of the art.Lancet Diabetes Endocrinol.20164761162910.1016/S2213‑8587(16)00086‑3 27177728
    [Google Scholar]
  28. MebrahtuT.F. MorganA.W. WestR.M. StewartP.M. Pujades-RodriguezM. Oral glucocorticoids and incidence of hypertension in people with chronic inflammatory diseases: A population-based cohort study.CMAJ202019212E295E30110.1503/cmaj.191012 32392512
    [Google Scholar]
  29. ZilioM. BarbotM. CeccatoF. Diagnosis and complications of Cushing’s disease: Gender-related differences.Clin. Endocrinol. (Oxf.)201480340341010.1111/cen.12299 23889360
    [Google Scholar]
  30. ArrudaM. Mello Ribeiro CavalariE. Pessoa de PaulaM. The presence of nonfunctioning adrenal incidentalomas increases arterial hypertension frequency and severity, and is associated with cortisol levels after dexamethasone suppression test.J. Hum. Hypertens.201832131110.1038/s41371‑017‑0011‑4 29176595
    [Google Scholar]
  31. BruceI.N. van VollenhovenR.F. MorandE.F. Sustained glucocorticoid tapering in the phase 3 trials of anifrolumab: A post hoc analysis of the TULIP-1 and TULIP-2 trials.Rheumatology (Oxford)20236241526153410.1093/rheumatology/keac491 36018235
    [Google Scholar]
  32. LeeN.R. KimB.J. LeeC.H. Role of 11β-hydroxysteroid dehydrogenase type 1 in the development of atopic dermatitis.Sci. Rep.20201012023710.1038/s41598‑020‑77281‑x 33214595
    [Google Scholar]
  33. BaileyM.A. 11β-hydroxysteroid dehydrogenases and hypertension in the metabolic syndrome.Curr. Hypertens. Rep.2017191210010.1007/s11906‑017‑0797‑z 29138984
    [Google Scholar]
  34. MorganS.A. McCabeE.L. GathercoleL.L. 11β-HSD1 is the major regulator of the tissue-specific effects of circulating glucocorticoid excess.Proc. Natl. Acad. Sci. USA201411124E2482E249110.1073/pnas.1323681111 24889609
    [Google Scholar]
  35. VictorioJ.A. ClericiS.P. PalaciosR. Spironolactone prevents endothelial nitric oxide synthase uncoupling and vascular dysfunction induced by β-adrenergic overstimulation.Hypertension201668372673510.1161/HYPERTENSIONAHA.116.07911 27432866
    [Google Scholar]
  36. EvansL.C. IvyJ.R. WyrwollC. Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension.Circulation2016133141360137010.1161/CIRCULATIONAHA.115.019341 26951843
    [Google Scholar]
  37. MagiakouM.A. SmyrnakiP. ChrousosG.P. Hypertension in Cushing’s syndrome.Best Pract. Res. Clin. Endocrinol. Metab.200620346748210.1016/j.beem.2006.07.006 16980206
    [Google Scholar]
  38. ShibataH. SuzukiH. MaruyamaT. SarutaT. Gene expression of angiotensin II receptor in blood cells of Cushing’s syndrome.Hypertension19952661003101010.1161/01.HYP.26.6.1003 7490136
    [Google Scholar]
  39. IsidoriA.M. GraziadioC. ParagliolaR.M. The hypertension of Cushing’s syndrome.J. Hypertens.2015331446010.1097/HJH.0000000000000415 25415766
    [Google Scholar]
  40. EinarsonT.R. AcsA. LudwigC. PantonU.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007-2017.Cardiovasc. Diabetol.20181718310.1186/s12933‑018‑0728‑6 29884191
    [Google Scholar]
  41. MaC.X. MaX.N. GuanC.H. LiY.D. MauricioD. FuS.B. Cardiovascular disease in type 2 diabetes mellitus: Progress toward personalized management.Cardiovasc. Diabetol.20222117410.1186/s12933‑022‑01516‑6 35568946
    [Google Scholar]
  42. OrmazabalV. NairS. ElfekyO. AguayoC. SalomonC. ZuñigaF.A. Association between insulin resistance and the development of cardiovascular disease.Cardiovasc. Diabetol.201817112210.1186/s12933‑018‑0762‑4 30170598
    [Google Scholar]
  43. ScaroniC. ZilioM. FotiM. BoscaroM. Glucose metabolism abnormalities in cushing syndrome: From molecular basis to clinical management.Endocr. Rev.201738318921910.1210/er.2016‑1105 28368467
    [Google Scholar]
  44. MuscogiuriG. SoriceG.P. PriolettaA. The size of adrenal incidentalomas correlates with insulin resistance. Is there a cause-effect relationship?Clin. Endocrinol. (Oxf.)201174330030510.1111/j.1365‑2265.2010.03928.x 21070314
    [Google Scholar]
  45. HackettR.A. KivimäkiM. KumariM. SteptoeA. Diurnal cortisol patterns, future diabetes, and impaired glucose metabolism in the whitehall II cohort study.J. Clin. Endocrinol. Metab.2016101261962510.1210/jc.2015‑2853 26647151
    [Google Scholar]
  46. OrtizR. KluweB. OdeiJ.B. The association of morning serum cortisol with glucose metabolism and diabetes: The Jackson Heart Study.Psychoneuroendocrinology2019103253210.1016/j.psyneuen.2018.12.237 30623794
    [Google Scholar]
  47. DalleH. GarciaM. AntoineB. Adipocyte glucocorticoid receptor deficiency promotes adipose tissue expandability and improves the metabolic profile under corticosterone exposure.Diabetes201968230531710.2337/db17‑1577 30455377
    [Google Scholar]
  48. GuoC. RicchiutiV. LianB.Q. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-γ, and proinflammatory adipokines.Circulation2008117172253226110.1161/CIRCULATIONAHA.107.748640 18427128
    [Google Scholar]
  49. KambaA. DaimonM. MurakamiH. Association between higher serum cortisol levels and decreased insulin secretion in a general population.PLoS One20161111e016607710.1371/journal.pone.0166077 27861636
    [Google Scholar]
  50. RossR. NeelandI.J. YamashitaS. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity.Nat. Rev. Endocrinol.202016317718910.1038/s41574‑019‑0310‑7 32020062
    [Google Scholar]
  51. GiordanoR. PicuA. MarinazzoE. Metabolic and cardiovascular outcomes in patients with Cushing’s syndrome of different aetiologies during active disease and 1 year after remission.Clin. Endocrinol. (Oxf.)201175335436010.1111/j.1365‑2265.2011.04055.x 21521323
    [Google Scholar]
  52. SavasM. WesterV.L. StaufenbielS.M. Systematic evaluation of corticosteroid use in obese and non-obese individuals: A multi-cohort study.Int. J. Med. Sci.201714761562110.7150/ijms.19213 28824292
    [Google Scholar]
  53. PreisS.R. MassaroJ.M. RobinsS.J. Abdominal subcutaneous and visceral adipose tissue and insulin resistance in the Framingham heart study.Obesity (Silver Spring)201018112191219810.1038/oby.2010.59 20339361
    [Google Scholar]
  54. LiuJ. FoxC.S. HicksonD.A. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: The Jackson Heart Study.J. Clin. Endocrinol. Metab.201095125419542610.1210/jc.2010‑1378 20843952
    [Google Scholar]
  55. AbrahamT.M. PedleyA. MassaroJ.M. HoffmannU. FoxC.S. Association between visceral and subcutaneous adipose depots and incident cardiovascular disease risk factors.Circulation2015132171639164710.1161/CIRCULATIONAHA.114.015000 26294660
    [Google Scholar]
  56. LarssonS.C. LeeW.H. BurgessS. AllaraE. Plasma cortisol and risk of atrial fibrillation: A mendelian randomization study.J. Clin. Endocrinol. Metab.20211067e2521e252610.1210/clinem/dgab219 33822969
    [Google Scholar]
  57. ChaitA. den HartighL.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease.Front. Cardiovasc. Med.202072210.3389/fcvm.2020.00022 32158768
    [Google Scholar]
  58. Ruiz-CastellM. SamoudaH. BocquetV. FagherazziG. StrangesS. HuiartL. Estimated visceral adiposity is associated with risk of cardiometabolic conditions in a population based study.Sci. Rep.2021111912110.1038/s41598‑021‑88587‑9 33907272
    [Google Scholar]
  59. JosephJ.J. WangX. Diez RouxA.V. Antecedent longitudinal changes in body mass index are associated with diurnal cortisol curve features: The multi-ethnic study of atherosclerosis.Metabolism2017689510710.1016/j.metabol.2016.12.001 28183457
    [Google Scholar]
  60. KluweB. ZhaoS. KlineD. Adiposity measures and morning serum cortisol in African Americans: Jackson heart study.Obesity (Silver Spring)202129241842710.1002/oby.23056 33491313
    [Google Scholar]
  61. AdamE.K. QuinnM.E. TavernierR. McQuillanM.T. DahlkeK.A. GilbertK.E. Diurnal cortisol slopes and mental and physical health outcomes: A systematic review and meta-analysis.Psychoneuroendocrinology201783254110.1016/j.psyneuen.2017.05.018 28578301
    [Google Scholar]
  62. FardetL. FèveB. Systemic glucocorticoid therapy: A review of its metabolic and cardiovascular adverse events.Drugs201474151731174510.1007/s40265‑014‑0282‑9 25204470
    [Google Scholar]
  63. McLaughlinT. CraigC. LiuL.F. Adipose cell size and regional fat deposition as predictors of metabolic response to overfeeding in insulin-resistant and insulin-sensitive humans.Diabetes20166551245125410.2337/db15‑1213 26884438
    [Google Scholar]
  64. RoerinkS.H.P.P. WagenmakersM.A.E.M. LangenhuijsenJ.F. Increased adipocyte size, macrophage infiltration, and adverse local adipokine profile in perirenal fat in cushing’s syndrome.Obesity (Silver Spring)20172581369137410.1002/oby.21887 28594137
    [Google Scholar]
  65. LicinioJ. MantzorosC. NegrãoA.B. Human leptin levels are pulsatile and inversely related to pituitary-ardenal function.Nat. Med.19973557557910.1038/nm0597‑575 9142131
    [Google Scholar]
  66. BerawiK.N. HadiS. LipoetoN.I. WahidI. JamsariJ. Dyslipidemia incidents between general obesity and central obesity of employees with obesity at universitas lampung.Biomed. Pharmacol. J.201811120120710.13005/bpj/1364
    [Google Scholar]
  67. Arab DolatabadiA MahboubiM. A study of the influence of dexamethasone on lipid profile and enzyme lactate dehydrogenase.J Med Life8(Spec Iss 3): 72-6.2015; 28316669
    [Google Scholar]
  68. Ama MoorV.J. Ndongo AmougouS. OmbottoS. NtoneF. WouambaD.E. Ngo NongaB. Dyslipidemia in patients with a cardiovascular risk and disease at the University Teaching Hospital of Yaoundé, Cameroon.Int. J. Vasc. Med.20172017606130610.1155/2017/6061306 28163932
    [Google Scholar]
  69. KazeA.D. SanthanamP. MusaniS.K. AhimaR. Echouffo-TcheuguiJ.B. Metabolic dyslipidemia and cardiovascular outcomes in type 2 diabetes mellitus: Findings from the look AHEAD study.J. Am. Heart Assoc.2021107e01694710.1161/JAHA.120.016947 33728932
    [Google Scholar]
  70. NiroumandS. KhajedalueeM. Khadem-RezaiyanM. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease.Med. J. Islam. Repub. Iran201529240 26793631
    [Google Scholar]
  71. ArnaldiG. ScandaliV.M. TrementinoL. CardinalettiM. AppolloniG. BoscaroM. Pathophysiology of dyslipidemia in Cushing’s syndrome.Neuroendocrinology201092Suppl. 1869010.1159/000314213 20829625
    [Google Scholar]
  72. LindenM.A. BurkeS.J. PirzadahH.A. Pharmacological inhibition of lipolysis prevents adverse metabolic outcomes during glucocorticoid administration.Mol. Metab.20237410175110.1016/j.molmet.2023.101751 37295745
    [Google Scholar]
  73. StimsonR.H. AndersonA.J. RamageL.E. Acute physiological effects of glucocorticoids on fuel metabolism in humans are permissive but not direct.Diabetes Obes. Metab.201719688389110.1111/dom.12899 28177189
    [Google Scholar]
  74. LeeH.W. KimK.J. JungK.S. The relationship between visceral obesity and hepatic steatosis measured by controlled attenuation parameter.PLoS One20171210e018706610.1371/journal.pone.0187066 29077769
    [Google Scholar]
  75. RockallA.G. SohaibS.A. EvansD. Hepatic steatosis in Cushing’s syndrome: A radiological assessment using computed tomography.Eur. J. Endocrinol.2003149654354810.1530/eje.0.1490543 14640995
    [Google Scholar]
  76. WagnerJ. LangloisF. LimD.S.T. McCartneyS. FleseriuM. Hypercoagulability and risk of venous thromboembolic events in endogenous Cushing’s syndrome: A systematic meta-analysis.Front. Endocrinol. (Lausanne)2019980510.3389/fendo.2018.00805 30745894
    [Google Scholar]
  77. SarfrazA. SarfrazZ. RazzackA.A. PatelG. SarfrazM. Venous thromboembolism, corticosteroids and COVID-19: A systematic review and meta-analysis.Clin. Appl. Thromb. Hemost.202127107602962199357310.1177/1076029621993573 33571009
    [Google Scholar]
  78. JohannesdottirS.A. Horváth-PuhóE. DekkersO.M. Use of glucocorticoids and risk of venous thromboembolism: a nationwide population-based case-control study.JAMA Intern. Med.2013173974375210.1001/jamainternmed.2013.122 23546607
    [Google Scholar]
  79. FischliS. von WylV. WuilleminW. Impact of adrenal function on hemostasis/endothelial function in patients undergoing surgery.J. Endocr. Soc.202155bvab04710.1210/jendso/bvab047 33928206
    [Google Scholar]
  80. BoffaM.B. HamillJ.D. MaretD. Acute phase mediators modulate thrombin-activable fibrinolysis inhibitor (TAFI) gene expression in HepG2 cells.J. Biol. Chem.2003278119250925710.1074/jbc.M209588200 12645517
    [Google Scholar]
  81. HalleuxC.M. DeclerckP.J. TranS.L. DetryR. BrichardS.M. Hormonal control of plasminogen activator inhibitor-1 gene expression and production in human adipose tissue: Stimulation by glucocorticoids and inhibition by catecholamines.J. Clin. Endocrinol. Metab.1999841140974105 10566656
    [Google Scholar]
  82. BrotmanD.J. GirodJ.P. PoschA. Effects of short-term glucocorticoids on hemostatic factors in healthy volunteers.Thromb. Res.2006118224725210.1016/j.thromres.2005.06.006 16005496
    [Google Scholar]
  83. SouvereinP.C. BerardA. Van StaaT.P. Use of oral glucocorticoids and risk of cardiovascular and cerebrovascular disease in a population based case-control study.Heart200490885986510.1136/hrt.2003.020180 15253953
    [Google Scholar]
  84. PimentaE. WolleyM. StowasserM. Adverse cardiovascular outcomes of corticosteroid excess.Endocrinology2012153115137514210.1210/en.2012‑1573 22919065
    [Google Scholar]
  85. Pujades-RodriguezM. MorganA.W. CubbonR.M. WuJ. Dose-dependent oral glucocorticoid cardiovascular risks in people with immune-mediated inflammatory diseases: A population-based cohort study.PLoS Med.20201712e100343210.1371/journal.pmed.1003432 33270649
    [Google Scholar]
  86. CrawfordA.A. SoderbergS. KirschbaumC. Morning plasma cortisol as a cardiovascular risk factor: Findings from prospective cohort and Mendelian randomization studies.Eur. J. Endocrinol.2019181442943810.1530/EJE‑19‑0161 31325907
    [Google Scholar]
  87. JinY. WeiD. LiuP. Serum cortisol, 25 (OH)D, and cardiovascular risk factors in patients with type 2 diabetes mellitus.Int. J. Endocrinol.202220221910.1155/2022/5680170 35761983
    [Google Scholar]
  88. NiemanL.K. BillerB.M.K. FindlingJ.W. Treatment of Cushing’s syndrome: An endocrine society clinical practice guideline.J. Clin. Endocrinol. Metab.201510082807283110.1210/jc.2015‑1818 26222757
    [Google Scholar]
  89. BancosI. AlahdabF. CrowleyR.K. Therapy of endocrine disease: Improvement of cardiovascular risk factors after adrenalectomy in patients with adrenal tumors and subclinical Cushing’s syndrome: A systematic review and meta-analysis.Eur. J. Endocrinol.20161756R283R29510.1530/EJE‑16‑0465 27450696
    [Google Scholar]
  90. LiD. El KawkgiO.M. HenriquezA.F. BancosI. Cardiovascular risk and mortality in patients with active and treated hypercortisolism.Gland Surg.202091435810.21037/gs.2019.11.03 32206598
    [Google Scholar]
  91. PetersennS. SalgadoL.R. SchopohlJ. Long-term treatment of Cushing’s disease with pasireotide: 5-year results from an open-label extension study of a Phase III trial.Endocrine201757115616510.1007/s12020‑017‑1316‑3 28597198
    [Google Scholar]
  92. AlbaniA. FerraùF. CiresiA. Pasireotide treatment reduces cardiometabolic risk in Cushing’s disease patients: An Italian, multicenter study.Endocrine201861111812410.1007/s12020‑018‑1524‑5 29383677
    [Google Scholar]
  93. SimeoliC. FerrignoR. De MartinoM.C. The treatment with pasireotide in Cushing’s disease: Effect of long-term treatment on clinical picture and metabolic profile and management of adverse events in the experience of a single center.J. Endocrinol. Invest.2020431577310.1007/s40618‑019‑01077‑8 31313243
    [Google Scholar]
  94. SamsonS.L. GuF. Feldt-RasmussenU. Managing pasireotide-associated hyperglycemia: A randomized, open-label, Phase IV study.Pituitary202124688790310.1007/s11102‑021‑01161‑4 34275099
    [Google Scholar]
  95. FleseriuM. BillerB.M.K. BertheratJ. Long-term control of urinary free cortisol with osilodrostat in patients with Cushing’s disease: Final results from the LINC 2 study.J. Endocr. Soc.20215Suppl. 1A521A52210.1210/jendso/bvab048.1063
    [Google Scholar]
  96. PivonelloR. FleseriuM. Newell-PriceJ. Efficacy and safety of osilodrostat in patients with Cushing’s disease (LINC 3): A multicentre phase III study with a double-blind, randomised withdrawal phase.Lancet Diabetes Endocrinol.20208974876110.1016/S2213‑8587(20)30240‑0 32730798
    [Google Scholar]
  97. GadelhaM. BexM. FeeldersR.A. Randomized trial of osilodrostat for the treatment of Cushing disease.J. Clin. Endocrinol. Metab.20221077e2882e289510.1210/clinem/dgac178 35325149
    [Google Scholar]
  98. FleseriuM. Newell-PriceJ. PivonelloR. Long-term outcomes of osilodrostat in Cushing’s disease: LINC 3 study extension.Eur. J. Endocrinol.2022187453154110.1530/EJE‑22‑0317 35980235
    [Google Scholar]
  99. DetomasM. AltieriB. DeutschbeinT. FassnachtM. DischingerU. Metyrapone versus osilodrostat in the short-term therapy of endogenous Cushing’s syndrome: Results from a single center cohort study.Front. Endocrinol. (Lausanne)20221390354510.3389/fendo.2022.903545 35769081
    [Google Scholar]
  100. Díaz-CastroF. Monsalves-ÁlvarezM. RojoL.E. del CampoA. TroncosoR. Mifepristone for treatment of metabolic syndrome: Beyond Cushing’s syndrome.Front. Pharmacol.20201142910.3389/fphar.2020.00429 32390830
    [Google Scholar]
  101. PickeringG. MazurA. TrousselardM. Magnesium status and stress: The vicious circle concept revisited.Nutrients20201212367210.3390/nu12123672 33260549
    [Google Scholar]
  102. Del GobboL.C. ImamuraF. WuJ.H.Y. de Oliveira OttoM.C. ChiuveS.E. MozaffarianD. Circulating and dietary magnesium and risk of cardiovascular disease: A systematic review and meta-analysis of prospective studies.Am. J. Clin. Nutr.201398116017310.3945/ajcn.112.053132 23719551
    [Google Scholar]
  103. SchuttenJ.C. JorisP.J. MinovićI. Long‐term magnesium supplementation improves glucocorticoid metabolism: A post‐hoc analysis of an intervention trial.Clin. Endocrinol. (Oxf.)202194215015710.1111/cen.14350 33030273
    [Google Scholar]
  104. KwokM.K. KawachiI. RehkopfD. SchoolingC.M. The role of cortisol in ischemic heart disease, ischemic stroke, type 2 diabetes, and cardiovascular disease risk factors: A bi-directional Mendelian randomization study.BMC Med.202018136310.1186/s12916‑020‑01831‑3 33243239
    [Google Scholar]
  105. TrandafirL.M. CojocaruE. MoscaluM. Predictive markers of early cardiovascular impairment and insulin resistance in obese pediatric patients.Diagnostics (Basel)202111473510.3390/diagnostics11040735 33924229
    [Google Scholar]
  106. AllaraE. LeeW.H. BurgessS. LarssonS.C. Genetically predicted cortisol levels and risk of venous thromboembolism.PLoS One2022178e027280710.1371/journal.pone.0272807 35984822
    [Google Scholar]
  107. MatthewsK. SchwartzJ. CohenS. SeemanT. Diurnal cortisol decline is related to coronary calcification: CARDIA study.Psychosom. Med.200668565766110.1097/01.psy.0000244071.42939.0e 17012518
    [Google Scholar]
  108. TholenS. PatelR. AgasA. Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy.Cell Rep.2022391311101810.1016/j.celrep.2022.111018 35767959
    [Google Scholar]
  109. TomasiukR. Evaluation of applicability of novel markers of metabolic syndrome in adult men.Am. J. Men Health20221641557988322110889510.1177/15579883221108895 35962582
    [Google Scholar]
  110. HornsbyW.G. HaffG.G. SuarezD.G. Alterations in adiponectin, leptin, resistin, testosterone, and cortisol across eleven weeks of training among division one collegiate throwers: A Preliminary Study.J. Funct. Morphol. Kinesiol.2020524410.3390/jfmk5020044 33467260
    [Google Scholar]
  111. ZhaoS. KusminskiC.M. SchererP.E. Adiponectin, leptin and cardiovascular disorders.Circ. Res.2021128113614910.1161/CIRCRESAHA.120.314458 33411633
    [Google Scholar]
  112. LopezD. Luque-FernandezM.A. SteeleA. AdlerG.K. TurchinA. VaidyaA. “Nonfunctional” adrenal tumors and the risk for incident diabetes and cardiovascular outcomes.Ann. Intern. Med.2016165853354210.7326/M16‑0547 27479926
    [Google Scholar]
  113. PodbregarA. JanezA. GoricarK. JensterleM. The prevalence and characteristics of non-functioning and autonomous cortisol secreting adrenal incidentaloma after patients’ stratification by body mass index and age.BMC Endocr. Disord.202020111810.1186/s12902‑020‑00599‑0 32736549
    [Google Scholar]
  114. MazgelytėE. MažeikienėA. BurokienėN. Association between hair cortisol concentration and metabolic syndrome.Open Med. (Wars.)202116187388110.1515/med‑2021‑0298 34179504
    [Google Scholar]
  115. GarcezA. LeiteH.M. WeiderpassE. Basal cortisol levels and metabolic syndrome: A systematic review and meta-analysis of observational studies.Psychoneuroendocrinology201895506210.1016/j.psyneuen.2018.05.023 29800780
    [Google Scholar]
  116. IobE. SteptoeA. Cardiovascular disease and hair cortisol: A novel biomarker of chronic stress.Curr. Cardiol. Rep.2019211011610.1007/s11886‑019‑1208‑7 31471749
    [Google Scholar]
  117. StombyA. StrömbergS. TheodorssonE. Olsen FaresjöÅ. JonesM. FaresjöT. Standard modifiable cardiovascular risk factors mediate the association between elevated hair cortisol concentrations and coronary artery disease.Front. Cardiovasc. Med.2022876500010.3389/fcvm.2021.765000 35146006
    [Google Scholar]
  118. GonzalezD. JacobsenD. IbarC. Hair cortisol measurement by an automated method.Sci. Rep.201991821310.1038/s41598‑019‑44693‑3 31160639
    [Google Scholar]
  119. AbellJ.G. StalderT. FerrieJ.E. Assessing cortisol from hair samples in a large observational cohort: The Whitehall II study.Psychoneuroendocrinology20167314815610.1016/j.psyneuen.2016.07.214 27498290
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X328499241106064553
Loading
/content/journals/ccr/10.2174/011573403X328499241106064553
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; cardiovascular; hormone; mechanistic parameters; Serum cortisol; stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test