Skip to content
2000
image of Unveiling the Complexities: Exploring Mechanisms of Anthracycline-Induced Cardiotoxicity

Abstract

The coexistence of cancer and heart disease, both prominent causes of illness and death, is further exacerbated by the detrimental impact of chemotherapy. Anthracycline-induced cardiotoxicity is an unfortunate side effect of highly effective therapy in treating different types of cancer; it presents a significant challenge for both clinicians and patients due to the considerable risk of cardiotoxicity. Despite significant progress in understanding these mechanisms, challenges persist in identifying effective preventive and therapeutic strategies, rendering it a subject of continued research even after three decades of intensive global investigation. The molecular targets and signaling pathways explored provide insights for developing targeted therapies, emphasizing the need for continued research to bridge the gap between preclinical understanding and clinical applications. This review provides a comprehensive exploration of the intricate mechanisms underlying anthracycline-induced cardiotoxicity, elucidating the interplay of various signaling pathways leading to adverse cellular events, including cardiotoxicity and death. It highlights the extensive involvement of pathways associated with oxidative stress, inflammation, apoptosis, and cellular stress responses, offering insights into potential and unexplored targets for therapeutic intervention in mitigating anthracycline-induced cardiac complications. A comprehensive understanding of the interplay between anthracyclines and these complexes signaling pathways is crucial for developing strategies to prevent or mitigate the associated cardiotoxicity. Further research is needed to outline the specific contributions of these pathways and identify potential therapeutic targets to improve the safety and efficacy of anthracycline-based cancer treatment. Ultimately, advancements in understanding anthracycline-induced cardiotoxicity mechanisms will facilitate the development of more efficacious preventive and treatment approaches, thereby improving outcomes for cancer patients undergoing anthracycline-based chemotherapy.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X322928241021100631
2024-10-31
2025-01-13
Loading full text...

Full text loading...

References

  1. Ghigo A. Li M. Hirsch E. New signal transduction paradigms in anthracycline-induced cardiotoxicity. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 7 7 Pt B 1916 1925 10.1016/j.bbamcr.2016.01.021 26828775
    [Google Scholar]
  2. Morelli M.B. Bongiovanni C. Da Pra S. Miano C. Sacchi F. Lauriola M. D’Uva G. Cardiotoxicity of anticancer drugs: Molecular mechanisms and strategies for cardioprotection. Front. Cardiovasc. Med. 2022 9 847012 10.3389/fcvm.2022.847012 35497981
    [Google Scholar]
  3. Bray F. Laversanne M. Cao B. Varghese C. Mikkelsen B. Weiderpass E. Soerjomataram I. Comparing cancer and cardiovascular disease trends in 20 middle- or high-income countries 2000–19: A pointer to national trajectories towards achieving Sustainable Development goal target 3.4. Cancer Treat. Rev. 2021 100 102290 10.1016/j.ctrv.2021.102290 34536729
    [Google Scholar]
  4. Behl T. Bungau S. Kumar K. Zengin G. Khan F. Kumar A. Kaur R. Venkatachalam T. Tit D.M. Vesa C.M. Barsan G. Mosteanu D.E. Pleotropic effects of polyphenols in cardiovascular system. Biomed. Pharmacother. 2020 130 110714 10.1016/j.biopha.2020.110714 34321158
    [Google Scholar]
  5. Adhikari A. Asdaq S.M.B. Al Hawaj M.A. Chakraborty M. Thapa G. Bhuyan N.R. Imran M. Alshammari M.K. Alshehri M.M. Harshan A.A. Alanazi A. Alhazmi B.D. Sreeharsha N. Anticancer drug-induced cardiotoxicity: Insights and pharmacogenetics. Pharmaceuticals 2021 14 10 970 10.3390/ph14100970 34681194
    [Google Scholar]
  6. Gheorghe G. Toth P.P. Bungau S. Behl T. Ilie M. Pantea Stoian A. Bratu O.G. Bacalbasa N. Rus M. Diaconu C.C. Cardiovascular risk and statin therapy considerations in women. Diagnostics. 2020 10 7 483 10.3390/diagnostics10070483 32708558
    [Google Scholar]
  7. Jain D Aronow W Cardiotoxicity of cancer chemotherapy in clinical practice Hospital Practice (1995) 2019 47 1 6 15
    [Google Scholar]
  8. Florescu M. Cinteza M. Vinereanu D. Chemotherapy-induced Cardiotoxicity. Maedica 2013 8 1 59 67 24023601
    [Google Scholar]
  9. Sishi B.J.N. Autophagy Upregulation Reduces Doxorubicin-Induced Cardiotoxicity. Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging. Chapter 10 Hayat M.A. [Internet] Amsterdam Academic Press 2015 157 173 https://www.sciencedirect.com/science/article/pii/B9780128010334000102
    [Google Scholar]
  10. Zamorano J.L. Lancellotti P. Rodriguez Muñoz D. Aboyans V. Asteggiano R. Galderisi M. Habib G. Lenihan D.J. Lip G.Y.H. Lyon A.R. Lopez Fernandez T. Mohty D. Piepoli M.F. Tamargo J. Torbicki A. Suter T.M. ESC Scientific Document Group 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines. Eur. Heart J. 2016 37 36 2768 2801 10.1093/eurheartj/ehw211 27567406
    [Google Scholar]
  11. Danesi R. Fogli S. Gennari A. Conte P. Del Tacca M. Pharmacokinetic-pharmacodynamic relationships of the anthracycline anticancer drugs. Clin. Pharmacokinet. 2002 41 6 431 444 10.2165/00003088‑200241060‑00004 12074691
    [Google Scholar]
  12. Yeh E.T.H. Bickford C.L. Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. J. Am. Coll. Cardiol. 2009 53 24 2231 2247 10.1016/j.jacc.2009.02.050 19520246
    [Google Scholar]
  13. Nebigil C.G. Désaubry L. Updates in Anthracycline-Mediated Cardiotoxicity. Front. Pharmacol. 2018 9 1262 10.3389/fphar.2018.01262 30483123
    [Google Scholar]
  14. Gianni L. Herman E.H. Lipshultz S.E. Minotti G. Sarvazyan N. Sawyer D.B. Anthracycline cardiotoxicity: From bench to bedside. J. Clin. Oncol. 2008 26 22 3777 3784 10.1200/JCO.2007.14.9401 18669466
    [Google Scholar]
  15. Packard R.R.S. Yang E.H. Editorial: Novel mechanisms, imaging approaches, and management strategies for anthracycline-induced cardiotoxicity. Front. Cardiovasc. Med. 2023 9 1109078 10.3389/fcvm.2022.1109078 36684589
    [Google Scholar]
  16. Fazio S. Palmieri E.A. Ferravante B. Bon È F. Biondi B. Saccà L. Doxorubicin‐induced cardiomyopathy treated with carvedilol. Clin. Cardiol. 1998 21 10 777 779 10.1002/clc.4960211017 9789703
    [Google Scholar]
  17. Carrasco R. Castillo R.L. Gormaz J.G. Carrillo M. Thavendiranathan P. Role of oxidative stress in the mechanisms of anthracycline‐induced cardiotoxicity: Effects of preventive strategies. Oxid. Med. Cell. Longev. 2021 2021 1 8863789 10.1155/2021/8863789 33574985
    [Google Scholar]
  18. Venkatesh P. Kasi A. Anthracyclines. StatPearls. 2024 Treasure Island, FL StatPearls Publishing http://www.ncbi.nlm.nih.gov/books/NBK538187/
    [Google Scholar]
  19. Shandilya M. Sharma S. Das P.P. Charak S. Shandilya M. Sharma S. Das P.P. Charak S. Molecular-Level Understanding of the Anticancer Action Mechanism of Anthracyclines. 2020 https://www.intechopen.com/chapters/73668
    [Google Scholar]
  20. Martins-Teixeira M.B. Carvalho I. Antitumour anthracyclines: Progress and perspectives. ChemMedChem 2020 15 11 933 948 10.1002/cmdc.202000131 32314528
    [Google Scholar]
  21. Bolton J.L. Dunlap T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol. 2017 30 1 13 37 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241708/ 10.1021/acs.chemrestox.6b00256 27617882
    [Google Scholar]
  22. Visone V. Szabó I. Perugino G. Hudecz F. Bánóczi Z. Valenti A. Topoisomerases inhibition and DNA binding mode of daunomycin–oligoarginine conjugate J Enzyme Inhib Med Chem 2024 35 1 1363 71 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7717705/
    [Google Scholar]
  23. Mattioli R. Ilari A. Colotti B. Mosca L. Fazi F. Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol. Aspects Med. 2023 93 101205 https://www.sciencedirect.com/science/article/pii/S0098299723000456 10.1016/j.mam.2023.101205 37515939
    [Google Scholar]
  24. Qun T. Zhou T. Hao J. Wang C. Zhang K. Xu J. Wang X. Zhou W. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms. RSC Med. Chem. 2023 14 8 1446 1471 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10429894/ 10.1039/D3MD00116D 37593578
    [Google Scholar]
  25. Khasraw M. Bell R. Dang C. Epirubicin: Is it like doxorubicin in breast cancer? A clinical review. Breast 2012 21 2 142 149 10.1016/j.breast.2011.12.012 22260846
    [Google Scholar]
  26. Edwardson D. Narendrula R. Chewchuk S. Mispel-Beyer K. Mapletoft J. Parissenti A. Role of drug metabolism in the cytotoxicity and clinical efficacy of anthracyclines. Curr. Drug Metab. 2015 16 6 412 426 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5398089/ 10.2174/1389200216888150915112039 26321196
    [Google Scholar]
  27. Aloss K. Hamar P. Recent preclinical and clinical progress in liposomal doxorubicin. Pharmaceutics 2023 15 3 893 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054554/ 10.3390/pharmaceutics15030893 36986754
    [Google Scholar]
  28. Thorn C.F. Oshiro C. Marsh S. Hernandez-Boussard T. McLeod H. Klein T.E. Altman R.B. Doxorubicin pathways. Pharmacogenet. Genomics 2011 21 7 440 446 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116111/ 10.1097/FPC.0b013e32833ffb56 21048526
    [Google Scholar]
  29. Douedi S. Carson M.P. Anthracycline Medications (Doxorubicin). StatPearls. Internet Treasure Island, FL StatPearls Publishing 2024 http://www.ncbi.nlm.nih.gov/books/NBK551633/
    [Google Scholar]
  30. Chatterjee K. Zhang J. Honbo N. Karliner J.S. Doxorubicin cardiomyopathy. Cardiology 2010 115 2 155 162 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2848530/ 10.1159/000265166 20016174
    [Google Scholar]
  31. Saleem T. Kasi A. Daunorubicin. StatPearls. 2024 Treasure Island, FL StatPearls Publishing http://www.ncbi.nlm.nih.gov/books/NBK559073/
    [Google Scholar]
  32. Presant C.A. Scolaro M. Kennedy P. Blayney D.W. Flanagan B. Lisak J. Presant J. Liposomal daunorubicin treatment of HIV-associated Kaposi’s sarcoma. Lancet 1993 341 8855 1242 1243 10.1016/0140‑6736(93)91147‑E 8098393
    [Google Scholar]
  33. Samuels L.D. Newton W.A. Jr Heyn R. Daunorubicin therapy in advanced neuroblastoma. Cancer 1971 27 4 831 834 10.1002/1097‑0142(197104)27:4<831::AID‑CNCR2820270412>3.0.CO;2‑Z 5574074
    [Google Scholar]
  34. Kantarjian H.M. Talpaz M. Kontoyiannis D. Gutterman J. Keating M.J. Estey E.H. O’Brien S. Rios M.B. Beran M. Deisseroth A. Treatment of chronic myelogenous leukemia in accelerated and blastic phases with daunorubicin, high-dose cytarabine, and granulocyte-macrophage colony-stimulating factor. J. Clin. Oncol. 1992 10 3 398 405 10.1200/JCO.1992.10.3.398 1740679
    [Google Scholar]
  35. Plosker G.L. Faulds D. Epirubicin. Drugs 1993 45 5 788 856 10.2165/00003495‑199345050‑00011 7686469
    [Google Scholar]
  36. Alderson D. Cunningham D. Nankivell M. Blazeby J.M. Griffin S.M. Crellin A. Grabsch H.I. Langer R. Pritchard S. Okines A. Krysztopik R. Coxon F. Thompson J. Falk S. Robb C. Stenning S. Langley R.E. Neoadjuvant cisplatin and fluorouracil versus epirubicin, cisplatin, and capecitabine followed by resection in patients with oesophageal adenocarcinoma (UK MRC OE05): An open-label, randomised phase 3 trial. Lancet Oncol. 2017 18 9 1249 1260 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5585417/ 10.1016/S1470‑2045(17)30447‑3 28784312
    [Google Scholar]
  37. Neri B. Cini G. Doni L. Fulignati C. Turrini M. Pantalone D. Mini E. De Luca Cardillo C. Fioretto L.M. Ribecco A.S. Moretti R. Scatizzi M. Zocchi G. Quattrone A. Weekly gemcitabine plus Epirubicin as effective chemotherapy for advanced pancreatic cancer: A multicenter phase II study. Br. J. Cancer 2002 87 5 497 501 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376146/ 10.1038/sj.bjc.6600482 12189543
    [Google Scholar]
  38. Ganzina F. Di Pietro N. Magni O. Clinical toxicity of 4′-epi-doxorubicin (epirubicin). Tumori 1985 71 3 233 240 10.1177/030089168507100304 3861022
    [Google Scholar]
  39. Surjushe A. Vasani R. Medhekar S. Thakre M. Saple D.G. Hand-foot syndrome due to capecitabine. Indian J. Dermatol. 2008 53 1 43 44 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784591/ 10.4103/0019‑5154.39747 19967024
    [Google Scholar]
  40. Fukushima T. Ueda T. Uchida M. Nakamura T. Action mechanism of idarubicin (4-demethoxydaunorubicin) as compared with daunorubicin in leukemic cells. Int. J. Hematol. 1993 57 2 121 130 8494991
    [Google Scholar]
  41. Owattanapanich W. Owattanapanich N. Kungwankiattichai S. Ungprasert P. Ruchutrakool T. Efficacy and toxicity of idarubicin versus high-dose daunorubicin for induction chemotherapy in adult acute myeloid leukemia: A systematic review and meta-analysis. Clin. Lymphoma Myeloma Leuk. 2018 18 12 814 821.e3 10.1016/j.clml.2018.08.008 30241991
    [Google Scholar]
  42. Pogliani E.M. Baldicchi L. Pioltelli P. Miccolis I.R. Mangiagalli M. Corneo G.M. Idarubicin in combination with cytarabine and VP-16 in the treatment of post myelodysplastic syndrome acute myeloblastic leukemia (MDS-AML). Leuk. Lymphoma 1995 19 5-6 473 477 10.3109/10428199509112207 8590849
    [Google Scholar]
  43. Sherif H.A. Magdy A. Elshesheni H.A. Ramadan S.M. Rashed R.A. Treatment outcome of doxorubicin versus idarubicin in adult acute myeloid leukemia. Leuk. Res. Rep. 2021 16 100272 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8517376/ 10.1016/j.lrr.2021.100272 34692402
    [Google Scholar]
  44. Fox E.J. Mechanism of action of mitoxantrone. Neurology 2004 63 12 Suppl. 6 S15 S18 15623664
    [Google Scholar]
  45. Alberts D.S. Peng Y.M. Bowden G.T. Dalton W.S. Mackel C. Pharmacology of mitoxantrone: Mode of action and pharmacokinetics. Invest. New Drugs 1985 3 2 101 107 10.1007/BF00174156 4040505
    [Google Scholar]
  46. Berry W. Dakhil S. Modiano M. Gregurich M. Asmar L. Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J. Urol. 2002 168 6 2439 2443 10.1016/S0022‑5347(05)64163‑8 12441935
    [Google Scholar]
  47. Armitage JO The role of mitoxantrone in non-Hodgkin’s lymphoma Oncology 2002 16 4 490 502
    [Google Scholar]
  48. Jiao D. Yang B. Chen J. Wang C. Jin L. Zhao W. Gao X. Wang H. Li J. Zhao H. Wu D. Fan Z. Wang S. Liu Z. Wang Y. Wu J. Efficacy and safety of mitoxantrone hydrochloride injection for tracing axillary sentinel nodes in breast cancer: A self-controlled clinical trial. Front. Oncol. 2022 12 914057 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9217178/ 10.3389/fonc.2022.914057 35756664
    [Google Scholar]
  49. Chang A. A case of mitoxantrone extravasation. J. Oncol. Pharm. Pract. 2020 26 5 1270 1273 10.1177/1078155219893736 31902285
    [Google Scholar]
  50. Goldberg I.P. Lichtbroun B. Singer E.A. Ghodoussipour S. Pharmacologic therapies for non-muscle invasive bladder cancer: Current and future treatments. Arch. Pharmacol. Ther. 2022 4 1 13 22 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9431226/ [Internet]. 36051251
    [Google Scholar]
  51. Onrust S.V. Lamb H.M. Valrubicin. Drugs Aging 1999 15 1 69 75 10.2165/00002512‑199915010‑00006 10459733
    [Google Scholar]
  52. Dinney C.P.N. Greenberg R.E. Steinberg G.D. Intravesical valrubicin in patients with bladder carcinoma in situ and contraindication to or failure after bacillus Calmette-Guérin. Urol. Oncol. 2013 31 8 1635 1642 10.1016/j.urolonc.2012.04.010 22575238
    [Google Scholar]
  53. Murzyn A. Orzeł J. Obajtek N. Mróz A. Miodowska D. Bojdo P. Gąsiorkiewicz B. Koczurkiewicz-Adamczyk P. Piska K. Pękala E. Aclarubicin: contemporary insights into its mechanism of action, toxicity, pharmacokinetics, and clinical standing. Cancer Chemother. Pharmacol. 2024 10.1007/s00280‑024‑04693‑1 38965080
    [Google Scholar]
  54. Zheng S. Zhou S. Qiao G. Yang Q. Zhang Z. Lin F. Min D. Tang L. Li H. Sun Y. Zhao H. Shen Z. Yao Y. Pirarubicin-based chemotherapy displayed better clinical outcomes and lower toxicity than did doxorubicin-based chemotherapy in the treatment of non-metastatic extremity osteosarcoma. Am. J. Cancer Res. 2014 5 1 411 422 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300710/ [Internet]. 25628949
    [Google Scholar]
  55. El-Kawy O.A. Abdelaziz G. Preparation, characterization and evaluation of [125I]-pirarubicin: A new therapeutic agent for urinary bladder cancer with potential for use as theranostic agent. Appl. Radiat. Isot. 2022 179 110007 https://www.sciencedirect.com/science/article/pii/S0969804321004024 10.1016/j.apradiso.2021.110007 34736111
    [Google Scholar]
  56. Bai M. Pan T. Zhou C. Li M. Chen J. Zeng Z. Zhu D. Wu C. Jiang Z. Li Z. Huang M. Transarterial chemoembolization with pirarubicin-eluting microspheres in patients with unresectable hepatocellular carcinoma: Preliminary results. J. Interv. Med. 2019 2 2 69 77 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8562294/ 10.1016/j.jimed.2019.09.005 34805876
    [Google Scholar]
  57. Steinherz L.J. Wexler L.H. The prevention of anthracycline cardiomyopathy. Prog. Pediatr. Cardiol. 1998 8 3 97 108 https://www.sciencedirect.com/science/article/pii/S105898139800006X [Internet]. 10.1016/S1058‑9813(98)00006‑X
    [Google Scholar]
  58. Yan H. Wang P. Yang F. Cheng W. Chen C. Zhai B. Zhou Y. Anticancer therapy-induced adverse drug reactions in children and preventive and control measures. Front. Pharmacol. 2024 15 1329220 https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2024.1329220/full 10.3389/fphar.2024.1329220 38425652
    [Google Scholar]
  59. Yamaoka T. Hanada M. Ichii S. Morisada S. Noguchi T. Yanagi Y. Uptake and intracellular distribution of amrubicin, a novel 9-amino-anthracycline, and its active metabolite amrubicinol in P388 murine leukemia cells. Jpn. J. Cancer Res. 1999 90 6 685 690 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5926123/ 10.1111/j.1349‑7006.1999.tb00801.x 10429662
    [Google Scholar]
  60. Kurata T. Okamoto I. Tamura K. Fukuoka M. Amrubicin for non-small-cell lung cancer and small-cell lung cancer. Invest. New Drugs 2007 25 5 499 504 10.1007/s10637‑007‑9069‑0 17628745
    [Google Scholar]
  61. Ikeda T. Takemoto S. Senju H. Gyotoku H. Taniguchi H. Shimada M. Dotsu Y. Umeyama Y. Tomono H. Kitazaki T. Fukuda M. Soda H. Yamaguchi H. Fukuda M. Mukae H. Amrubicin in previously treated patients with malignant pleural mesothelioma: A phase II study. Thorac. Cancer 2020 11 7 1972 1978 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327919/ 10.1111/1759‑7714.13490 32462731
    [Google Scholar]
  62. Wang Z. Wang M. Liu J. Ye J. Jiang H. Xu Y. Ye D. Wan J. Inhibition of TRPA1 Attenuates Doxorubicin‐Induced Acute Cardiotoxicity by Suppressing Oxidative Stress, the Inflammatory Response, and Endoplasmic Reticulum Stress. Oxid. Med. Cell. Longev. 2018 2018 1 5179468 10.1155/2018/5179468 29682158
    [Google Scholar]
  63. Liang X. Wang S. Wang L. Ceylan A.F. Ren J. Zhang Y. Mitophagy inhibitor liensinine suppresses doxorubicin-induced cardiotoxicity through inhibition of Drp1-mediated maladaptive mitochondrial fission. Pharmacol. Res. 2020 157 104846 10.1016/j.phrs.2020.104846 32339784
    [Google Scholar]
  64. Llach A. Mazevet M. Mateo P. Villejouvert O. Ridoux A. Rucker-Martin C. Ribeiro M. Fischmeister R. Crozatier B. Benitah J.P. Morel E. Gómez A.M. Progression of excitation-contraction coupling defects in doxorubicin cardiotoxicity. J. Mol. Cell. Cardiol. 2019 126 129 139 10.1016/j.yjmcc.2018.11.019 30500377
    [Google Scholar]
  65. Wang X. Li C. Wang Q. Li W. Guo D. Zhang X. Shao M. Chen X. Ma L. Zhang Q. Wang W. Wang Y. Tanshinone IIA restores dynamic balance of autophagosome/autolysosome in doxorubicin-induced cardiotoxicity via targeting Beclin1/LAMP1. Cancers 2019 11 7 910 10.3390/cancers11070910 31261758
    [Google Scholar]
  66. Wang M. Sun G. Sun X. Wang H. Meng X. Qin M. Sun J. Luo Y. Sun X. Cardioprotective effect of salvianolic acid B against arsenic trioxide-induced injury in cardiac H9c2 cells via the PI3K/Akt signal pathway. Toxicol. Lett. 2013 216 2-3 100 107 10.1016/j.toxlet.2012.11.023 23201927
    [Google Scholar]
  67. Aikawa R. Nawano M. Gu Y. Katagiri H. Asano T. Zhu W. Nagai R. Komuro I. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 2000 102 23 2873 2879 10.1161/01.CIR.102.23.2873 11104747
    [Google Scholar]
  68. Si R. Tao L. Zhang H.F. Yu Q.J. Zhang R. Lv A.L. Zhou N. Cao F. Guo W.Y. Ren J. Wang H.C. Gao F. Survivin: A novel player in insulin cardioprotection against myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2011 50 1 16 24 10.1016/j.yjmcc.2010.08.017 20801129
    [Google Scholar]
  69. Chen M. Zhang H. Wu J. Xu L. Xu D. Sun J. He Y. Zhou X. Wang Z. Wu L. Xu S. Wang J. Jiang S. Zhou X. Hoffman A.R. Hu X. Hu J. Li T. Promotion of the induction of cell pluripotency through metabolic remodeling by thyroid hormone triiodothyronine-activated PI3K/AKT signal pathway. Biomaterials 2012 33 22 5514 5523 10.1016/j.biomaterials.2012.04.001 22575839
    [Google Scholar]
  70. Mohan M. Mannan A. Singh T.G. Therapeutic implication of Sonic Hedgehog as a potential modulator in ischemic injury. Pharmacol. Rep. 2023 75 4 838 860 10.1007/s43440‑023‑00505‑0 37347388
    [Google Scholar]
  71. Burgering B.M.T. Coffer P.J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 1995 376 6541 599 602 10.1038/376599a0 7637810
    [Google Scholar]
  72. Fayard E. Tintignac L.A. Baudry A. Hemmings B.A. Protein kinase B/Akt at a glance. J. Cell Sci. 2005 118 24 5675 5678 10.1242/jcs.02724 16339964
    [Google Scholar]
  73. Testa J.R. Tsichlis P.N. AKT signaling in normal and malignant cells. Oncogene 2005 24 50 7391 7393 10.1038/sj.onc.1209100 16288285
    [Google Scholar]
  74. Vara J.Á.F. Casado E. de Castro J. Cejas P. Belda-Iniesta C. González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat. Rev. 2004 30 2 193 204 10.1016/j.ctrv.2003.07.007 15023437
    [Google Scholar]
  75. Aoyagi T. Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr. Pharm. Des. 2011 17 18 1818 1824 10.2174/138161211796390976 21631421
    [Google Scholar]
  76. Liao Z.Q. Jiang Y.N. Su Z.L. Bi H.L. Li J.T. Li C.L. Yang X.L. Zhang Y. Xie X. Rutaecarpine inhibits doxorubicin-induced oxidative stress and apoptosis by activating AKT signaling pathway. Front. Cardiovasc. Med. 2022 8 809689 10.3389/fcvm.2021.809689 35071368
    [Google Scholar]
  77. McLean B.A. Patel V.B. Zhabyeyev P. Chen X. Basu R. Wang F. Shah S. Vanhaesebroeck B. Oudit G.Y. PI3Kα pathway inhibition with doxorubicin treatment results in distinct biventricular atrophy and remodeling with right ventricular dysfunction. J. Am. Heart Assoc. 2019 8 9 e010961 10.1161/JAHA.118.010961 31039672
    [Google Scholar]
  78. Taniyama Y. Walsh K. Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. J. Mol. Cell. Cardiol. 2002 34 10 1241 1247 10.1006/jmcc.2002.2068 12392981
    [Google Scholar]
  79. Yao H. Han X. Han X. The cardioprotection of the insulin-mediated PI3K/Akt/mTOR signaling pathway. Am. J. Cardiovasc. Drugs 2014 14 6 433 442 10.1007/s40256‑014‑0089‑9 25160498
    [Google Scholar]
  80. Saxton R.A. Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017 168 6 960 976 10.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  81. Singh S. Singh T.G. Rehni A.K. An insight into molecular mechanisms and novel therapeutic approaches in epileptogenesis. CNS Neurol. Disord. Drug Targets 2021 19 10 750 779 10.2174/1871527319666200910153827 32914725
    [Google Scholar]
  82. Dowling R.J.O. Topisirovic I. Fonseca B.D. Sonenberg N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim. Biophys. Acta. Proteins Proteomics 2010 1804 3 433 439 10.1016/j.bbapap.2009.12.001 20005306
    [Google Scholar]
  83. Xiao B. Hong L. Cai X. Mei S. Zhang P. Shao L. The true colors of autophagy in doxorubicin‑induced cardiotoxicity (Review). Oncol. Lett. 2019 18 3 2165 2172 10.3892/ol.2019.10576 31452719
    [Google Scholar]
  84. Zou Z. Tao T. Li H. Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell Biosci. 2020 10 1 31 10.1186/s13578‑020‑00396‑1 32175074
    [Google Scholar]
  85. Sciarretta S. Forte M. Frati G. Sadoshima J. New insights into the role of mTOR signaling in the cardiovascular system. Circ. Res. 2018 122 3 489 505 10.1161/CIRCRESAHA.117.311147 29420210
    [Google Scholar]
  86. Zhu Y. Pires K.M.P. Whitehead K.J. Olsen C.D. Wayment B. Zhang Y.C. Bugger H. Ilkun O. Litwin S.E. Thomas G. Kozma S.C. Abel E.D. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS One 2013 8 1 e54221 10.1371/journal.pone.0054221 23342106
    [Google Scholar]
  87. Gao G. Chen W. Yan M. Liu J. Luo H. Wang C. Yang P. Rapamycin regulates the balance between cardiomyocyte apoptosis and autophagy in chronic heart failure by inhibiting mTOR signaling. Int. J. Mol. Med. 2020 45 1 195 209 31746373
    [Google Scholar]
  88. Chen M.B. Wu X.Y. Gu J.H. Guo Q.T. Shen W.X. Lu P.H. Activation of AMP-activated protein kinase contributes to doxorubicin-induced cell death and apoptosis in cultured myocardial H9c2 cells. Cell Biochem. Biophys. 2011 60 3 311 322 10.1007/s12013‑011‑9153‑0 21274754
    [Google Scholar]
  89. Chong Z.Z. Shang Y.C. Maiese K. Cardiovascular disease and mTOR signaling. Trends Cardiovasc. Med. 2011 21 5 151 155 10.1016/j.tcm.2012.04.005 22732551
    [Google Scholar]
  90. Pizarro M. Troncoso R. Martínez G.J. Chiong M. Castro P.F. Lavandero S. Basal autophagy protects cardiomyocytes from doxorubicin-induced toxicity. Toxicology 2016 370 41 48 10.1016/j.tox.2016.09.011 27666003
    [Google Scholar]
  91. Xu Z.M. Li C.B. Liu Q.L. Li P. Yang H. Ginsenoside Rg1 prevents doxorubicin-induced cardiotoxicity through the inhibition of autophagy and endoplasmic reticulum stress in mice. Int. J. Mol. Sci. 2018 19 11 3658 10.3390/ijms19113658 30463294
    [Google Scholar]
  92. Aoyama T. Matsui T. Novikov M. Park J. Hemmings B. Rosenzweig A. Serum and glucocorticoid-responsive kinase-1 regulates cardiomyocyte survival and hypertrophic response. Circulation 2005 111 13 1652 1659 10.1161/01.CIR.0000160352.58142.06 15795328
    [Google Scholar]
  93. Shende P. Xu L. Morandi C. Pentassuglia L. Heim P. Lebboukh S. Berthonneche C. Pedrazzini T. Kaufmann B.A. Hall M.N. Rüegg M.A. Brink M. Cardiac mTOR complex 2 preserves ventricular function in pressure-overload hypertrophy. Cardiovasc. Res. 2016 109 1 103 114 10.1093/cvr/cvv252 26598511
    [Google Scholar]
  94. Wu Y. Wang J. Yu X. Li D. Han X. Fan L. Sevoflurane ameliorates doxorubicin-induced myocardial injury by affecting the phosphorylation states of proteins in PI3K/Akt/mTOR signaling pathway. Cardiol. J. 2017 24 4 409 418 10.5603/CJ.a2017.0018 28198521
    [Google Scholar]
  95. Christidi E. Brunham L.R. Regulated cell death pathways in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2021 12 4 339 10.1038/s41419‑021‑03614‑x 33795647
    [Google Scholar]
  96. Wang X. Wang Q. Li W. Zhang Q. Jiang Y. Guo D. Sun X. Lu W. Li C. Wang Y. TFEB-NF-κB inflammatory signaling axis: A novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. J. Exp. Clin. Cancer Res. 2020 39 1 93 10.1186/s13046‑020‑01595‑x 32448281
    [Google Scholar]
  97. Devi S. Chauhan S. Mannan A. Singh T.G. Targeting cardiovascular risk factors with eugenol: An anti-inflammatory perspective. Inflammopharmacology 2023 38085446
    [Google Scholar]
  98. Quagliariello V De Laurentiis M Rea D Barbieri A Monti MG Botti G Maurea N SGLT2 inhibitor dapagliflozin against anthracycline and trastuzumab-induced cardiotoxicity: The role of MYD88, NLRP3, Leukotrienes/Interleukin 6 axis and mTORC1 /Fox01/3a mediated apoptosis Eur. Heart J. 2020 41 Supplement_2 ehaa946.3253 ehaa946.3253
    [Google Scholar]
  99. Egan D. Kim J. Shaw R.J. Guan K.L. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 2011 7 6 643 644 10.4161/auto.7.6.15123 21460621
    [Google Scholar]
  100. Hong E.G. Kim B.W. Young Jung D. Hun Kim J. Yu T. Seixas Da Silva W. Friedline R.H. Bianco S.D. Seslar S.P. Wakimoto H. Berul C.I. Russell K.S. Won Lee K. Larsen P.R. Bianco A.C. Kim J.K. Cardiac expression of human type 2 iodothyronine deiodinase increases glucose metabolism and protects against doxorubicin-induced cardiac dysfunction in male mice. Endocrinology 2013 154 10 3937 3946 10.1210/en.2012‑2261 23861374
    [Google Scholar]
  101. Nazarko V.Y. Zhong Q. ULK1 targets Beclin-1 in autophagy. Nat. Cell Biol. 2013 15 7 727 728 10.1038/ncb2797 23817237
    [Google Scholar]
  102. Harris M.P. Zhang Q.J. Cochran C.T. Ponce J. Alexander S. Kronemberger A. Fuqua J.D. Zhang Y. Fattal R. Harper T. Murry M.L. Grueter C.E. Abel E.D. Lira V.A. Perinatal versus adult loss of ULK1 and ULK2 distinctly influences cardiac autophagy and function. Autophagy 2022 18 9 2161 2177 10.1080/15548627.2021.2022289 35104184
    [Google Scholar]
  103. Sangweni N.F. Gabuza K. Huisamen B. Mabasa L. van Vuuren D. Johnson R. Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: A graphical representation. Arch. Toxicol. 2022 96 6 1541 1550 10.1007/s00204‑022‑03262‑w 35333943
    [Google Scholar]
  104. Russo M. Bono E. Ghigo A. The interplay between autophagy and senescence in anthracycline cardiotoxicity. Curr. Heart Fail. Rep. 2021 18 4 180 190 10.1007/s11897‑021‑00519‑w 34081265
    [Google Scholar]
  105. Xu X. Chen K. Kobayashi S. Timm D. Liang Q. Resveratrol attenuates doxorubicin-induced cardiomyocyte death via inhibition of p70 S6 kinase 1-mediated autophagy. J. Pharmacol. Exp. Ther. 2012 341 1 183 195 10.1124/jpet.111.189589 22209892
    [Google Scholar]
  106. Yu X. Yang Y. Chen T. Wang Y. Guo T. Liu Y. Li H. Yang L. Cell death regulation in myocardial toxicity induced by antineoplastic drugs. Front. Cell Dev. Biol. 2023 11 1075917 10.3389/fcell.2023.1075917 36824370
    [Google Scholar]
  107. Li D.L. Wang Z.V. Ding G. Tan W. Luo X. Criollo A. Xie M. Jiang N. May H. Kyrychenko V. Schneider J.W. Gillette T.G. Hill J.A. Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation 2016 133 17 1668 1687 10.1161/CIRCULATIONAHA.115.017443 26984939
    [Google Scholar]
  108. Li M. Russo M. Pirozzi F. Tocchetti C.G. Ghigo A. Autophagy and cancer therapy cardiotoxicity: From molecular mechanisms to therapeutic opportunities. Biochim. Biophys. Acta Mol. Cell Res. 2020 1867 3 118493 10.1016/j.bbamcr.2019.06.007 31233802
    [Google Scholar]
  109. Bartlett J.J. Trivedi P.C. Yeung P. Kienesberger P.C. Pulinilkunnil T. Doxorubicin impairs cardiomyocyte viability by suppressing transcription factor EB expression and disrupting autophagy. Biochem. J. 2016 473 21 3769 3789 10.1042/BCJ20160385 27487838
    [Google Scholar]
  110. Chen C. Jiang L. Zhang M. Pan X. Peng C. Huang W. Jiang Q. Isodunnianol alleviates doxorubicin-induced myocardial injury by activating protective autophagy. Food Funct. 2019 10 5 2651 2657 10.1039/C9FO00063A 31025676
    [Google Scholar]
  111. Farhan M. Wang H. Gaur U. Little P.J. Xu J. Zheng W. Foxo signaling pathways as therapeutic targets in cancer. Int. J. Biol. Sci. 2017 13 7 815 827 10.7150/ijbs.20052 28808415
    [Google Scholar]
  112. Zhang Y. Gan B. Liu D. Paik J. FoxO family members in cancer. Cancer Biol. Ther. 2011 12 4 253 259 10.4161/cbt.12.4.15954 21613825
    [Google Scholar]
  113. Mishra S. Ravi V. Sundaresan N.R. Role of FoxO transcription factors in aging-associated cardiovascular diseases. Vitam. Horm. 2021 115 449 475 10.1016/bs.vh.2020.12.018 33706958
    [Google Scholar]
  114. Hornsveld M. Dansen T.B. Derksen P.W. Burgering B.M.T. Re-evaluating the role of FOXOs in cancer. Semin. Cancer Biol. 2018 50 90 100 10.1016/j.semcancer.2017.11.017 29175105
    [Google Scholar]
  115. Xin Z. Ma Z. Jiang S. Wang D. Fan C. Di S. Hu W. Li T. She J. Yang Y. FOXOs in the impaired heart: New therapeutic targets for cardiac diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2017 1863 2 486 498 10.1016/j.bbadis.2016.11.023 27890702
    [Google Scholar]
  116. Seok H.Y. Chen J. Kataoka M. Huang Z.P. Ding J. Yan J. Hu X. Wang D.Z. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ. Res. 2014 114 10 1585 1595 10.1161/CIRCRESAHA.114.303784 24657879
    [Google Scholar]
  117. Ucar A. Gupta S.K. Fiedler J. Erikci E. Kardasinski M. Batkai S. Dangwal S. Kumarswamy R. Bang C. Holzmann A. Remke J. Caprio M. Jentzsch C. Engelhardt S. Geisendorf S. Glas C. Hofmann T.G. Nessling M. Richter K. Schiffer M. Carrier L. Napp L.C. Bauersachs J. Chowdhury K. Thum T. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun. 2012 3 1 1078 10.1038/ncomms2090 23011132
    [Google Scholar]
  118. Sun Z. Yan B. Yu W.Y. Yao X. Ma X. Sheng G. Ma Q. Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Exp. Ther. Med. 2016 12 3 1879 1884 10.3892/etm.2016.3518 27588105
    [Google Scholar]
  119. Xia P. Chen J. Liu Y. Fletcher M. Jensen B.C. Cheng Z. Doxorubicin induces cardiomyocyte apoptosis and atrophy through cyclin-dependent kinase 2–mediated activation of forkhead box O1. J. Biol. Chem. 2020 295 13 4265 4276 10.1074/jbc.RA119.011571 32075913
    [Google Scholar]
  120. Hui R.C.Y. Francis R.E. Guest S.K. Costa J.R. Gomes A.R. Myatt S.S. Brosens J.J. Lam E.W.F. Doxorubicin activates FOXO3a to induce the expression of multidrug resistance gene ABCB1 ( MDR1 ) in K562 leukemic cells. Mol. Cancer Ther. 2008 7 3 670 678 10.1158/1535‑7163.MCT‑07‑0397 18347152
    [Google Scholar]
  121. Hui R.C.Y. Gomes A.R. Constantinidou D. Costa J.R. Karadedou C.T. Fernandez de Mattos S. Wymann M.P. Brosens J.J. Schulze A. Lam E.W.F. The forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Mol. Cell. Biol. 2008 28 19 5886 5898 10.1128/MCB.01265‑07 18644865
    [Google Scholar]
  122. Ho K.K. McGuire V.A. Koo C.Y. Muir K.W. de Olano N. Maifoshie E. Kelly D.J. McGovern U.B. Monteiro L.J. Gomes A.R. Nebreda A.R. Campbell D.G. Arthur J.S.C. Lam E.W.F. Phosphorylation of FOXO3a on Ser-7 by p38 promotes its nuclear localization in response to doxorubicin. J. Biol. Chem. 2012 287 2 1545 1555 10.1074/jbc.M111.284224 22128155
    [Google Scholar]
  123. Zhou L. Li R. Liu C. Sun T. Htet Aung L.H. Chen C. Gao J. Zhao Y. Wang K. Foxo3a inhibits mitochondrial fission and protects against doxorubicin-induced cardiotoxicity by suppressing MIEF2. Free Radic. Biol. Med. 2017 104 360 370 10.1016/j.freeradbiomed.2017.01.037 28137654
    [Google Scholar]
  124. Liu M.H. Zhang Y. He J. Tan T.P. Wu S.J. Guo D.M. He H. Peng J. Tang Z.H. Jiang Z.S. Hydrogen sulfide protects H9c2 cardiac cells against doxorubicin-induced cytotoxicity through the PI3K/Akt/FoxO3a pathway. Int. J. Mol. Med. 2016 37 6 1661 1668 10.3892/ijmm.2016.2563 27081862
    [Google Scholar]
  125. Zhang C. Feng Y. Qu S. Wei X. Zhu H. Luo Q. Liu M. Chen G. Xiao X. Resveratrol attenuates doxorubicin-induced cardiomyocyte apoptosis in mice through SIRT1-mediated deacetylation of p53. Cardiovasc. Res. 2011 90 3 538 545 10.1093/cvr/cvr022 21278141
    [Google Scholar]
  126. Tao R. Coleman M.C. Pennington J.D. Ozden O. Park S.H. Jiang H. Kim H.S. Flynn C.R. Hill S. Hayes McDonald W. Olivier A.K. Spitz D.R. Gius D. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 2010 40 6 893 904 10.1016/j.molcel.2010.12.013 21172655
    [Google Scholar]
  127. Zheng Y. Shi B. Ma M. Wu X. Lin X. The novel relationship between Sirt3 and autophagy in myocardial ischemia–reperfusion. J. Cell. Physiol. 2019 234 5 5488 5495 10.1002/jcp.27329 30485429
    [Google Scholar]
  128. Li H. Zhang M. Wang Y. Gong K. Yan T. Wang D. Meng X. Yang X. Chen Y. Han J. Duan Y. Zhang S. Daidzein alleviates doxorubicin-induced heart failure via the SIRT3/FOXO3a signaling pathway. Food Funct. 2022 13 18 9576 9588 10.1039/D2FO00772J 36000402
    [Google Scholar]
  129. Lochhead P.A. Kinstrie R. Sibbet G. Rawjee T. Morrice N. Cleghon V. A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol. Cell 2006 24 4 627 633 10.1016/j.molcel.2006.10.009 17188038
    [Google Scholar]
  130. Sharma V. Kaur A. Singh T.G. Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed. Pharmacother. 2020 129 110373 10.1016/j.biopha.2020.110373 32603894
    [Google Scholar]
  131. Goyal S. Singh M. Thirumal D. Sharma P. Mujwar S. Mishra K.K. Singh T.G. Singh R. Singh V. Singh T. Ahmad S.F. In silico approaches to developing novel glycogen synthase kinase 3β (GSK-3β) inhibitors. Biomedicines 2023 11 10 2784 10.3390/biomedicines11102784 37893156
    [Google Scholar]
  132. Sutherland C. Cohen P. The α‐isoform of glycogen synthase kinase‐3 from rabbit skeletal muscle is inactivated by p70 S6 kinase or MAP kinase‐activated protein kinase‐1 in vitro. FEBS Lett. 1994 338 1 37 42 10.1016/0014‑5793(94)80112‑6 8307153
    [Google Scholar]
  133. Die L. Yan P. Jun Jiang Z. Min Hua T. Cai W. Xing L. Glycogen synthase kinase-3 beta inhibitor suppresses Porphyromonas gingivalis lipopolysaccharide-induced CD40 expression by inhibiting nuclear factor-kappa B activation in mouse osteoblasts. Mol. Immunol. 2012 52 1 38 49 10.1016/j.molimm.2012.04.005 22580404
    [Google Scholar]
  134. Zhou J. Ahmad F. Parikh S. Hoffman N.E. Rajan S. Verma V.K. Song J. Yuan A. Shanmughapriya S. Guo Y. Gao E. Koch W. Woodgett J.R. Madesh M. Kishore R. Lal H. Force T. Loss of adult cardiac myocyte GSK-3 leads to mitotic catastrophe resulting in fatal dilated cardiomyopathy. Circ. Res. 2016 118 8 1208 1222 10.1161/CIRCRESAHA.116.308544 26976650
    [Google Scholar]
  135. Matsuda T. Zhai P. Maejima Y. Hong C. Gao S. Tian B. Goto K. Takagi H. Tamamori-Adachi M. Kitajima S. Sadoshima J. Distinct roles of GSK-3α and GSK-3β phosphorylation in the heart under pressure overload. Proc. Natl. Acad. Sci. USA 2008 105 52 20900 20905 10.1073/pnas.0808315106 19106302
    [Google Scholar]
  136. Cheng H. Woodgett J. Maamari M. Force T. Targeting GSK-3 family members in the heart: A very sharp double-edged sword. J. Mol. Cell. Cardiol. 2011 51 4 607 613 10.1016/j.yjmcc.2010.11.020 21163265
    [Google Scholar]
  137. Nagoor Meeran M.F. Arunachalam S. Azimullah S. Saraswathiamma D. Albawardi A. Almarzooqi S. Jha N.K. Subramanya S. Beiram R. Ojha S. α-Bisabolol, a dietary sesquiterpene, attenuates doxorubicin-induced acute cardiotoxicity in rats by inhibiting cellular signaling pathways, Nrf2/Keap-1/HO-1, Akt/mTOR/GSK-3β, NF-κB/p38/MAPK, and NLRP3 inflammasomes regulating oxidative stress and inflammatory cascades. Int. J. Mol. Sci. 2023 24 18 14013 10.3390/ijms241814013 37762315
    [Google Scholar]
  138. Wang F. Shu F. Wang X.Q. Zheng L.L. Wang H.L. Li L. Lv H.G. Sevoflurane ameliorates adriamycin-induced myocardial injury in rats through the PI3K/Akt/GSK-3β pathway. Eur. Rev. Med. Pharmacol. Sci. 2021 25 2 968 975 33577052
    [Google Scholar]
  139. Liao W. Rao Z. Wu L. Chen Y. Li C. Cariporide attenuates doxorubicin-induced cardiotoxicity in rats by inhibiting oxidative stress, inflammation, and apoptosis partly through regulation of Akt/GSK-3β and Sirt1 signaling pathways. Front. Pharmacol. 2022 13 850053 10.3389/fphar.2022.850053 35747748
    [Google Scholar]
  140. Ahmad F. Singh A.P. Tomar D. Rahmani M. Zhang Q. Woodgett J.R. Tilley D.G. Lal H. Force T. Cardiomyocyte-GSK-3α promotes mPTP opening and heart failure in mice with chronic pressure overload. J. Mol. Cell. Cardiol. 2019 130 65 75 10.1016/j.yjmcc.2019.03.020 30928428
    [Google Scholar]
  141. Juhaszova M. Zorov D.B. Kim S.H. Pepe S. Fu Q. Fishbein K.W. Ziman B.D. Wang S. Ytrehus K. Antos C.L. Olson E.N. Sollott S.J. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 2004 113 11 1535 1549 10.1172/JCI19906 15173880
    [Google Scholar]
  142. Wang X. Sun Q. Jiang Q. Jiang Y. Zhang Y. Cao J. Lu L. Li C. Wei P. Wang Q. Wang Y. Cryptotanshinone ameliorates doxorubicin-induced cardiotoxicity by targeting Akt-GSK-3β-mPTP pathway in vitro. Molecules 2021 26 5 1460 10.3390/molecules26051460 33800264
    [Google Scholar]
  143. He S.F. Jin S.Y. Wu H. Wang B. Wu Y.X. Zhang S.J. Irwin M.G. Wong T.M. Zhang Y. Morphine preconditioning confers cardioprotection in doxorubicin-induced failing rat hearts via ERK/GSK-3β pathway independent of PI3K/Akt. Toxicol. Appl. Pharmacol. 2015 288 3 349 358 10.1016/j.taap.2015.08.007 26296503
    [Google Scholar]
  144. Wang S. Sun M. Ding S. Liu C. Wang J. Han S. Lin X. Li Q. Ticagrelor reduces doxorubicin-induced pyroptosis of rat cardiomyocytes by targeting GSK-3β/caspase-1. Front. Cardiovasc. Med. 2023 9 1090601 10.3389/fcvm.2022.1090601 36684601
    [Google Scholar]
  145. Wu J. Sun C. Wang R. Li J. Zhou M. Yan M. Xue X. Wang C. Cardioprotective effect of paeonol against epirubicin-induced heart injury via regulating miR-1 and PI3K/AKT pathway. Chem. Biol. Interact. 2018 286 17 25 10.1016/j.cbi.2018.02.035 29505745
    [Google Scholar]
  146. Zhan L. Wang X. Zhang Y. Zhu G. Ding Y. Chen X. Jiang W. Wu S. Benazepril hydrochloride protects against doxorubicin cardiotoxicity by regulating the PI3K/Akt pathway. Exp. Ther. Med. 2021 22 4 1082 10.3892/etm.2021.10516 34447475
    [Google Scholar]
  147. Zhang X. Wang X. Liu X. Luo W. Zhao H. Yin Y. Xu K. Myocardial protection of propofol on apoptosis induced by anthracycline by PI3K/AKT/Bcl-2 pathway in rats. Ann. Transl. Med. 2022 10 10 555 10.21037/atm‑22‑1549 35722399
    [Google Scholar]
  148. Kalantary-Charvadeh A. Sanajou D. Hemmati-Dinarvand M. Marandi Y. Khojastehfard M. Hajipour H. Mesgari-Abbasi M. Roshangar L. Nazari Soltan Ahmad S. Micheliolide Protects Against Doxorubicin-Induced Cardiotoxicity in Mice by Regulating PI3K/Akt/NF-kB Signaling Pathway. Cardiovasc. Toxicol. 2019 19 4 297 305 10.1007/s12012‑019‑09511‑2 30835049
    [Google Scholar]
  149. Cao Y. Ruan Y. Shen T. Huang X. Li M. Yu W. Zhu Y. Man Y. Wang S. Li J. Astragalus polysaccharide suppresses doxorubicin-induced cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways. Oxid. Med. Cell. Longev. 2014 2014 1 12 10.1155/2014/674219 25386226
    [Google Scholar]
  150. Yu W. Sun H. Zha W. Cui W. Xu L. Min Q. Wu J. Apigenin attenuates adriamycin-induced cardiomyocyte apoptosis via the PI3K/AKT/mTOR pathway. Evid. Based Complement. Alternat. Med. 2017 2017 1 2590676 10.1155/2017/2590676 28684964
    [Google Scholar]
  151. Wang F. Wang L. Jiao Y. Wang Z. Qishen Huanwu capsule reduces pirarubicin-induced cardiotoxicity in rats by activating the PI3K/Akt/mTOR pathway. Ann. Palliat. Med. 2020 9 5 3453 3461 10.21037/apm‑20‑1746 33065796
    [Google Scholar]
  152. Sahu R. Dua T.K. Das S. De Feo V. Dewanjee S. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem. Toxicol. 2019 125 503 519 10.1016/j.fct.2019.01.034 30735749
    [Google Scholar]
  153. Chen Y.L. Zhuang X.D. Xu Z.W. Lu L.H. Guo H.L. Wu W.K. Liao X.X. Higenamine combined with [6]-gingerol suppresses doxorubicin-triggered oxidative stress and apoptosis in cardiomyocytes via upregulation of PI3K/Akt pathway. Evid. Based Complement. Alternat. Med. 2013 2013 1 14 10.1155/2013/970490 23861719
    [Google Scholar]
  154. Hsieh P.L. Chu P.M. Cheng H.C. Huang Y.T. Chou W.C. Tsai K.L. Chan S.H. Dapagliflozin mitigates doxorubicin-caused myocardium damage by regulating AKT-mediated oxidative stress, cardiac remodeling, and inflammation. Int. J. Mol. Sci. 2022 23 17 10146 10.3390/ijms231710146 36077544
    [Google Scholar]
  155. Lu Y. Min Q. Zhao X. Li L. Zhao G. Dong J. Eupatilin attenuates doxorubicin-induced cardiotoxicity by activating the PI3K-AKT signaling pathway in mice. Mol. Cell. Biochem. 2023 37222879
    [Google Scholar]
  156. Li H. Mao Y. Zhang Q. Han Q. Man Z. Zhang J. Wang X. Hu R. Zhang X. Irwin D.M. Niu G. Tan H. Xinmailong mitigated epirubicin-induced cardiotoxicity via inhibiting autophagy. J. Ethnopharmacol. 2016 192 459 470 10.1016/j.jep.2016.08.031 27586823
    [Google Scholar]
  157. Alzahrani A.M. Rajendran P. Veeraraghavan V.P. Hanieh H. Cardiac Protective Effect of Kirenol against Doxorubicin-Induced Cardiac Hypertrophy in H9c2 Cells through Nrf2 Signaling via PI3K/AKT Pathways. Int. J. Mol. Sci. 2021 22 6 3269 10.3390/ijms22063269 33806909
    [Google Scholar]
  158. Abbas N.A.T. Kabil S.L. Liraglutide ameliorates cardiotoxicity induced by doxorubicin in rats through the Akt/GSK-3β signaling pathway. Naunyn Schmiedebergs Arch. Pharmacol. 2017 390 11 1145 1153 10.1007/s00210‑017‑1414‑z 28780599
    [Google Scholar]
  159. Hu X. Li B. Li L. Li B. Luo J. Shen B. Asiatic acid protects against doxorubicin-induced cardiotoxicity in mice. Oxid. Med. Cell. Longev. 2020 2020 1 12 10.1155/2020/5347204 32509145
    [Google Scholar]
  160. He Y. Yang Z. Li J. Li E. Dexmedetomidine reduces the inflammation and apoptosis of doxorubicin-induced myocardial cells. Exp. Mol. Pathol. 2020 113 104371 10.1016/j.yexmp.2020.104371 31917290
    [Google Scholar]
  161. Soares-Silva M. Diniz F.F. Gomes G.N. Bahia D. The mitogen-activated protein kinase (MAPK) pathway: Role in immune evasion by trypanosomatids. Front. Microbiol. 2016 7 183 10.3389/fmicb.2016.00183 26941717
    [Google Scholar]
  162. Singh S. Singh T.G. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm. Res. 2021 70 10-12 1027 1042 10.1007/s00011‑021‑01511‑9 34652489
    [Google Scholar]
  163. Sharma V. Singh T.G. mannan A. Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia. Neurochem. Res. 2022 47 8 2173 2186 10.1007/s11064‑022‑03620‑1 35596882
    [Google Scholar]
  164. Wang Y. Mitogen-activated protein kinases in heart development and diseases. Circulation 2007 116 12 1413 1423 10.1161/CIRCULATIONAHA.106.679589 17875982
    [Google Scholar]
  165. Davis R.J. The mitogen-activated protein kinase signal transduction pathway. J. Biol. Chem. 1993 268 20 14553 14556 10.1016/S0021‑9258(18)82362‑6 8325833
    [Google Scholar]
  166. Satoh T. Nakafuku M. Kaziro Y. Function of Ras as a molecular switch in signal transduction. J. Biol. Chem. 1992 267 34 24149 24152 10.1016/S0021‑9258(18)35739‑9 1447166
    [Google Scholar]
  167. Rozakis-Adcock M. McGlade J. Mbamalu G. Pelicci G. Daly R. Li W. Batzer A. Thomas S. Brugge J. Pelicci P.G. Schlessinger J. Pawson T. Association of the Shc and Grb2/Sem5 SH2-containing proteins is implicated in activation of the Ras pathway by tyrosine kinases. Nature 1992 360 6405 689 692 10.1038/360689a0 1465135
    [Google Scholar]
  168. Yamazaki T. Komuro I. Zou Y. Kudoh S. Shiojima I. Hiroi Y. Mizuno T. Aikawa R. Takano H. Yazaki Y. Norepinephrine induces the raf-1 kinase/mitogen-activated protein kinase cascade through both alpha 1- and beta-adrenoceptors. Circulation 1997 95 5 1260 1268 10.1161/01.CIR.95.5.1260 9054858
    [Google Scholar]
  169. Zhu W. Zou Y. Aikawa R. Harada K. Kudoh S. Uozumi H. Hayashi D. Gu Y. Yamazaki T. Nagai R. Yazaki Y. Komuro I. MAPK superfamily plays an important role in daunomycin-induced apoptosis of cardiac myocytes. Circulation 1999 100 20 2100 2107 10.1161/01.CIR.100.20.2100 10562267
    [Google Scholar]
  170. Liu J. Mao W. Ding B. Liang C. ERKs/p53 signal transduction pathway is involved in doxorubicin-induced apoptosis in H9c2 cells and cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 2008 295 5 H1956 H1965 10.1152/ajpheart.00407.2008 18775851
    [Google Scholar]
  171. Guo R.M. Xu W.M. Lin J.C. Mo L.Q. Hua X.X. Chen P.X. Wu K. Zheng D.D. Feng J.Q. Activation of the p38 MAPK/NF-κB pathway contributes to doxorubicin-induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol. Med. Rep. 2013 8 2 603 608 10.3892/mmr.2013.1554 23807148
    [Google Scholar]
  172. Torres J. Enríquez-de-Salamanca A. Fernández I. Rodríguez-Ares M.T. Quadrado M.J. Murta J. Benítez del Castillo J.M. Stern M.E. Calonge M. Activation of MAPK signaling pathway and NF-kappaB activation in pterygium and ipsilateral pterygium-free conjunctival specimens. Invest. Ophthalmol. Vis. Sci. 2011 52 8 5842 5852 10.1167/iovs.10‑6673 21685342
    [Google Scholar]
  173. Dong C. Davis R.J. Flavell R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 2002 20 1 55 72 10.1146/annurev.immunol.20.091301.131133 11861597
    [Google Scholar]
  174. Arthur J.S.C. Ley S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013 13 9 679 692 10.1038/nri3495 23954936
    [Google Scholar]
  175. El-Agamy D.S. El-Harbi K.M. Khoshhal S. Ahmed N. Elkablawy M.A. Shaaban A.A. Abo-Haded H.M. Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-kB signaling pathways. Cancer Manag. Res. 2018 11 47 61 10.2147/CMAR.S186696 30588110
    [Google Scholar]
  176. Wen S.Y. Tsai C.Y. Pai P.Y. Chen Y.W. Yang Y.C. Aneja R. Huang C.Y. Kuo W.W. Diallyl trisulfide suppresses doxorubicin‐induced cardiomyocyte apoptosis by inhibiting MAPK/NF‐κB signaling through attenuation of ROS generation. Environ. Toxicol. 2018 33 1 93 103 10.1002/tox.22500 29087013
    [Google Scholar]
  177. Menegon S. Columbano A. Giordano S. The dual roles of NRF2 in cancer. Trends Mol. Med. 2016 22 7 578 593 10.1016/j.molmed.2016.05.002 27263465
    [Google Scholar]
  178. Fão L. Mota S.I. Rego A.C. Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res. Rev. 2019 54 100942 10.1016/j.arr.2019.100942 31415806
    [Google Scholar]
  179. Yamamoto M. Kensler T.W. Motohashi H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018 98 3 1169 1203 10.1152/physrev.00023.2017 29717933
    [Google Scholar]
  180. Keum Y.S. Choi B. Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 2014 19 7 10074 10089 10.3390/molecules190710074 25014534
    [Google Scholar]
  181. Nordgren K.K.S. Wallace K.B. Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts. Toxicol. Appl. Pharmacol. 2014 274 1 107 116 10.1016/j.taap.2013.10.023 24211725
    [Google Scholar]
  182. Luo L.F. Guan P. Qin L.Y. Wang J.X. Wang N. Ji E.S. Astragaloside IV inhibits adriamycin-induced cardiac ferroptosis by enhancing Nrf2 signaling. Mol. Cell. Biochem. 2021 476 7 2603 2611 10.1007/s11010‑021‑04112‑6 33656642
    [Google Scholar]
  183. Nordgren K.K.S. Wallace K.B. Disruption of the Keap1/Nrf2-antioxidant response system after chronic doxorubicin exposure in vivo. Cardiovasc. Toxicol. 2020 20 6 557 570 10.1007/s12012‑020‑09581‑7 32500386
    [Google Scholar]
  184. Hu X. Li C. Wang Q. Wei Z. Chen T. Wang Y. Li Y. Dimethyl fumarate ameliorates doxorubicin-induced cardiotoxicity by activating the Nrf2 pathway. Front. Pharmacol. 2022 13 872057 10.3389/fphar.2022.872057 35559248
    [Google Scholar]
  185. Wang Y. Yan S. Liu X. Deng F. Wang P. Yang L. Hu L. Huang K. He J. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022 29 10 1982 1995 10.1038/s41418‑022‑00990‑5 35383293
    [Google Scholar]
  186. Liu P. Li J. Liu M. Zhang M. Xue Y. Zhang Y. Han X. Jing X. Chu L. Hesperetin modulates the Sirt1/Nrf2 signaling pathway in counteracting myocardial ischemia through suppression of oxidative stress, inflammation, and apoptosis. Biomed. Pharmacother. 2021 139 111552 10.1016/j.biopha.2021.111552 33839495
    [Google Scholar]
  187. Wang W. Zhong X. Fang Z. Li J. Li H. Liu X. Yuan X. Huang W. Huang Z. Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway. Chem. Biol. Interact. 2023 377 110469 10.1016/j.cbi.2023.110469 37030624
    [Google Scholar]
  188. Deng J. Huang M. Wu H. Protective effect of limonin against doxorubicin-induced cardiotoxicity via activating nuclear factor - like 2 and Sirtuin 2 signaling pathways. Bioengineered 2021 12 1 7975 7984 10.1080/21655979.2021.1985299 34565300
    [Google Scholar]
  189. Hou K. Shen J. Yan J. Zhai C. Zhang J. Pan J.A. Zhang Y. Jiang Y. Wang Y. Lin R.Z. Cong H. Gao S. Zong W.X. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine 2021 69 103456 10.1016/j.ebiom.2021.103456 34233258
    [Google Scholar]
  190. Hu X. Liu H. Wang Z. Hu Z. Li L. miR-200a Attenuated Doxorubicin-Induced Cardiotoxicity through Upregulation of Nrf2 in Mice. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/1512326 31781322
    [Google Scholar]
  191. Zhang W.B. Lai X. Guo X.F. Activation of Nrf2 by miR-152 inhibits doxorubicin-induced cardiotoxicity via attenuation of oxidative stress, inflammation, and apoptosis. Oxid. Med. Cell. Longev. 2021 2021 1 8860883 10.1155/2021/8860883 33574984
    [Google Scholar]
  192. Shi S. Chen Y. Luo Z. Nie G. Dai Y. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal. 2023 21 1 61 10.1186/s12964‑023‑01077‑5 36918950
    [Google Scholar]
  193. Qi W. Boliang W. Xiaoxi T. Guoqiang F. Jianbo X. Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed. Pharmacother. 2020 122 109547 10.1016/j.biopha.2019.109547 31918264
    [Google Scholar]
  194. Wang X. Chen L. Wang T. Jiang X. Zhang H. Li P. Lv B. Gao X. Ginsenoside Rg3 antagonizes adriamycin-induced cardiotoxicity by improving endothelial dysfunction from oxidative stress via upregulating the Nrf2-ARE pathway through the activation of akt. Phytomedicine 2015 22 10 875 884 10.1016/j.phymed.2015.06.010 26321736
    [Google Scholar]
  195. Al-Kenany S.A. Al-Shawi N.N. Protective effect of cafestol against doxorubicin-induced cardiotoxicity in rats by activating the Nrf2 pathway. Front. Pharmacol. 2023 14 1206782 10.3389/fphar.2023.1206782 37377932
    [Google Scholar]
  196. Guo Z. Yan M. Chen L. Fang P. Li Z. Wan Z. Cao S. Hou Z. Wei S. Li W. Zhang B. Nrf2‑dependent antioxidant response mediated the protective effect of tanshinone IIA on doxorubicin‑induced cardiotoxicity. Exp. Ther. Med. 2018 16 4 3333 3344 10.3892/etm.2018.6614 30233680
    [Google Scholar]
  197. Yu X. Cui L. Zhang Z. Zhao Q. Li S. α-Linolenic acid attenuates doxorubicin-induced cardiotoxicity in rats through suppression of oxidative stress and apoptosis. Acta Biochim. Biophys. Sin. 2013 45 10 817 826 10.1093/abbs/gmt082 23896563
    [Google Scholar]
  198. Kamble S.M. Patil C.R. Asiatic acid ameliorates doxorubicin-induced cardiac and hepato-renal toxicities with Nrf2 transcriptional factor activation in rats. Cardiovasc. Toxicol. 2018 18 2 131 141 10.1007/s12012‑017‑9424‑0 28856520
    [Google Scholar]
  199. Cheng X. Liu D. Xing R. Song H. Tian X. Yan C. Han Y. Orosomucoid 1 attenuates doxorubicin-induced oxidative stress and apoptosis in cardiomyocytes via Nrf2 signaling. BioMed Res. Int. 2020 2020 1 13 10.1155/2020/5923572 33134382
    [Google Scholar]
  200. Sahu B.D. Kumar J.M. Kuncha M. Borkar R.M. Srinivas R. Sistla R. Baicalein alleviates doxorubicin-induced cardiotoxicity via suppression of myocardial oxidative stress and apoptosis in mice. Life Sci. 2016 144 8 18 10.1016/j.lfs.2015.11.018 26606860
    [Google Scholar]
  201. Chen J. Zhang S. Pan G. Lin L. Liu D. Liu Z. Mei S. Zhang L. Hu Z. Chen J. Luo H. Wang Y. Xin Y. You Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci. 2020 249 117498 10.1016/j.lfs.2020.117498 32142765
    [Google Scholar]
  202. Zhang Y. Ahmad K.A. Khan F.U. Yan S. Ihsan A.U. Ding Q. Chitosan oligosaccharides prevent doxorubicin-induced oxidative stress and cardiac apoptosis through activating p38 and JNK MAPK mediated Nrf2/ARE pathway. Chem. Biol. Interact. 2019 305 54 65 10.1016/j.cbi.2019.03.027 30928397
    [Google Scholar]
  203. Zhao Y.Q. Zhang L. Zhao G.X. Chen Y. Sun K.L. Wang B. Fucoxanthin attenuates doxorubicin-induced cardiotoxicity via anti-oxidant and anti-apoptotic mechanisms associated with p38, JNK and p53 pathways. J. Funct. Foods 2019 62 103542 10.1016/j.jff.2019.103542
    [Google Scholar]
  204. Guo R. Lin J. Xu W. Shen N. Mo L. Zhang C. Feng J. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibition of the p38 MAPK pathway in H9c2 cells. Int. J. Mol. Med. 2013 31 3 644 650 10.3892/ijmm.2013.1246 23338126
    [Google Scholar]
  205. Wang X. Wang X.L. Chen H.L. Wu D. Chen J.X. Wang X.X. Li R.L. He J.H. Mo L. Cen X. Wei Y.Q. Jiang W. Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochem. Pharmacol. 2014 88 3 334 350 10.1016/j.bcp.2014.01.040 24522112
    [Google Scholar]
  206. Sun J. Sun G. Cui X. Meng X. Qin M. Sun X. Myricitrin protects against doxorubicin-induced cardiotoxicity by counteracting oxidative stress and inhibiting mitochondrial apoptosis via ERK/p53 pathway. Evid. Based Complement. Alternat. Med. 2016 2016 1 6093783 10.1155/2016/6093783 27703489
    [Google Scholar]
  207. Mantawy E.M. Esmat A. El-Bakly W.M. Salah ElDin R.A. El-Demerdash E. Mechanistic clues to the protective effect of chrysin against doxorubicin-induced cardiomyopathy: Plausible roles of p53, MAPK and AKT pathways. Sci. Rep. 2017 7 1 4795 10.1038/s41598‑017‑05005‑9 28684738
    [Google Scholar]
  208. Yao H. Shang Z. Wang P. Li S. Zhang Q. Tian H. Ren D. Han X. Protection of luteolin-7-O-glucoside against doxorubicin-induced injury through PTEN/Akt and ERK pathway in H9c2 cells. Cardiovasc. Toxicol. 2016 16 2 101 110 10.1007/s12012‑015‑9317‑z 25724325
    [Google Scholar]
  209. Kim D.S. Kim H.R. Woo E.R. Hong S.T. Chae H.J. Chae S.W. Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem. Pharmacol. 2005 70 7 1066 1078 10.1016/j.bcp.2005.06.026 16102732
    [Google Scholar]
  210. Liu M.H. Lin X.L. Zhang Y. He J. Tan T.P. Wu S.J. Liu J. Tian W. Chen L. Yu S. Li J. Yuan C. Hydrogen sulfide attenuates doxorubicin-induced cardiotoxicity by inhibiting reactive oxygen species-activated extracellular signal-regulated kinase 1/2 in H9c2 cardiac myocytes. Mol. Med. Rep. 2015 12 5 6841 6848 10.3892/mmr.2015.4234 26299281
    [Google Scholar]
  211. Xiao J. Sun G.B. Sun B. Wu Y. He L. Wang X. Chen R.C. Cao L. Ren X.Y. Sun X.B. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 2012 292 1 53 62 10.1016/j.tox.2011.11.018 22155320
    [Google Scholar]
  212. Chen Y.L. Loh S.H. Chen J.J. Tsai C.S. Urotensin II prevents cardiomyocyte apoptosis induced by doxorubicin via Akt and ERK. Eur. J. Pharmacol. 2012 680 1-3 88 94 10.1016/j.ejphar.2012.01.034 22329895
    [Google Scholar]
  213. Arunachalam S. Kim S.Y. Lee S.H. Lee Y.H. Kim M.S. Yun B.S. Yi H.K. Hwang P.H. Davallialactone protects against adriamycin-induced cardiotoxicity in vitro and in vivo. J. Nat. Med. 2012 66 1 149 157 10.1007/s11418‑011‑0567‑1 21858697
    [Google Scholar]
  214. Shen W. Huang J. Wang Y. Biological significance of NOTCH signaling strength. Front. Cell Dev. Biol. 2021 9 652273 10.3389/fcell.2021.652273 33842479
    [Google Scholar]
  215. Mannan A. Dhiamn S. Garg N. Singh T.G. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev. Biol. 2023 504 58 74 10.1016/j.ydbio.2023.09.009 37739118
    [Google Scholar]
  216. Kopan R. Notch Signaling. Cold Spring Harb. Perspect. Biol. 2012 4 10 a011213 10.1101/cshperspect.a011213 23028119
    [Google Scholar]
  217. Zhou B. Lin W. Long Y. Yang Y. Zhang H. Wu K. Chu Q. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct. Target. Ther. 2022 7 1 95 10.1038/s41392‑022‑00934‑y 35332121
    [Google Scholar]
  218. Bray S.J. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 2006 7 9 678 689 10.1038/nrm2009 16921404
    [Google Scholar]
  219. Marracino L. Fortini F. Bouhamida E. Camponogara F. Severi P. Mazzoni E. Patergnani S. D’Aniello E. Campana R. Pinton P. Martini F. Tognon M. Campo G. Ferrari R. Vieceli Dalla Sega F. Rizzo P. Adding a “Notch” to cardiovascular disease therapeutics: A microRNA-based approach. Front. Cell Dev. Biol. 2021 9 695114 10.3389/fcell.2021.695114 34527667
    [Google Scholar]
  220. Badr A.M. Mahran Y.F. Notch pathway and its role in the cardiovascular system. Syst. Rev. Pharm. 2020 11 10
    [Google Scholar]
  221. Timmerman L.A. Grego-Bessa J. Raya A. Bertrán E. Pérez-Pomares J.M. Díez J. Aranda S. Palomo S. McCormick F. Izpisúa-Belmonte J.C. de la Pompa J.L. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 2004 18 1 99 115 10.1101/gad.276304 14701881
    [Google Scholar]
  222. Chen H. Shi S. Acosta L. Li W. Lu J. Bao S. Chen Z. Yang Z. Schneider M.D. Chien K.R. Conway S.J. Yoder M.C. Haneline L.S. Franco D. Shou W. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 2004 131 9 2219 2231 10.1242/dev.01094 15073151
    [Google Scholar]
  223. Grego-Bessa J. Luna-Zurita L. del Monte G. Bolós V. Melgar P. Arandilla A. Garratt A.N. Zang H. Mukouyama Y. Chen H. Shou W. Ballestar E. Esteller M. Rojas A. Pérez-Pomares J.M. de la Pompa J.L. Notch signaling is essential for ventricular chamber development. Dev. Cell 2007 12 3 415 429 10.1016/j.devcel.2006.12.011 17336907
    [Google Scholar]
  224. Chen L. Xia W. Hou M. Mesenchymal stem cells attenuate doxorubicin‑induced cellular senescence through the VEGF/Notch/TGF‑β signaling pathway in H9c2 cardiomyocytes. Int. J. Mol. Med. 2018 42 1 674 684 10.3892/ijmm.2018.3635 29693137
    [Google Scholar]
  225. Castañares C. Redondo-Horcajo M. Magán-Marchal N. ten Dijke P. Lamas S. Rodríguez-Pascual F. Signaling by ALK5 mediates TGF-β-induced ET-1 expression in endothelial cells: A role for migration and proliferation. J. Cell Sci. 2007 120 7 1256 1266 10.1242/jcs.03419 17376964
    [Google Scholar]
  226. Packard R.R.S. Baek K.I. Beebe T. Jen N. Ding Y. Shi F. Fei P. Kang B.J. Chen P.H. Gau J. Chen M. Tang J.Y. Shih Y.H. Ding Y. Li D. Xu X. Hsiai T.K. Automated segmentation of light-sheet fluorescent imaging to characterize experimental doxorubicin-induced cardiac injury and repair. Sci. Rep. 2017 7 1 8603 10.1038/s41598‑017‑09152‑x 28819303
    [Google Scholar]
  227. Thabassum Akhtar Iqbal S. Tirupathi Pichiah P.B. Raja S. Arunachalam S. Paeonol reverses adriamycin-induced cardiac pathological remodeling through Notch1 signaling reactivation in H9c2 cells and adult zebrafish heart. Chem. Res. Toxicol. 2020 33 2 312 323 10.1021/acs.chemrestox.9b00093 31307187
    [Google Scholar]
  228. MacDonald B.T. Tamai K. He X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009 17 1 9 26 10.1016/j.devcel.2009.06.016 19619488
    [Google Scholar]
  229. Sharma V. Sharma P. Singh T.G. Wnt signalling pathways as mediators of neuroprotective mechanisms: Therapeutic implications in stroke. Mol. Biol. Rep. 2024 51 1 247 10.1007/s11033‑023‑09202‑w 38300425
    [Google Scholar]
  230. Akiyama T. Wnt/β-catenin signaling. Cytokine Growth Factor Rev. 2000 11 4 273 282 10.1016/S1359‑6101(00)00011‑3 10959075
    [Google Scholar]
  231. Nusse R. Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 2017 169 6 985 999 10.1016/j.cell.2017.05.016 28575679
    [Google Scholar]
  232. Zhang Y. Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020 13 1 165 10.1186/s13045‑020‑00990‑3 33276800
    [Google Scholar]
  233. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006 127 3 469 480 10.1016/j.cell.2006.10.018 17081971
    [Google Scholar]
  234. Huang H. He X. Wnt/β-catenin signaling: New (and old) players and new insights. Curr. Opin. Cell Biol. 2008 20 2 119 125 10.1016/j.ceb.2008.01.009 18339531
    [Google Scholar]
  235. Cheng W. Cui C. Liu G. Ye C. Shao F. Bagchi A.K. Mehta J.L. Wang X. Nf-κb, a potential therapeutic target in cardiovascular diseases. Cardiovasc. Drugs Ther. 2023 37 3 571 584 10.1007/s10557‑022‑07362‑8 35796905
    [Google Scholar]
  236. Ren D. Li F. Cao Q. Gao A. Ai Y. Zhang J. Yangxin granules alleviate doxorubicin-induced cardiotoxicity by suppressing oxidative stress and apoptosis mediated by AKT/GSK3 β / β -catenin signaling. J. Int. Med. Res. 2020 48 8 10.1177/0300060520945161 32780664
    [Google Scholar]
  237. Liang L. Tu Y. Lu J. Wang P. Guo Z. Wang Q. Guo K. Lan R. Li H. Liu P. Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/β-catenin signaling pathway. J. Cell Sci. 2019 132 10 jcs228478 10.1242/jcs.228478 31028181
    [Google Scholar]
  238. Cao Y.J. Li J.Y. Wang P.X. Lin Z.R. Yu W.J. Zhang J.G. Lu J. Liu P.Q. PKC-ζ aggravates doxorubicin-induced cardiotoxicity by inhibiting Wnt/β-catenin signaling. Front. Pharmacol. 2022 13 798436 10.3389/fphar.2022.798436 35237161
    [Google Scholar]
  239. Xie Z. Xia W. Hou M. Long intergenic non‑coding RNA‑p21 mediates cardiac senescence via the Wnt/β‑catenin signaling pathway in doxorubicin-induced cardiotoxicity. Mol. Med. Rep. 2018 17 2 2695 2704 29207090
    [Google Scholar]
  240. Feng D. Li J. Guo L. Liu J. Wang S. Ma X. Song Y. Liu J. Hao E. DDX3X alleviates doxorubicin‐induced cardiotoxicity by regulating Wnt/β‐catenin signaling pathway in an in vitro model. J. Biochem. Mol. Toxicol. 2022 36 8 e23077 10.1002/jbt.23077 35467791
    [Google Scholar]
  241. Yin C. Rehman S. Kukreja R.C. Xi L. Abstract 12237: Upregulation of Cardiac MicroRNA 34a, Sirt1, and Notch1 Following Oral Ingestion of Beetroot Juice and Doxorubicin Treatment: A Novel Protective Signaling Against Cardiotoxicity. Circulation 2014 130 Suppl. 2 A12237 A12237
    [Google Scholar]
  242. El-Ela S.R.A. Zaghloul R.A. Eissa L.A. Promising cardioprotective effect of baicalin in doxorubicin-induced cardiotoxicity through targeting toll-like receptor 4/nuclear factor-κB and Wnt/β-catenin pathways. Nutrition 2022 102 111732 10.1016/j.nut.2022.111732 35816809
    [Google Scholar]
  243. Sadik N.A.H. Shaker O.G. Ghanem H.Z. Hassan H.A. Abdel-Hamid A.H.Z. Single-nucleotide polymorphism of Toll-like receptor 4 and interleukin-10 in response to interferon-based therapy in Egyptian chronic hepatitis C patients. Arch. Virol. 2015 160 9 2181 2195 10.1007/s00705‑015‑2493‑0 26095186
    [Google Scholar]
  244. Xinyong C. Zhiyi Z. Lang H. Peng Y. Xiaocheng W. Ping Z. Liang S. The role of toll-like receptors in myocardial toxicity induced by doxorubicin. Immunol. Lett. 2020 217 56 64 10.1016/j.imlet.2019.11.001 31707054
    [Google Scholar]
  245. Delneste Y. Beauvillain C. Jeannin P. [Innate immunity: Structure and function of TLRs]. Med. Sci. (Paris) 2007 23 1 67 73 10.1051/medsci/200723167 17212934
    [Google Scholar]
  246. El-Zayat S.R. Sibaii H. Mannaa F.A. Toll-like receptors activation, signaling, and targeting: An overview. Bull. Natl. Res. Cent. 2019 43 1 187 10.1186/s42269‑019‑0227‑2
    [Google Scholar]
  247. Behl T. Kumar K. Brisc C. Rus M. Nistor-Cseppento D.C. Bustea C. Aron R.A.C. Pantis C. Zengin G. Sehgal A. Kaur R. Kumar A. Arora S. Setia D. Chandel D. Bungau S. Exploring the multifocal role of phytochemicals as immunomodulators. Biomed. Pharmacother. 2021 133 110959 10.1016/j.biopha.2020.110959 33197758
    [Google Scholar]
  248. Zhang Y. Wu J. Dong E. Wang Z. Xiao H. Toll-like receptors in cardiac hypertrophy. Front. Cardiovasc. Med. 2023 10 1143583 10.3389/fcvm.2023.1143583 37113698
    [Google Scholar]
  249. Frantz S. Kelly R.A. Bourcier T. Role of TLR-2 in the activation of nuclear factor kappaB by oxidative stress in cardiac myocytes. J. Biol. Chem. 2001 276 7 5197 5203 10.1074/jbc.M009160200 11083876
    [Google Scholar]
  250. Liang S. Xinyong C. Hongmin Z. Jing W. Lang H. Ping Z. TLR2 and TLR3 expression as a biomarker for the risk of doxorubicin-induced heart failure. Toxicol. Lett. 2018 295 205 211 10.1016/j.toxlet.2018.06.1219 29959987
    [Google Scholar]
  251. Nozaki N. Shishido T. Takeishi Y. Kubota I. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation 2004 110 18 2869 2874 10.1161/01.CIR.0000146889.46519.27 15505089
    [Google Scholar]
  252. Riad A. Bien S. Gratz M. Escher F. Heimesaat M.M. Bereswill S. Krieg T. Felix S.B. Schultheiss H.P. Kroemer H.K. Tschöpe C. Tschöpe C. Toll‐like receptor‐4 deficiency attenuates doxorubicin‐induced cardiomyopathy in mice. Eur. J. Heart Fail. 2008 10 3 233 243 10.1016/j.ejheart.2008.01.004 18321777
    [Google Scholar]
  253. Sumneang N. Tanajak P. Oo T.T. Toll-like receptor 4 inflammatory perspective on doxorubicin-induced cardiotoxicity. Molecules 2023 28 11 4294 10.3390/molecules28114294 37298770
    [Google Scholar]
  254. Ma Z.G. Kong C.Y. Wu H.M. Song P. Zhang X. Yuan Y.P. Deng W. Tang Q.Z. Toll-like receptor 5 deficiency diminishes doxorubicin-induced acute cardiotoxicity in mice. Theranostics 2020 10 24 11013 11025 10.7150/thno.47516 33042267
    [Google Scholar]
  255. Guo Z. Tang N. Liu F.Y. Yang Z. Ma S.Q. An P. Wu H.M. Fan D. Tang Q.Z. TLR9 deficiency alleviates doxorubicin‐induced cardiotoxicity via the regulation of autophagy. J. Cell. Mol. Med. 2020 24 18 10913 10923 10.1111/jcmm.15719 33140921
    [Google Scholar]
  256. Kumar P. Kumar M. Bedi O. Gupta M. Kumar S. Jaiswal G. Rahi V. Yedke N.G. Bijalwan A. Sharma S. Jamwal S. Role of vitamins and minerals as immunity boosters in COVID-19. Inflammopharmacology 2021 29 4 1001 1016 10.1007/s10787‑021‑00826‑7 34110533
    [Google Scholar]
  257. Rehni A.K. Bhateja P. Singh T.G. Singh N. Nuclear factor-κ-B inhibitor modulates the development of opioid dependence in a mouse model of naloxone-induced opioid withdrawal syndrome. Behav. Pharmacol. 2008 19 3 265 269 https://journals.lww.com/behaviouralpharm/abstract/2008/05000/nuclear_factor___b_inhibitor_modulates_the.11.aspx 10.1097/FBP.0b013e3282febcd9 18469544
    [Google Scholar]
  258. Liu T. Zhang L. Joo D. Sun S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017 2 1 17023 10.1038/sigtrans.2017.23 29158945
    [Google Scholar]
  259. Albensi B.C. What is nuclear factor kappa B (NF-κB) doing in and to the mitochondrion? Front. Cell Dev. Biol. 2019 7 154 10.3389/fcell.2019.00154 31448275
    [Google Scholar]
  260. Soliman N.A. Abo El Gheit R.E. Abdel Ghafar M.T. AbuoHashish N.A. Ibrahim M.A.A. Abo Safia H.S. El-Saka M.H. Elshamy A.M. Unraveling the biomechanistic role of Rac1/TWEAK/Fn14/NF‐κB intricate network in experimentally doxorubicin‐induced cardiotoxicity in rats: The role of curcumin. J. Biochem. Mol. Toxicol. 2021 35 8 e22829 10.1002/jbt.22829 34047412
    [Google Scholar]
  261. El-Bakly W.M. Louka M.L. El-Halawany A.M. Schaalan M.F. 6-gingerol ameliorated doxorubicin-induced cardiotoxicity: Role of nuclear factor kappa B and protein glycation. Cancer Chemother. Pharmacol. 2012 70 6 833 841 10.1007/s00280‑012‑1975‑y 23014738
    [Google Scholar]
  262. Bin Jardan Y.A. Ansari M.A. Raish M. Alkharfy K.M. Ahad A. Al-Jenoobi F.I. Haq N. Khan M.R. Ahmad A. Sinapic acid ameliorates oxidative stress, inflammation, and apoptosis in acute doxorubicin-induced cardiotoxicity via the NF-κB-mediated pathway. BioMed Res. Int. 2020 2020 1 10 10.1155/2020/3921796 32258120
    [Google Scholar]
  263. Hafez H.M. Hassanein H. Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-α/NF-κB pathways. Drug Chem. Toxicol. 2022 45 2 548 559 10.1080/01480545.2020.1730885 32106718
    [Google Scholar]
  264. Imam F. Al-Harbi N.O. Al-Harbi M.M. Ansari M.A. Al-Asmari A.F. Ansari M.N. Al-Anazi W.A. Bahashwan S. Almutairi M.M. Alshammari M. Khan M.R. Alsaad A.M. Alotaibi M.R. Apremilast prevent doxorubicin-induced apoptosis and inflammation in heart through inhibition of oxidative stress mediated activation of NF-κB signaling pathways. Pharmacol. Rep. 2018 70 5 993 1000 10.1016/j.pharep.2018.03.009 30118964
    [Google Scholar]
  265. Alzokaky A.A. Al-Karmalawy A.A. Saleh M.A. Abdo W. Farage A.E. Belal A. Abourehab M.A.S. Antar S.A. Metformin ameliorates doxorubicin-induced cardiotoxicity targeting HMGB1/TLR4/NLRP3 signaling pathway in mice. Life Sci. 2023 316 121390 10.1016/j.lfs.2023.121390 36649752
    [Google Scholar]
  266. Safaeian L. Baniahmad B. Vaseghi G. Rabbani M. Mohammadi B. Cardioprotective effect of vanillic acid against doxorubicin-induced cardiotoxicity in rat. Res. Pharm. Sci. 2020 15 1 87 96 10.4103/1735‑5362.278718 32180820
    [Google Scholar]
  267. Ma S. Li X. Dong L. Zhu J. Zhang H. Jia Y. Protective effect of Sheng-Mai Yin, a traditional Chinese preparation, against doxorubicin-induced cardiac toxicity in rats. BMC Complement. Altern. Med. 2016 16 1 61 10.1186/s12906‑016‑1037‑9 26865364
    [Google Scholar]
  268. Refaie M.M.M. Shehata S. Ibrahim R.A. Bayoumi A.M.A. Abdel-Gaber S.A. Dose-dependent cardioprotective effect of hemin in doxorubicin-induced cardiotoxicity via Nrf2/HO-1 and TLR-5/NF-κB/TNF-α signaling pathways. Cardiovasc. Toxicol. 2021 21 12 1033 1044 10.1007/s12012‑021‑09694‑7 34510376
    [Google Scholar]
  269. Alanazi A.M. Fadda L. Alhusaini A. Ahmad R. Hasan I.H. Mahmoud A.M. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress, and S100A1 in rats. Antioxidants 2020 9 2 159 10.3390/antiox9020159 32079097
    [Google Scholar]
  270. Zhang Z. Peng J. Hu Y. Zeng G. Du W. Shen C. CTRP5 attenuates doxorubicin-induced cardiotoxicity via inhibiting TLR4/NLRP3 signaling. Cardiovasc. Drugs Ther. 2023 10.1007/s10557‑023‑07464‑x 37256416
    [Google Scholar]
  271. Koh J.S. Yi C. Heo R.W. Ahn J.W. Park J.R. Lee J.E. Kim J.H. Hwang J.Y. Roh G.S. Protective effect of cilostazol against doxorubicin-induced cardiomyopathy in mice. Free Radic. Biol. Med. 2015 89 54 61 10.1016/j.freeradbiomed.2015.07.016 26191652
    [Google Scholar]
  272. Ye S. Su L. Shan P. Ye B. Wu S. Liang G. Huang W. LCZ696 attenuates doxorubicin-induced chronic cardiomyopathy through the TLR2-MyD88 complex formation. Front. Cell Dev. Biol. 2021 9 654051 10.3389/fcell.2021.654051 33928085
    [Google Scholar]
  273. Feng P. Yang Y. Liu N. Wang S. Baicalin regulates TLR4/IκBα/NFκB signaling pathway to alleviate inflammation in Doxorubicin related cardiotoxicity. Biochem. Biophys. Res. Commun. 2022 637 1 8 10.1016/j.bbrc.2022.10.061 36375245
    [Google Scholar]
  274. Chu X. Zhang Y. Xue Y. Li Z. Shi J. Wang H. Chu L. Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-κB signal pathway in vivo and vitro. Int. Immunopharmacol. 2020 84 106548 10.1016/j.intimp.2020.106548 32388215
    [Google Scholar]
  275. Ezzat S.M. El Gaafary M. El Sayed A.M. Sabry O.M. Ali Z.Y. Hafner S. Schmiech M. Jin L. Syrovets T. Simmet T. The cardenolide glycoside acovenoside A affords protective activity in doxorubicin-induced cardiotoxicity in mice. J. Pharmacol. Exp. Ther. 2016 358 2 262 270 10.1124/jpet.116.232652 27247000
    [Google Scholar]
  276. Ibrahim Fouad G. Ahmed K.A. Curcumin ameliorates doxorubicin-induced cardiotoxicity and hepatotoxicity via suppressing oxidative stress and modulating iNOS, NF-κB, and TNF-α in rats. Cardiovasc. Toxicol. 2022 22 2 152 166 10.1007/s12012‑021‑09710‑w 34837640
    [Google Scholar]
  277. Lin M. Yin M. Preventive effects of ellagic acid against doxorubicin-induced cardio-toxicity in mice. Cardiovasc. Toxicol. 2013 13 3 185 193 10.1007/s12012‑013‑9197‑z 23322372
    [Google Scholar]
  278. Zhang J. Cui L. Han X. Zhang Y. Zhang X. Chu X. Zhang F. Zhang Y. Chu L. Protective effects of tannic acid on acute doxorubicin-induced cardiotoxicity: Involvement of suppression in oxidative stress, inflammation, and apoptosis. Biomed. Pharmacother. 2017 93 1253 1260 10.1016/j.biopha.2017.07.051 28738542
    [Google Scholar]
  279. Chen C.T. Wang Z.H. Hsu C.C. Lin H.H. Chen J.H. in vivo protective effects of diosgenin against doxorubicin-induced cardiotoxicity. Nutrients 2015 7 6 4938 4954 10.3390/nu7064938 26091236
    [Google Scholar]
  280. El-Said N.T. Mohamed E.A. Taha R.A. Irbesartan suppresses cardiac toxicity induced by doxorubicin via regulating the p38-MAPK/NF-κB and TGF-β1 pathways. Naunyn Schmiedebergs Arch. Pharmacol. 2019 392 6 647 658 10.1007/s00210‑019‑01624‑3 30734091
    [Google Scholar]
  281. El-Agamy D.S. Ibrahim S.R.M. Ahmed N. Khoshhal S. Abo-Haded H.M. Elkablawy M.A. Aljuhani N. Mohamed G.A. Aspernolide F, as a new cardioprotective butyrolactone against doxorubicin-induced cardiotoxicity. Int. Immunopharmacol. 2019 72 429 436 10.1016/j.intimp.2019.04.045 31030099
    [Google Scholar]
  282. Zhang X.J. Jiang D.S. Li H. The interferon regulatory factors as novel potential targets in the treatment of cardiovascular diseases. Br. J. Pharmacol. 2015 172 23 5457 5476 10.1111/bph.12881 25131895
    [Google Scholar]
  283. Jefferies C.A. Regulating IRFs in IFN driven disease. Front. Immunol. 2019 10 325 10.3389/fimmu.2019.00325 30984161
    [Google Scholar]
  284. Zhang X.J. Zhang P. Li H. Interferon regulatory factor signalings in cardiometabolic diseases. Hypertension 2015 66 2 222 247 10.1161/HYPERTENSIONAHA.115.04898 26077571
    [Google Scholar]
  285. Decout A. Katz J.D. Venkatraman S. Ablasser A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 2021 21 9 548 569 10.1038/s41577‑021‑00524‑z 33833439
    [Google Scholar]
  286. Luo W. Zou X. Wang Y. Dong Z. Weng X. Pei Z. Song S. Zhao Y. Wei Z. Gao R. Zhang B. Liu L. Bai P. Liu J. Wang X. Gao T. Zhang Y. Sun X. Chen H. Hu K. Du S. Sun A. Ge J. Critical role of the cGAS-STING pathway in doxorubicin-induced cardiotoxicity. Circ. Res. 2023 132 11 e223 e242 10.1161/CIRCRESAHA.122.321587 37154056
    [Google Scholar]
  287. Ni C. Ma P. Wang R. Lou X. Liu X. Qin Y. Xue R. Blasig I. Erben U. Qin Z. Doxorubicin‐induced cardiotoxicity involves IFNγ‐mediated metabolic reprogramming in cardiomyocytes. J. Pathol. 2019 247 3 320 332 10.1002/path.5192 30426505
    [Google Scholar]
  288. Ma P. Qin Y. Cao H. Erben U. Ni C. Qin Z. Temporary blockade of interferon-γ ameliorates doxorubicin-induced cardiotoxicity without influencing the anti-tumor effect. Biomed. Pharmacother. 2020 130 110587 10.1016/j.biopha.2020.110587 32763819
    [Google Scholar]
  289. Tsuchiya Y. Nakabayashi O. Nakano H. Flip the switch: Regulation of apoptosis and necroptosis by cFLIP. Int. J. Mol. Sci. 2015 16 12 30321 30341 10.3390/ijms161226232 26694384
    [Google Scholar]
  290. Wang N. Guan P. Zhang J.P. Chang Y.Z. Gu L.J. Hao F. Shi Z.H. Wang F.Y. Chu L. Preventive effects of fasudil on adriamycin-induced cardiomyopathy: Possible involvement of inhibition of RhoA/ROCK pathway. Food Chem. Toxicol. 2011 49 11 2975 2982 10.1016/j.fct.2011.06.080 21803115
    [Google Scholar]
  291. Krueger A. Baumann S. Krammer P.H. Kirchhoff S. FLICE-inhibitory proteins: Regulators of death receptor-mediated apoptosis. Mol. Cell. Biol. 2001 21 24 8247 8254 10.1128/MCB.21.24.8247‑8254.2001 11713262
    [Google Scholar]
  292. Mizushima N. Levine B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 2010 12 9 823 830 10.1038/ncb0910‑823 20811354
    [Google Scholar]
  293. Safa A.R Roles of c-FLIP in apoptosis, necroptosis, and autophagy J. Carcinog. Mutagen 2013 Suppl 6 003 003 2013
    [Google Scholar]
  294. Li Y.Z. Wu H. Liu D. Yang J. Yang J. Ding J.W. Zhou G. Zhang J. Zhang D. cFLIP-L alleviates myocardial ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. Cardiovasc. Drugs Ther. 2023 37 2 225 238 10.1007/s10557‑021‑07280‑1 34767133
    [Google Scholar]
  295. Rasper D.M. Vaillancourt J.P. Hadano S. Houtzager V.M. Seiden I. Keen S.L.C. Tawa P. Xanthoudakis S. Nasir J. Martindale D. Koop B.F. Peterson E.P. Thornberry N.A. Huang J. MacPherson D.P. Black S.C. Hornung F. Lenardo M.J. Hayden M.R. Roy S. Nicholson D.W. Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ. 1998 5 4 271 288 10.1038/sj.cdd.4400370 10200473
    [Google Scholar]
  296. Micheau O. Cellular FLICE-inhibitory protein: An attractive therapeutic target? Expert Opin. Ther. Targets 2003 7 4 559 573 10.1517/14728222.7.4.559 12885274
    [Google Scholar]
  297. Nitobe J. Yamaguchi S. Okuyama M. Nozaki N. Sata M. Miyamoto T. Takeishi Y. Kubota I. Tomoike H. Reactive oxygen species regulate FLICE inhibitory protein (FLIP) and susceptibility to Fas-mediated apoptosis in cardiac myocytes. Cardiovasc. Res. 2003 57 1 119 128 10.1016/S0008‑6363(02)00646‑6 12504821
    [Google Scholar]
  298. Jang Y.M. Kendaiah S. Drew B. Phillips T. Selman C. Julian D. Leeuwenburgh C. Doxorubicin treatment in vivo activates caspase‐12 mediated cardiac apoptosis in both male and female rats. FEBS Lett. 2004 577 3 483 490 10.1016/j.febslet.2004.10.053 15556633
    [Google Scholar]
  299. Reeve J.L.V. Szegezdi E. Logue S.E. Chonghaile T.N. O’Brien T. Ritter T. Samali A. Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bcl‐xL. J. Cell. Mol. Med. 2007 11 3 509 520 10.1111/j.1582‑4934.2007.00042.x 17635642
    [Google Scholar]
  300. Smyth P. Sessler T. Scott C.J. Longley D.B. FLIP(L): The pseudo‐caspase. FEBS J. 2020 287 19 4246 4260 10.1111/febs.15260 32096279
    [Google Scholar]
  301. Nakano H. Piao X. Shindo R. Komazawa-Sakon S. Cellular FLICE-inhibitory protein regulates tissue homeostasis. Curr. Top. Microbiol. Immunol. 2015 403 119 141 10.1007/82_2015_448 26160013
    [Google Scholar]
  302. Dhanasekaran A. Gruenloh S.K. Buonaccorsi J.N. Zhang R. Gross G.J. Falck J.R. Patel P.K. Jacobs E.R. Medhora M. Multiple antiapoptotic targets of the PI3K/Akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am. J. Physiol. Heart Circ. Physiol. 2008 294 2 H724 H735 10.1152/ajpheart.00979.2007 18055514
    [Google Scholar]
  303. Piacentino V. III Milano C.A. Bolanos M. Schroder J. Messina E. Cockrell A.S. Jones E. Krol A. Bursac N. Mao L. Devi G.R. Samulski R.J. Bowles D.E. X-linked inhibitor of apoptosis protein-mediated attenuation of apoptosis, using a novel cardiac-enhanced adeno-associated viral vector. Hum. Gene Ther. 2012 23 6 635 646 10.1089/hum.2011.186 22339372
    [Google Scholar]
  304. Wang J. Dong G. Chi W. Nie Y. MiR-96 promotes myocardial infarction-induced apoptosis by targeting XIAP. Biomed. Pharmacother. 2021 138 111208 10.1016/j.biopha.2020.111208 33752931
    [Google Scholar]
  305. Song Z. An L. Ye Y. Wu J. Zou Y. He L. Zhu H. Essential role for UVRAG in autophagy and maintenance of cardiac function. Cardiovasc. Res. 2014 101 1 48 56 10.1093/cvr/cvt223 24081163
    [Google Scholar]
  306. An L. Hu X. Zhang S. Hu X. Song Z. Naz A. Zi Z. Wu J. Li C. Zou Y. He L. Zhu H. UVRAG deficiency exacerbates doxorubicin-induced cardiotoxicity. Sci. Rep. 2017 7 1 43251 10.1038/srep43251 28225086
    [Google Scholar]
  307. Lahalle A. Lacroix M. De Blasio C. Cissé M.Y. Linares L.K. Le Cam L. The p53 pathway and metabolism: The tree that hides the forest. Cancers 2021 13 1 133 10.3390/cancers13010133 33406607
    [Google Scholar]
  308. Tasdemir E. Maiuri M.C. Galluzzi L. Vitale I. Djavaheri-Mergny M. D’Amelio M. Criollo A. Morselli E. Zhu C. Harper F. Nannmark U. Samara C. Pinton P. Vicencio J.M. Carnuccio R. Moll U.M. Madeo F. Paterlini-Brechot P. Rizzuto R. Szabadkai G. Pierron G. Blomgren K. Tavernarakis N. Codogno P. Cecconi F. Kroemer G. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol. 2008 10 6 676 687 10.1038/ncb1730 18454141
    [Google Scholar]
  309. Maiuri M.C. Galluzzi L. Morselli E. Kepp O. Malik S.A. Kroemer G. Autophagy regulation by p53. Curr. Opin. Cell Biol. 2010 22 2 181 185 10.1016/j.ceb.2009.12.001 20044243
    [Google Scholar]
  310. Levine B. Abrams J. p53: The Janus of autophagy? Nat. Cell Biol. 2008 10 6 637 639 10.1038/ncb0608‑637 18521069
    [Google Scholar]
  311. Guo Y. Tang Y. Lu G. Gu J. p53 at the crossroads between doxorubicin-induced cardiotoxicity and resistance: A nutritional balancing act. Nutrients 2023 15 10 2259 10.3390/nu15102259 37242146
    [Google Scholar]
  312. Feng X. Liu X. Zhang W. Xiao W. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death. EMBO J. 2011 30 16 3397 3415 10.1038/emboj.2011.248 21792176
    [Google Scholar]
  313. Shizukuda Y. Matoba S. Mian O.Y. Nguyen T. Hwang P.M. Targeted disruption of p53 attenuates doxorubicin-induced cardiac toxicity in mice. Mol. Cell. Biochem. 2005 273 1-2 25 32 10.1007/s11010‑005‑5905‑8 16013437
    [Google Scholar]
  314. McSweeney K.M. Bozza W.P. Alterovitz W.L. Zhang B. Transcriptomic profiling reveals p53 as a key regulator of doxorubicin-induced cardiotoxicity. Cell Death Discov. 2019 5 1 102 10.1038/s41420‑019‑0182‑6 31231550
    [Google Scholar]
  315. Sardão V.A. Oliveira P.J. Holy J. Oliveira C.R. Wallace K.B. Doxorubicin-induced mitochondrial dysfunction is secondary to nuclear p53 activation in H9c2 cardiomyoblasts. Cancer Chemother. Pharmacol. 2009 64 4 811 827 10.1007/s00280‑009‑0932‑x 19184017
    [Google Scholar]
  316. Ghosh J. Das J. Manna P. Sil P.C. The protective role of arjunolic acid against doxorubicin induced intracellular ROS dependent JNK-p38 and p53-mediated cardiac apoptosis. Biomaterials 2011 32 21 4857 4866 10.1016/j.biomaterials.2011.03.048 21486680
    [Google Scholar]
  317. Khafaga A.F. El-Sayed Y.S. All-trans-retinoic acid ameliorates doxorubicin-induced cardiotoxicity: in vivo potential involvement of oxidative stress, inflammation, and apoptosis via caspase-3 and p53 down-expression. Naunyn Schmiedebergs Arch. Pharmacol. 2018 391 1 59 70 10.1007/s00210‑017‑1437‑5 29085977
    [Google Scholar]
  318. Rawlings J.S. Rosler K.M. Harrison D.A. The JAK/STAT signaling pathway. J. Cell Sci. 2004 117 8 1281 1283 10.1242/jcs.00963 15020666
    [Google Scholar]
  319. Murray P.J. The JAK-STAT signaling pathway: Input and output integration. J. Immunol. 2007 178 5 2623 2629 10.4049/jimmunol.178.5.2623 17312100
    [Google Scholar]
  320. Hu X. li J. Fu M. Zhao X. Wang W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther. 2021 6 1 402 10.1038/s41392‑021‑00791‑1 34824210
    [Google Scholar]
  321. Xin P. Xu X. Deng C. Liu S. Wang Y. Zhou X. Ma H. Wei D. Sun S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020 80 106210 10.1016/j.intimp.2020.106210 31972425
    [Google Scholar]
  322. Malemud C. Pearlman E. Targeting JAK/STAT signaling pathway in inflammatory diseases. Curr. Signal Transduct. Ther. 2009 4 3 201 221 10.2174/157436209789057467
    [Google Scholar]
  323. Seif F. Khoshmirsafa M. Aazami H. Mohsenzadegan M. Sedighi G. Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun. Signal. 2017 15 1 23 10.1186/s12964‑017‑0177‑y 28637459
    [Google Scholar]
  324. Malemud C.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2018 10 5-6 117 127 10.1177/1759720X18776224 29942363
    [Google Scholar]
  325. Barry S.P. Townsend P.A. Latchman D.S. Stephanou A. Role of the JAK–STAT pathway in myocardial injury. Trends Mol. Med. 2007 13 2 82 89 10.1016/j.molmed.2006.12.002 17194625
    [Google Scholar]
  326. Li W. Qu X. Kang X. Zhang H. Zhang X. Hu H. Yao L. Zhang L. Zheng J. Zheng Y. Zhang J. Xu Y. Silibinin eliminates mitochondrial ROS and restores autophagy through IL6ST/JAK2/STAT3 signaling pathway to protect cardiomyocytes from doxorubicin-induced injury. Eur. J. Pharmacol. 2022 929 175153 10.1016/j.ejphar.2022.175153 35839932
    [Google Scholar]
  327. Okpara E.S. Adedara I.A. Guo X. Klos M.L. Farombi E.O. Han S. Molecular mechanisms associated with the chemoprotective role of protocatechuic acid and its potential benefits in the amelioration of doxorubicin-induced cardiotoxicity: A review. Toxicol. Rep. 2022 9 1713 1724 10.1016/j.toxrep.2022.09.001 36561952
    [Google Scholar]
  328. Zhang J. Sun Z. Lin N. Lu W. Huang X. Weng J. Sun S. Zhang C. Yang Q. Zhou G. Guo H. Chi J. Fucoidan from Fucus vesiculosus attenuates doxorubicin-induced acute cardiotoxicity by regulating JAK2/STAT3-mediated apoptosis and autophagy. Biomed. Pharmacother. 2020 130 110534 10.1016/j.biopha.2020.110534 32711244
    [Google Scholar]
  329. Mascareno E. El-Shafei M. Maulik N. Sato M. Guo Y. Das D.K. Siddiqui M.A.Q. JAK/STAT signaling is associated with cardiac dysfunction during ischemia and reperfusion. Circulation 2001 104 3 325 329 10.1161/01.CIR.104.3.325 11457752
    [Google Scholar]
  330. Pang Q. You L. Meng X. Li Y. Deng T. Li D. Zhu B. Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochem. Pharmacol. 2023 213 115587 10.1016/j.bcp.2023.115587 37187275
    [Google Scholar]
  331. Franchi L. Eigenbrod T. Muñoz-Planillo R. Nuñez G. The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009 10 3 241 247 10.1038/ni.1703 19221555
    [Google Scholar]
  332. Butts B. Gary R.A. Dunbar S.B. Butler J. The importance of NLRP3 inflammasome in heart failure. J. Card. Fail. 2015 21 7 586 593 10.1016/j.cardfail.2015.04.014 25982825
    [Google Scholar]
  333. Maayah Z.H. Takahara S. Dyck J.R.B. The beneficial effects of reducing NLRP3 inflammasome activation in the cardiotoxicity and the anti-cancer effects of doxorubicin. Arch. Toxicol. 2021 95 1 1 9 10.1007/s00204‑020‑02876‑2 32852568
    [Google Scholar]
  334. Sun Z. Lu W. Lin N. Lin H. Zhang J. Ni T. Meng L. Zhang C. Guo H. Dihydromyricetin alleviates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome through activation of SIRT1. Biochem. Pharmacol. 2020 175 113888 10.1016/j.bcp.2020.113888 32112883
    [Google Scholar]
  335. Huang P.P. Fu J. Liu L.H. Wu K.F. Liu H.X. Qi B.M. Liu Y. Qi B.L. Honokiol antagonizes doxorubicin‑induced cardiomyocyte senescence by inhibiting TXNIP‑mediated NLRP3 inflammasome activation. Int. J. Mol. Med. 2020 45 1 186 194 31746354
    [Google Scholar]
  336. Yang H.B. Lu Z.Y. Yuan W. Li W.D. Mao S. Selenium attenuates doxorubicin-induced cardiotoxicity through Nrf2-NLRP3 pathway. Biol. Trace Elem. Res. 2022 200 6 2848 2856 10.1007/s12011‑021‑02891‑z 34462843
    [Google Scholar]
  337. Kobayashi M. Usui F. Karasawa T. Kawashima A. Kimura H. Mizushina Y. Shirasuna K. Mizukami H. Kasahara T. Hasebe N. Takahashi M. NLRP3 deficiency reduces macrophage interleukin-10 production and enhances the susceptibility to doxorubicin-induced cardiotoxicity. Sci. Rep. 2016 6 1 26489 10.1038/srep26489 27225830
    [Google Scholar]
  338. Zhang L. Jiang Y.H. Fan C. Zhang Q. Jiang Y.H. Li Y. Xue Y.T. MCC950 attenuates doxorubicin-induced myocardial injury in vivo and in vitro by inhibiting NLRP3-mediated pyroptosis. Biomed. Pharmacother. 2021 143 112133 10.1016/j.biopha.2021.112133 34474337
    [Google Scholar]
  339. Wei S. Ma W. Li X. Jiang C. Sun T. Li Y. Zhang B. Li W. Involvement of ROS/NLRP3 inflammasome signaling pathway in doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol. 2020 20 5 507 519 10.1007/s12012‑020‑09576‑4 32607760
    [Google Scholar]
  340. Sun Z. Fang C. Xu S. Wang B. Li D. Liu X. Mi Y. Guo H. Jiang J. SIRT3 attenuates doxorubicin-induced cardiotoxicity by inhibiting NLRP3 inflammasome via autophagy. Biochem. Pharmacol. 2023 207 115354 10.1016/j.bcp.2022.115354 36435202
    [Google Scholar]
  341. Park S. Shin J. Bae J. Han D. Park S.R. Shin J. Lee S.K. Park H.W. SIRT1 alleviates LPS-induced IL-1β production by suppressing NLRP3 inflammasome activation and ROS production in trophoblasts. Cells 2020 9 3 728 10.3390/cells9030728 32188057
    [Google Scholar]
  342. Liu J. Jin Y. Wang B. Wang Y. Zuo S. Zhang J. Dopamine D1 receptor alleviates doxorubicin-induced cardiac injury by inhibiting NLRP3 inflammasome. Biochem. Biophys. Res. Commun. 2021 561 7 13 10.1016/j.bbrc.2021.04.098 33992835
    [Google Scholar]
  343. Yoshida M. Shiojima I. Ikeda H. Komuro I. Chronic doxorubicin cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway and attenuated by pitavastatin through the inhibition of Rac1 activity. J. Mol. Cell. Cardiol. 2009 47 5 698 705 10.1016/j.yjmcc.2009.07.024 19660469
    [Google Scholar]
  344. Johnson R. Shabalala S. Louw J. Kappo A. Muller C. Aspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 signaling. Molecules 2017 22 10 1589 10.3390/molecules22101589 28937626
    [Google Scholar]
  345. Thandavarayan R.A. Giridharan V.V. Arumugam S. Suzuki K. Ko K.M. Krishnamurthy P. Watanabe K. Konishi T. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One 2015 10 3 e0119214 10.1371/journal.pone.0119214 25742619
    [Google Scholar]
  346. Pan J.A. Tang Y. Yu J.Y. Zhang H. Zhang J.F. Wang C.Q. Gu J. miR-146a attenuates apoptosis and modulates autophagy by targeting TAF9b/P53 pathway in doxorubicin-induced cardiotoxicity. Cell Death Dis. 2019 10 9 668 10.1038/s41419‑019‑1901‑x 31511497
    [Google Scholar]
  347. Maayah Z.H. Alam A.S. Takahara S. Soni S. Ferdaoussi M. Matsumura N. Zordoky B.N. Eisenstat D.D. Dyck J.R.B. Resveratrol reduces cardiac NLRP3‐inflammasome activation and systemic inflammation to lessen doxorubicin‐induced cardiotoxicity in juvenile mice. FEBS Lett. 2021 595 12 1681 1695 10.1002/1873‑3468.14091 33876420
    [Google Scholar]
  348. Zhang L. Fan C. Jiao H.C. Zhang Q. Jiang Y.H. Cui J. Liu Y. Jiang Y.H. Zhang J. Yang M.Q. Li Y. Xue Y.T. Calycosin alleviates doxorubicin-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/1733834 35035656
    [Google Scholar]
  349. Kabel A.M. Salama S.A. Adwas A.A. Estfanous R.S. Targeting oxidative stress, NLRP3 inflammasome, and autophagy by fraxetin to combat doxorubicin-induced cardiotoxicity. Pharmaceuticals. 2021 14 11 1188 10.3390/ph14111188 34832970
    [Google Scholar]
  350. Shamoon L. Espitia-Corredor J.A. Dongil P. Menéndez-Ribes M. Romero A. Valencia I. Díaz-Araya G. Sánchez-Ferrer C.F. Peiró C. Resolvin E1 attenuates doxorubicin-induced endothelial senescence by modulating NLRP3 inflammasome activation. Biochem. Pharmacol. 2022 201 115078 10.1016/j.bcp.2022.115078 35551917
    [Google Scholar]
  351. Zhang E. Shang C. Ma M. Zhang X. Liu Y. Song S. Li X. Polyguluronic acid alleviates doxorubicin-induced cardiotoxicity by suppressing Peli1-NLRP3 inflammasome-mediated pyroptosis. Carbohydr. Polym. 2023 321 121334 10.1016/j.carbpol.2023.121334 37739547
    [Google Scholar]
  352. Wan Y. He B. Zhu D. Wang L. Huang R. Zhu J. Wang C. Gao F. Nicotinamide mononucleotide attenuates doxorubicin-induced cardiotoxicity by reducing oxidative stress, inflammation and apoptosis in rats. Arch. Biochem. Biophys. 2021 712 109050 10.1016/j.abb.2021.109050 34610336
    [Google Scholar]
  353. Chen X. Tian C. Zhang Z. Qin Y. Meng R. Dai X. Zhong Y. Wei X. Zhang J. Shen C. Astragaloside I.V. Astragaloside IV inhibits NLRP3 inflammasome-mediated pyroptosis via activation of Nrf2/HO-1 signaling pathway and protects against doxorubicin-induced cardiac dysfunction. Front. Biosci. 2023 28 3 45 10.31083/j.fbl2803045 37005753
    [Google Scholar]
  354. Chen H. Zhu J. Le Y. Pan J. Liu Y. Liu Z. Wang C. Dou X. Lu D. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. Phytomedicine 2022 99 153964 https://www.sciencedirect.com/science/article/pii/S0944711322000423 10.1016/j.phymed.2022.153964 35180677
    [Google Scholar]
  355. Wang Y. Ying X. Wang Y. Zou Z. Yuan A. Xiao Z. Geng N. Qiao Z. Li W. Lu X. Pu J. Hydrogen sulfide alleviates mitochondrial damage and ferroptosis by regulating OPA3–NFS1 axis in doxorubicin-induced cardiotoxicity. Cell. Signal. 2023 107 110655 https://www.sciencedirect.com/science/article/pii/S0898656823000694 10.1016/j.cellsig.2023.110655 36924813
    [Google Scholar]
  356. Zhang G. Yuan C. Su X. Zhang J. Gokulnath P. Vulugundam G. Li G. Yang X. An N. Liu C. Sun W. Chen H. Wu M. Sun S. Xing Y. Relevance of ferroptosis to cardiotoxicity caused by anthracyclines: Mechanisms to target treatments. Front. Cardiovasc. Med. 2022 9 896792 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234116/ 10.3389/fcvm.2022.896792 35770215
    [Google Scholar]
  357. Wang Y. Han J. Zhan S. Guo C. Yin S. Zhan L. Zhou Q. Liu R. Yan H. Wang X. Yan D. Fucoidan alleviates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via Nrf2/GPX4 pathway. Int. J. Biol. Macromol. 2024 276 Pt 1 133792 https://www.sciencedirect.com/science/article/pii/S0141813024045975 10.1016/j.ijbiomac.2024.133792 38992539
    [Google Scholar]
  358. Liao H.H. Ding W. Zhang N. Zhou Z.Y. Ling Z. Li W.J. Chen S. Tang Q.Z. Activation of AMPKα2 attenuated doxorubicin-induced cardiotoxicity via inhibiting lipid peroxidation associated ferroptosis. Free Radic. Biol. Med. 2023 205 275 290 https://www.sciencedirect.com/science/article/pii/S0891584923004860 10.1016/j.freeradbiomed.2023.06.004 37331642
    [Google Scholar]
  359. Zhang M. Wu X. Wen Y. Li Z. Chen F. Zou Y. Dong X. Liu X. Wang J. Epirubicin induces cardiotoxicity through disrupting ATP6V0A2-dependent lysosomal acidification and triggering ferroptosis in cardiomyocytes. Cell Death Discov. 2024 10 1 337 https://www.nature.com/articles/s41420-024-02095-z 10.1038/s41420‑024‑02095‑z 39048556
    [Google Scholar]
  360. Tai P. Chen X. Jia G. Chen G. Gong L. Cheng Y. Li Z. Wang H. Chen A. Zhang G. Zhu Y. Xiao M. Wang Z. Liu Y. Shan D. He D. Li M. Zhan T. Khan A. Li X. Zeng X. Li C. Ouyang D. Ai K. Chen X. Liu D. Liu Z. Wei D. Cao K. WGX50 mitigates doxorubicin-induced cardiotoxicity through inhibition of mitochondrial ROS and ferroptosis. J. Transl. Med. 2023 21 1 823 10.1186/s12967‑023‑04715‑1 37978379
    [Google Scholar]
  361. Fang X. Wang H. Han D. Xie E. Yang X. Wei J. Gu S. Gao F. Zhu N. Yin X. Cheng Q. Zhang P. Dai W. Chen J. Yang F. Yang H.T. Linkermann A. Gu W. Min J. Wang F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 2019 116 7 2672 2680 https://www.pnas.org/doi/full/10.1073/pnas.1821022116 10.1073/pnas.1821022116 30692261
    [Google Scholar]
  362. Hanna M. Seddiek H. Aboulhoda B.E. Morcos G.N.B. Akabawy A.M.A. Elbaset M.A. Ibrahim A.A. Khalifa M.M. Khalifah I.M. Fadel M.S. Shoukry T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front. Physiol. 2022 13 1050598 https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2022.1050598/full 10.3389/fphys.2022.1050598 36531171
    [Google Scholar]
  363. Kitakata H. Endo J. Matsushima H. Yamamoto S. Ikura H. Hirai A. Koh S. Ichihara G. Hiraide T. Moriyama H. Shirakawa K. Goto S. Katsumata Y. Anzai A. Kataoka M. Tokuyama T. Ishido S. Yanagi S. Fukuda K. Sano M. MITOL/MARCH5 determines the susceptibility of cardiomyocytes to doxorubicin-induced ferroptosis by regulating GSH homeostasis. J. Mol. Cell. Cardiol. 2021 161 116 129 https://www.sciencedirect.com/science/article/pii/S0022282821001590 10.1016/j.yjmcc.2021.08.006 34390730
    [Google Scholar]
  364. He Y. Xi J. Fang J. Zhang B. Cai W. Aloe-emodin alleviates doxorubicin-induced cardiotoxicity via inhibition of ferroptosis. Free Radic. Biol. Med. 2023 206 13 21 https://www.sciencedirect.com/science/article/pii/S0891584923005129 10.1016/j.freeradbiomed.2023.06.025 37364691
    [Google Scholar]
  365. Chen T. Qin Y. Li Y. Li Y. Luo J. Fan L. Feng M. Wang Z. Zhao Y. Chiral Polymer Micelles Alleviate Adriamycin Cardiotoxicity via Iron Chelation and Ferroptosis Inhibition. Adv. Funct. Mater. 2023 33 30 2300689 https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202300689 [Internet]. 10.1002/adfm.202300689
    [Google Scholar]
  366. Tadokoro T. Ikeda M. Abe K. Ide T. Miyamoto H.D. Furusawa S. Ishimaru K. Watanabe M. Ishikita A. Matsushima S. Koumura T. Yamada K. Imai H. Tsutsui H. Ethoxyquin is a competent radical-trapping antioxidant for preventing ferroptosis in doxorubicin cardiotoxicity. J. Cardiovasc. Pharmacol. 2022 80 5 690 699 https://journals.lww.com/cardiovascularpharm/abstract/2022/11000/ethoxyquin_is_a_competent_radical_trapping.9.aspx 10.1097/FJC.0000000000001328 35881422
    [Google Scholar]
  367. Chen L. Sun X. Wang Z. Chen M. He Y. Zhang H. Han D. Zheng L. Resveratrol protects against doxorubicin-induced cardiotoxicity by attenuating ferroptosis through modulating the MAPK signaling pathway. Toxicol. Appl. Pharmacol. 2024 482 116794 https://www.sciencedirect.com/science/article/pii/S0041008X23004337 10.1016/j.taap.2023.116794 38142782
    [Google Scholar]
  368. Zhang H. Wang Z. Liu Z. Du K. Lu X. Protective effects of dexazoxane on rat ferroptosis in doxorubicin-induced cardiomyopathy through regulating HMGB1. Front. Cardiovasc. Med. 2021 8 685434 https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2021.685434/full 10.3389/fcvm.2021.685434 34336950
    [Google Scholar]
  369. Curigliano G. Lenihan D. Fradley M. Ganatra S. Barac A. Blaes A. Herrmann J. Porter C. Lyon A.R. Lancellotti P. Patel A. DeCara J. Mitchell J. Harrison E. Moslehi J. Witteles R. Calabro M.G. Orecchia R. de Azambuja E. Zamorano J.L. Krone R. Iakobishvili Z. Carver J. Armenian S. Ky B. Cardinale D. Cipolla C.M. Dent S. Jordan K. ESMO Guidelines Committee. Electronic address: [email protected] Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol. 2020 31 2 171 190 10.1016/j.annonc.2019.10.023 31959335
    [Google Scholar]
  370. Cardinale D. Colombo A. Bacchiani G. Tedeschi I. Meroni C.A. Veglia F. Civelli M. Lamantia G. Colombo N. Curigliano G. Fiorentini C. Cipolla C.M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015 131 22 1981 1988 10.1161/CIRCULATIONAHA.114.013777 25948538
    [Google Scholar]
  371. Vejpongsa P. Yeh E.T.H. Prevention of anthracycline-induced cardiotoxicity: Challenges and opportunities. J. Am. Coll. Cardiol. 2014 64 9 938 945 10.1016/j.jacc.2014.06.1167 25169180
    [Google Scholar]
  372. Deng S. Yan T. Jendrny C. Nemecek A. Vincetic M. Gödtel-Armbrust U. Wojnowski L. Dexrazoxane may prevent doxorubicin-induced DNA damage via depleting both Topoisomerase II isoforms. BMC Cancer 2014 14 1 842 10.1186/1471‑2407‑14‑842 25406834
    [Google Scholar]
  373. Yu X. Ruan Y. Shen T. Qiu Q. Yan M. Sun S. Dou L. Huang X. Wang Q. Zhang X. Man Y. Tang W. Jin Z. Li J. Dexrazoxane protects cardiomyocytes from doxorubicin-induced apoptosis by modulating miR-17-5p. BioMed Res. Int. 2020 2020 1 11 10.1155/2020/5107193 32190669
    [Google Scholar]
  374. Yu X. Ruan Y. Huang X. Dou L. Lan M. Cui J. Chen B. Gong H. Wang Q. Yan M. Sun S. Qiu Q. Zhang X. Man Y. Tang W. Li J. Shen T. Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem. Biophys. Res. Commun. 2020 523 1 140 146 10.1016/j.bbrc.2019.12.027 31837803
    [Google Scholar]
  375. Li J. Chang H.M. Banchs J. Araujo D.M. Hassan S.A. Wagar E.A. Yeh E.T.H. Meng Q.H. Detection of subclinical cardiotoxicity in sarcoma patients receiving continuous doxorubicin infusion or pre-treatment with dexrazoxane before bolus doxorubicin. Cardiooncology 2020 6 1 1 10.1186/s40959‑019‑0056‑3 32154027
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X322928241021100631
Loading
/content/journals/ccr/10.2174/011573403X322928241021100631
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: doxorubicin ; Cardiotoxicity ; apoptosis ; cardiomyocytes ; oxidative stress ; inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test