Skip to content
2000
image of Evaluation of the Effect of Virgin Rice Bran Oil (VRBO) on Doxorubicin-Induced Cardiotoxicity in Wistar Rats

Abstract

Objective

The usage of doxorubicin (DOX), an antineoplastic drug that is frequently used for the cure of cancer, is restricted to maximal doses due to its cardiac toxicity. Reactive oxygen species produced by DOX result in lipid peroxidation and organ failure, ultimately resulting in cardiomyopathy. Due to its high polyphenol content, virgin rice bran oil (VRBO) is a diet nutritional supplement with a strong antioxidant. This study aimed to assess the potential defense of VRBO against DOX-induced cardiotoxicity.

Methods

VRBO and DOX injections were administered to thirty male Wistar rats for 42 days after being randomly assigned to five groups.

Results

The study demonstrated the cardioprotective effects of VRBO against doxorubicin (DOX)-induced cardiotoxicity. VRBO (0.71 and 1.42 ml/kg) significantly improved the heart-to-body weight ratio, reduced elevated serum CK-MB and LDH levels by 18.4% and 52.7%, respectively, and increased HDL by 43.1%. ECG parameters also improved, with reductions in QT interval (19%), ST interval (28%), and QRS complex (15%). VRBO enhanced systolic blood pressure (up to 21%) and heart rate (7.1%). Antioxidant markers showed notable recovery, with MDA levels reduced by 66.1%, while GSH, SOD, and catalase levels increased by 129.4%, 158.2%, and 84.8%, respectively.

Conclusion

A cardioprotective benefit was found at middle and higher VRBO dosages. In order to demonstrate the effectiveness of VRBO as a cardioprotective medication, further research on dosage response and bioavailability is required.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X327970250108045235
2025-01-28
2025-05-17
Loading full text...

Full text loading...

References

  1. Li X. Luo W. Tang Y. Wu J. Zhang J. Chen S. Zhou L. Tao Y. Tang Y. Wang F. Huang Y. Jose P.A. Guo L. Zeng C. Semaglutide attenuates doxorubicin-induced cardiotoxicity by ameliorating BNIP3-Mediated mitochondrial dysfunction. Redox Biol. 2024 72 103129 10.1016/j.redox.2024.103129 38574433
    [Google Scholar]
  2. Rawat P.S. Jaiswal A. Khurana A. Bhatti J.S. Navik U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother. 2021 139 111708 10.1016/j.biopha.2021.111708 34243633
    [Google Scholar]
  3. Chen K.H. Sun J.M. Lin L. Liu J.W. Liu X.Y. Chen G.D. Chen H. Chen Z.Y. The NEDD8 activating enzyme inhibitor MLN4924 mitigates doxorubicin-induced cardiotoxicity in mice. Free Radic. Biol. Med. 2024 219 127 140 10.1016/j.freeradbiomed.2024.04.221 38614228
    [Google Scholar]
  4. Yeh E.T.H. Bickford C.L. Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol. 2009 53 24 2231 2247 10.1016/j.jacc.2009.02.050 19520246
    [Google Scholar]
  5. Force T. Kolaja K.L. Cardiotoxicity of kinase inhibitors: The prediction and translation of preclinical models to clinical outcomes. Nat. Rev. Drug Discov. 2011 10 2 111 126 10.1038/nrd3252 21283106
    [Google Scholar]
  6. Wu L. Zhang Y. Wang G. Ren J. Molecular mechanisms and therapeutic targeting of ferroptosis in doxorubicin-induced cardiotoxicity. JACC Basic Transl. Sci. 2023 39070280
    [Google Scholar]
  7. Chen L. Sun X. Wang Z. Chen M. He Y. Zhang H. Han D. Zheng L. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol. Appl. Pharmacol. 2024 482 116794 10.1016/j.taap.2023.116794 38142782
    [Google Scholar]
  8. Yilmaz S. Kaya E. Yonar H. Mendil A.S. Doxorubicin-induced oxidative stress injury: The protective effect of kumiss on cardiotoxicity. J. Hell. Vet. Med. Soc. 2022 73 3 4545 4558 10.12681/jhvms.27822
    [Google Scholar]
  9. He P. Xu S. Guo Z. Yuan P. Liu Y. Chen Y. Zhang T. Que Y. Hu Y. Pharmacodynamics and pharmacokinetics of PLGA-based doxorubicin-loaded implants for tumor therapy. Drug Deliv. 2022 29 1 478 488 10.1080/10717544.2022.2032878 35147071
    [Google Scholar]
  10. Tufail T. Ain H.B.U. Chen J. Virk M.S. Ahmed Z. Ashraf J. Shahid N.U.A. Xu B. Contemporary views of the extraction, health benefits, and industrial integration of rice bran oil: A prominent ingredient for holistic human health. Foods 2024 13 9 1305 10.3390/foods13091305 38731675
    [Google Scholar]
  11. Punia S. Kumar M. Siroha A.K. Purewal S.S. Rice bran oil: Emerging trends in extraction, health benefit, and its industrial application. Rice Sci. 2021 28 3 217 232 10.1016/j.rsci.2021.04.002
    [Google Scholar]
  12. Senaphan K. Kukongviriyapan U. Suwannachot P. Thiratanaboon G. Sangartit W. Thawornchinsombut S. Jongjareonrak A. Protective effects of rice bran hydrolysates on heart rate variability, cardiac oxidative stress, and cardiac remodeling in high fat and high fructose diet-fed rats. Asian Pac. J. Trop. Biomed. 2021 11 5 183 193 10.4103/2221‑1691.311754
    [Google Scholar]
  13. Jan-on G. Sangartit W. Pakdeechote P. Kukongviriyapan V. Sattayasai J. Senaphan K. Kukongviriyapan U. Virgin rice bran oil alleviates hypertension through the upregulation of eNOS and reduction of oxidative stress and inflammation in L-NAME–induced hypertensive rats. Nutrition 2020 69 110575 10.1016/j.nut.2019.110575 31585258
    [Google Scholar]
  14. Pourrajab B. Sohouli M.H. Amirinejad A. Fatahi S. Găman M.A. Shidfar F. The impact of rice bran oil consumption on the serum lipid profile in adults: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022 62 22 6005 6015 10.1080/10408398.2021.1895062 33715544
    [Google Scholar]
  15. Garcia J.L. Vileigas D.F. Gregolin C.S. Costa M.R. Francisqueti-Ferron F.V. Ferron A.J.T. De Campos D.H.S. Moreto F. Minatel I.O. Bazan S.G.Z. Corrêa C.R. Rice (Oryza sativa L.) bran preserves cardiac function by modulating pro-inflammatory cytokines and redox state in the myocardium from obese rats. Eur. J. Nutr. 2022 61 2 901 913 10.1007/s00394‑021‑02691‑0 34636986
    [Google Scholar]
  16. Tian X. Wang X. Fang M. Yu L. Ma F. Wang X. Zhang L. Li P. Nutrients in rice bran oil and their nutritional functions: A review. Crit. Rev. Food Sci. Nutr. 2024 1 18 10.1080/10408398.2024.2352530 38856105
    [Google Scholar]
  17. Micallef I. Baron B. Doxorubicin: An overview of the anti-cancer and chemoresistance mechanisms. Annals of Clinical Toxicology 2020 3 2 1031
    [Google Scholar]
  18. Scavariello E.M. Arellano D.B. Gamma-oryzanol: An important component in rice brain oil. Arch. Latinoam. Nutr. 1998 48 1 7 12 9754398
    [Google Scholar]
  19. Abdul Ghani N.A. Abdul Nasir N.A. Lambuk L. Sadikan M.Z. Agarwal R. Ramli N. The effect of palm oil-derived tocotrienol-rich fraction in preserving normal retinal vascular diameter in streptozotocin-induced diabetic rats. Graefes Arch. Clin. Exp. Ophthalmol. 2023 261 6 1587 1596 10.1007/s00417‑022‑05965‑3 36622408
    [Google Scholar]
  20. Sunday L. Tran M.M. Krause D.N. Duckles S.P. Estrogen and progestagens differentially modulate vascular proinflammatory factors. Am. J. Physiol. Endocrinol. Metab. 2006 291 2 E261 E267 10.1152/ajpendo.00550.2005 16492687
    [Google Scholar]
  21. Routaray M. Nayak P. Panda S. Dash A. Mahapatra S. Evaluation of anti-diabetic effects of ethanolic extract of albizia lebbeck in rats. Research Journal of Pharmacy and Life Sciences 2023 4 2 56 68
    [Google Scholar]
  22. Famurewa A.C. Ejezie F.E. Polyphenols isolated from virgin coconut oil attenuate cadmium-induced dyslipidemia and oxidative stress due to their antioxidant properties and potential benefits on cardiovascular risk ratios in rats. Avicenna J. Phytomed. 2018 8 1 73 84 29387575
    [Google Scholar]
  23. Cvjetkovic A. Lötvall J. Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J. Extracell. Vesicles 2014 3 1 23111 10.3402/jev.v3.23111 24678386
    [Google Scholar]
  24. Warpe V.S. Mali V.R. Arulmozhi S. Bodhankar S.L. Mahadik K.R. Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. J. Acute Med. 2015 5 1 1 8 10.1016/j.jacme.2015.02.003
    [Google Scholar]
  25. Ghule A.E. Bodhankar S.L. Cardio protective effect of coenzyme Q10 on cardiac marker enzymes and electrocardiographic abnormalities in digoxin induced cardio toxicity in wistar rats. Pharmacologyonline 2009 2 894 904
    [Google Scholar]
  26. Telesca M. Donniacuo M. Bellocchio G. Riemma M.A. Mele E. Dell’Aversana C. Sgueglia G. Cianflone E. Cappetta D. Torella D. Altucci L. Castaldo G. Rossi F. Berrino L. Urbanek K. De Angelis A. Initial phase of anthracycline cardiotoxicity involves cardiac fibroblasts activation and metabolic switch. Cancers (Basel) 2023 16 1 53 66 10.3390/cancers16010053 38201480
    [Google Scholar]
  27. Bodhankar S. Kushawaha S.K. Thakurdesai P. Mohan V. Effect of cyclodextrin garcinol complex on isoproterenol-induced cardiotoxicity and cardiac hypertrophy in rats. Diabesity 2016 2 2 12 18 10.15562/diabesity.2016.28
    [Google Scholar]
  28. Hamza A.A. Khasawneh M.A. Elwy H.M. Hassanin S.O. Elhabal S.F. Fawzi N.M. Salvadora persica attenuates DMBA-induced mammary cancer through downregulation oxidative stress, estrogen receptor expression and proliferation and augmenting apoptosis. Biomed. Pharmacother. 2022 147 112666 10.1016/j.biopha.2022.112666 35124384
    [Google Scholar]
  29. Naderi Y. Khosraviani S. Nasiri S. Hajiaghaei F. Aali E. Jamialahmadi T. Banach M. Sahebkar A. Cardioprotective effects of minocycline against doxorubicin-induced cardiotoxicity. Biomed. Pharmacother. 2023 158 114055 10.1016/j.biopha.2022.114055 36495663
    [Google Scholar]
  30. Wander D.P.A. van der Zanden S.Y. van der Marel G.A. Overkleeft H.S. Neefjes J. Codée J.D.C. Doxorubicin and aclarubicin: Shuffling anthracycline glycans for improved anticancer agents. J. Med. Chem. 2020 63 21 12814 12829 10.1021/acs.jmedchem.0c01191 33064004
    [Google Scholar]
  31. Ferreira L.L. Oliveira P.J. Cunha-Oliveira T. Epigenetics in doxorubicin cardiotoxicity. Pharmacoepigenetics 2019 10 837 846
    [Google Scholar]
  32. Ponzoni M. Coles J.G. Maynes J.T. Rodent models of dilated cardiomyopathy and heart failure for translational investigations and therapeutic discovery. Int. J. Mol. Sci. 2023 24 4 3162 10.3390/ijms24043162 36834573
    [Google Scholar]
  33. Lončar-Turukalo T. Vasić M. Tasić T. Mijatović G. Glumac S. Bajić D. Japunžić-Žigon N. Heart rate dynamics in doxorubicin-induced cardiomyopathy. Physiol. Meas. 2015 36 4 727 739 10.1088/0967‑3334/36/4/727 25798626
    [Google Scholar]
  34. Costa V.M. Carvalho F. Duarte J.A. Bastos M.L. Remião F. The heart as a target for xenobiotic toxicity: The cardiac susceptibility to oxidative stress. Chem. Res. Toxicol. 2013 26 9 1285 1311 10.1021/tx400130v 23902227
    [Google Scholar]
  35. Kanwal U. Irfan Bukhari N. Ovais M. Abass N. Hussain K. Raza A. Advances in nano-delivery systems for doxorubicin: An updated insight. J. Drug Target. 2018 26 4 296 310 10.1080/1061186X.2017.1380655 28906159
    [Google Scholar]
  36. Carvalho C. Santos R. Cardoso S. Correia S. Oliveira P. Santos M. Moreira P. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009 16 25 3267 3285 10.2174/092986709788803312 19548866
    [Google Scholar]
  37. Rocca C. De Francesco E.M. Pasqua T. Granieri M.C. De Bartolo A. Gallo Cantafio M.E. Muoio M.G. Gentile M. Neri A. Angelone T. Viglietto G. Amodio N. Mitochondrial determinants of anti-cancer drug-induced cardiotoxicity. Biomedicines 2022 10 3 520 10.3390/biomedicines10030520 35327322
    [Google Scholar]
  38. QuanJun Y. GenJin Y. LiLi W. YongLong H. Yan H. Jie L. JinLu H. Jin L. Run G. Cheng G. Protective effects of dexrazoxane against doxorubicin-induced cardiotoxicity: A metabolomic study. PLoS One 2017 12 1 e0169567 10.1371/journal.pone.0169567 28072830
    [Google Scholar]
  39. Hussen N.H. Hasan A.H. Muhammed G.O. Yassin A.Y. Salih R.R. Esmail P.A. Alanazi M.M. Jamalis J. Anthracycline in medicinal chemistry: Mechanism of cardiotoxicity, preventive and treatment strategies. Curr. Org. Chem. 2023 27 4 363 377 10.2174/1385272827666230423144150
    [Google Scholar]
  40. Garba U. Singanusong R. Jiamyangyuen S. Thongsook T. Extraction and utilization of rice bran oil: A review. 4th International Conference on Rice Bran Oil Pharma-Cosmetics, Nutraceuticals and Foods 24-25 August 2017 Bangkok, Thailand 2017 4
    [Google Scholar]
  41. Zubair M. Anwar F. Arshad I. Malik S. Zafar M.N. Rice nutraceuticals and bioactive compounds: extraction, characterization and antioxidant activity: A review. Comb. Chem. High Throughput Screen. 2023 26 15 2625 2643 10.2174/1386207326666230512144834 37183472
    [Google Scholar]
  42. Koss-Mikołajczyk I. Todorovic V. Sobajic S. Mahajna J. Gerić M. Tur J.A. Bartoszek A. Natural products counteracting cardiotoxicity during cancer chemotherapy: The special case of doxorubicin, a comprehensive review. Int. J. Mol. Sci. 2021 22 18 10037 10.3390/ijms221810037 34576204
    [Google Scholar]
  43. Mancilla T.R. Iskra B. Aune G.J. Doxorubicin-induced cardiomyopathy in children. Compr. Physiol. 2019 9 3 905 931 10.1002/cphy.c180017 31187890
    [Google Scholar]
  44. Zhao L. Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci. Rep. 2017 7 1 44735 10.1038/srep44735 28300219
    [Google Scholar]
  45. Hesari M. Shackebaei D. Asadmobini A. Protective effect of paracetamol in doxorubicin-induced cardiotoxicity in ischemia/reperfused isolated rat heart. Anatol. J. Cardiol. 2018 19 2 94 99 10.14744/AnatolJCardiol.2017.8038 29350208
    [Google Scholar]
  46. Vasić M. Lončar-Turukalo T. Tasić T. Matić M. Glumac S. Bajić D. Popović B. Japundžić-Žigon N. Cardiovascular variability and β-ARs gene expression at two stages of doxorubicin – Induced cardiomyopathy. Toxicol. Appl. Pharmacol. 2019 362 43 51 10.1016/j.taap.2018.10.015 30342983
    [Google Scholar]
  47. Taymaz-Nikerel H. Karabekmez M.E. Eraslan S. Kırdar B. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells. Sci. Rep. 2018 8 1 13672 10.1038/s41598‑018‑31939‑9 30209405
    [Google Scholar]
  48. Bardhan J Evaluation of cardioprotective effect of tocotrienol rich fraction from rice bran oil. Int. J. Pharm. Sci. Rev. Res. 2015 30 1 143 149
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X327970250108045235
Loading
/content/journals/ccr/10.2174/011573403X327970250108045235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test