Skip to content
2000
image of A New Mechanism of Supraventricular Tachycardia: Gene Mutation

Abstract

Background

Supraventricular tachycardia (SVT) is very common in daily clinical practice, especially in the emergency department, with rapid onset and urgent management. The review highlights the recent genetic predispositions and mechanisms in SVT.

Methods

Through analysis of epidemiology, familial clustering, and gene mutations of the relevant literature,the review elucidates the genetic properties and potential pathophysiology of SVT.

Results

There are many pathophysiological mechanisms related to atrioventricular node reentrant tachycardia (AVNRT) and atrioventricular reentrant tachycardia (AVRT). Currently, there is relatively little research on inappropriate sinus tachycardia (IST), atrial tachycardia (AT), and congenital junctional ectopic tachycardia (CJET). It seems that every type of SVT has gene mutations in ion channels, with three types of SVT having gene mutations in signaling pathways, and others including gene mutations in beta-adrenergic-receptor autoantibodies, autonomic nervous system, and AV node structure.

Conclusion

SVT has certain genetic characteristics and is often associated with other heart diseases. From the analysis of mutated genes in SVT, it appears to be a type of cardiac ion channel disease. Unlike common ion channel diseases, it is more insidious and more susceptible to external factors. The confirmation of the genetic basis of SVT provides direction for future hazard stratification assessment and gene targeted therapy drug research.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X320610250108113731
2025-01-20
2025-07-17
Loading full text...

Full text loading...

References

  1. Josephson M.E. Wellens H.J.J. Differential diagnosis of supraventricular tachycardia. Cardiol. Clin. 1990 8 3 411 442 10.1016/S0733‑8651(18)30348‑5 2205383
    [Google Scholar]
  2. Zaiti A.S.S. Magdic K.S. Paroxysmal Supraventricular Tachycardia. Crit. Care Nurs. Clin. North Am. 2016 28 3 309 316 10.1016/j.cnc.2016.04.005 27484659
    [Google Scholar]
  3. Gollob M.H. Green M.S. Tang A.S.L. Gollob T. Karibe A. Hassan A-S. Ahmad F. Lozado R. Shah G. Fananapazir L. Bachinski L.L. Tapscott T. Gonzales O. Begley D. Mohiddin S. Roberts R. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med. 2001 344 24 1823 1831 10.1056/NEJM200106143442403 11407343
    [Google Scholar]
  4. Wolf C.M. Arad M. Ahmad F. Sanbe A. Bernstein S.A. Toka O. Konno T. Morley G. Robbins J. Seidman J.G. Seidman C.E. Berul C.I. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation 2008 117 2 144 154 10.1161/CIRCULATIONAHA.107.726752 18158359
    [Google Scholar]
  5. Pang Y. Xu Y. Chen Q. Cheng K. Ling Y. Jang J. Ge J. Zhu W. FLRT3 and TGF ‐β/ SMAD4 signalling: Impacts on apoptosis, autophagy and ion channels in supraventricular tachycardia. J. Cell. Mol. Med. 2024 28 7 e18237 10.1111/jcmm.18237 38509727
    [Google Scholar]
  6. Ali M. Haji A.Q. Kichloo A. Grubb B.P. Kanjwal K. Inappropriate sinus tachycardia: A review. Rev. Cardiovasc. Med. 2021 22 4 1331 1339 10.31083/j.rcm2204139 34957774
    [Google Scholar]
  7. Shabtaie S.A. Witt C.M. Asirvatham S.J. Natural history and clinical outcomes of inappropriate sinus tachycardia. J. Cardiovasc. Electrophysiol. 2020 31 1 137 143 10.1111/jce.14288 31749258
    [Google Scholar]
  8. Chen S.A. Chiang C.E. Yang C.J. Cheng C.C. Wu T.J. Wang S.P. Chiang B.N. Chang M.S. Sustained atrial tachycardia in adult patients. electrophysiological characteristics, pharmacological response, possible mechanisms, and effects of radiofrequency ablation. Circulation 1994 90 3 1262 1278 10.1161/01.CIR.90.3.1262 8087935
    [Google Scholar]
  9. Memon D. Larkin E. Varghese M. Congenital junctional ectopic tachycardia in the paediatric emergency department. Cardiol. Young 2022 32 9 1510 1512 10.1017/S1047951121005187 35027094
    [Google Scholar]
  10. Ashraf M. 2024
  11. Hayes J.J. Sharma P.P. Smith P.N. Vidaillet H.J. Familial atrioventricular nodal reentry tachycardia. Pacing Clin. Electrophysiol. 2004 27 1 73 76 10.1111/j.1540‑8159.2004.00388.x 14720158
    [Google Scholar]
  12. Strom T. Hörtnagel K. Hofmann S. Gekeler F. Scharfe C. Rabl W. Gerbitz K.D. Meitinger T. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Hum. Mol. Genet. 1998 7 13 2021 2028 10.1093/hmg/7.13.2021 9817917
    [Google Scholar]
  13. Smith C.J.A. Crock P.A. King B.R. Meldrum C.J. Scott R.J. Phenotype-genotype correlations in a series of wolfram syndrome families. Diabetes Care 2004 27 8 2003 2009 10.2337/diacare.27.8.2003 15277431
    [Google Scholar]
  14. Hofmann S. Philbrook C. Gerbitz K.D. Bauer M.F. Wolfram syndrome: Structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Hum. Mol. Genet. 2003 12 16 2003 2012 10.1093/hmg/ddg214 12913071
    [Google Scholar]
  15. Osman A.A. Saito M. Makepeace C. Permutt M.A. Schlesinger P. Mueckler M. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J. Biol. Chem. 2003 278 52 52755 52762 10.1074/jbc.M310331200 14527944
    [Google Scholar]
  16. Frisch D.R. Kwaku K.F. Allocco D.J. Zimetbaum P.J. Atrioventricular nodal reentrant tachycardia in two siblings with Wolfram syndrome. J. Cardiovasc. Electrophysiol. 2006 17 9 1029 1031 10.1111/j.1540‑8167.2006.00522.x 16948749
    [Google Scholar]
  17. Namgung J. Kwak J.J. Choe H. Kwon S.U. Doh J.H. Lee S.Y. Lee W.R. Familial occurrence of atrioventricular nodal reentrant tachycardia in a mother and her son. Korean Circ. J. 2012 42 10 718 721 10.4070/kcj.2012.42.10.718 23170103
    [Google Scholar]
  18. Barake W. Caldwell J. Baranchuk A. Atrioventricular nodal re-entry tachycardia in identical twins: A case report and literature review. Indian Pacing Electrophysiol. J. 2013 13 1 45 51 10.1016/S0972‑6292(16)30589‑7 23329875
    [Google Scholar]
  19. Stec S. Deutsch K. Krajka Z.A. The world’s largest family with familial atrio-ventricular nodal reentry tachycardia. Kardiol. Pol. 2015 73 12 1339 10.5603/KP.2015.0249 26727677
    [Google Scholar]
  20. Michowitz Y. Belhassen B. Response by michowitz and belhassen to letter regarding article, “familial occurrence of atrioventricular nodal reentrant tachycardia”. Circ. Arrhythm. Electrophysiol. 2017 10 5 e005291 10.1161/CIRCEP.117.005291 28473455
    [Google Scholar]
  21. Michowitz Y. Heusler A.A. Reinstein E. Brodie T.O. Glick A. Belhassen B. Familial occurrence of atrioventricular nodal reentrant tachycardia. Circ. Arrhythm. Electrophysiol. 2017 10 2 e004680 10.1161/CIRCEP.116.004680 28213508
    [Google Scholar]
  22. Chen X. Yan C. Luo R. Zhu Y. Qian M. Liu X. Liu M. Ikeda T. Li X. Clinical report of 8 families with atrioventricular nodal reentrant tachycardia from China. Kardiol. Pol. 2021 79 2 185 187 10.33963/KP.15739 33415965
    [Google Scholar]
  23. Andreasen L. Ahlberg G. Tang C. Andreasen C. Hartmann J.P. Hansen T.J. Behr E.R. Pehrson S. Haunsø S. LuCamp Weeke P.E. Jespersen T. Olesen M.S. Svendsen J.H. Next-generation sequencing of AV nodal reentrant tachycardia patients identifies broad spectrum of variants in ion channel genes. Eur. J. Hum. Genet. 2018 26 5 660 668 10.1038/s41431‑017‑0092‑0 29396561
    [Google Scholar]
  24. Andreasen L. Ahlberg G. Ægisdottir H.M. Sveinbjörnsson G. Lundegaard P.R. Hartmann J.P. Müller P.C. Turdeghal H.K. Ghouse J. Pehrson S. Jensen H.K. Riahi S. Hansen J. Sandgaard N. Sørensen E. Banasik K. Sækmose S.G. Bruun M.T. Hjalgrim H. Erikstrup C. Pedersen O.B. Wittig M. Haunsø S. Ostrowski S.R. Franke A. Brunak S. Kanters J.K. Ellervik C. Bundgaard H. Ullum H. Gudbjartsson D.F. Thorsteinsdottir U. Holm H. Arnar D.O. Stefansson K. Svendsen J.H. Olesen M.S. Genetic variants close to ttn, nkx2-5, and myh6 associate with avnrt. Circ. Res. 2022 131 10 862 865 10.1161/CIRCRESAHA.122.321556 36205134
    [Google Scholar]
  25. Aegisdottir H.M. Andreasen L. Thorolfsdottir R.B. Sveinbjornsson G. Jonsdottir A.B. Stefansdottir L. Thorleifsson G. Sigurdsson A. Halldorsson G.H. Barc J. Simonet F. Tragante V. Oddsson A. Ferkingstad E. Svendsen J.H. Ghouse J. Ahlberg G. Müller P.C. Turdeghal H.K. Bustamante M. Ulfarsson M.O. Helgadottir A. Gretarsdottir S. Saevarsdottir S. Jonsdottir I. Erikstrup C. Ullum H. Sørensen E. Brunak S. Jøns C. Zheng C. Bezzina C.R. Knowlton K.U. Nadauld L.D. Sulem P. Ostrowski S.R. Pedersen O.B. Arnar D.O. Gudbjartsson D.F. Olesen M.S. Bundgaard H. Holm H. Stefansson K. Banasik K. Bay J. Boldsen J.K. Brodersen T. Brunak S. Demur B.A. Christoffersen L.A.N. Didriksen M. Dinh K.M. Dowsett J. Erikstrup C. Feenstra B. Geller F. Gudbjartsson D. Hansen T.F. Mikkelsen H.D. Hindhede L. Hjalgrim H. Stemann J.H.V. Jensen B.A. Schork J.A. Kaspersen K. Kjerulff B.D. Kongstad M. Mikkelsen S. Mikkelsen C. Nissen I. Nyegaard M. Ostrowski S.R. Pedersen O.B. Quinn L.J.E. Rafnar Þ. Rohde P.D. Rostgaard K. Schwinn M. Stefansson K. Stefánsson H. Sørensen E. Thorsteinsdóttir U. Thørner L.W. Bruun T.M. Ullum H. Werge T. Westergaard D. Genome-wide association study of accessory atrioventricular pathways. JAMA Cardiol. 2024 9 11 1053 10.1001/jamacardio.2024.2684
    [Google Scholar]
  26. Hasdemir C. Payzin S. Kocabas U. Sahin H. Yildirim N. Alp A. Aydin M. Pfeiffer R. Burashnikov E. Wu Y. Antzelevitch C. High prevalence of concealed Brugada syndrome in patients with atrioventricular nodal reentrant tachycardia. Heart Rhythm 2015 12 7 1584 1594 10.1016/j.hrthm.2015.03.015 25998140
    [Google Scholar]
  27. Lee T.Y. Hogarth K. Szabo E. Maynes J.T. Sex‐specific arrhythmias caused by cardiac sodium channel na v 1.5 mutation alters cardiomyocyte metabolism. FASEB J. 2022 36 S1 fasebj.2022.36.S1.0R302 10.1096/fasebj.2022.36.S1.0R302
    [Google Scholar]
  28. Vanninen S.U.M. Nikus K. Setälä A.K. Electrocardiogram changes and atrial arrhythmias in individuals carrying sodium channel SCN5A D1275N mutation. Ann. Med. 2017 49 6 496 503 10.1080/07853890.2017.1307515 28294644
    [Google Scholar]
  29. Podliesna S. Delanne J. Miller L. Tester D.J. Uzunyan M. Yano S. Klerk M. Cannon B.C. Khongphatthanayothin A. Laurent G. Bertaux G. Eicher F.S. Wu S. Yen H.Y. Gao H. Wilde A.A.M. Faivre L. Ackerman M.J. Lodder E.M. Bezzina C.R. Supraventricular tachycardias, conduction disease, and cardiomyopathy in 3 families with the same rare variant in TNNI3K (p.Glu768Lys). Heart Rhythm 2019 16 1 98 105 10.1016/j.hrthm.2018.07.015 30010057
    [Google Scholar]
  30. Pham C. Martín M.N. Lodder E.M. The diverse roles of tnni3k in cardiac disease and potential for treatment. Int. J. Mol. Sci. 2021 22 12 6422 10.3390/ijms22126422 34203974
    [Google Scholar]
  31. Calkins H. Sousa J. Atassi E.R. Rosenheck S. Buitleir d.M. Kou W.H. Kadish A.H. Langberg J.J. Morady F. Diagnosis and cure of the Wolff-Parkinson-White syndrome or paroxysmal supraventricular tachycardias during a single electrophysiologic test. N. Engl. J. Med. 1991 324 23 1612 1618 10.1056/NEJM199106063242302 2030717
    [Google Scholar]
  32. Kay G.N. Epstein A. Dailey S.M. Plumb V.J. Role of radiofrequency ablation in the management of supraventricular arrhythmias: Experience in 760 consecutive patients. J. Cardiovasc. Electrophysiol. 1993 4 4 371 392 10.1111/j.1540‑8167.1993.tb01277.x 8269306
    [Google Scholar]
  33. Farshidi A. Josephson M.E. Horowitz L.N. Electrophysiologic characteristics of concealed bypass tracts: Clinical and electrocardiographic correlates. Am. J. Cardiol. 1978 41 6 1052 1060 10.1016/0002‑9149(78)90857‑3 307339
    [Google Scholar]
  34. Cho J.G. Kim J.W. Ahn Y.K. Bae Y. Kim J.H. Kim S.H. Park J.H. Jeong M.H. Park J.C. Kang J.C. Radiofrequency catheter ablation in familial paroxysmal supraventricular tachycardia due to accessory atrioventricular pathways. Jpn. Circ. J. 1998 62 12 883 886 10.1253/jcj.62.883 9890199
    [Google Scholar]
  35. Massumi R.A. Familial Wolff-Parkinson-White syndrome with cardiomyopathy. Am. J. Med. 1967 43 6 951 955 10.1016/0002‑9343(67)90254‑9 4228766
    [Google Scholar]
  36. Sana M. 1999
  37. Chia B.L. Yew F.C. Chay S.O. Tan A.T.H. Familial wolff-parkinson-white syndrome. J. Electrocardiol. 1982 15 2 195 198 10.1016/S0022‑0736(82)80016‑2 7069337
    [Google Scholar]
  38. Vidaillet H.J. Jr Pressley J.C. Henke E. Harrell F.E. Jr German L.D. Familial occurrence of accessory atrioventricular pathways (preexcitation syndrome). N. Engl. J. Med. 1987 317 2 65 69 10.1056/NEJM198707093170201 3587328
    [Google Scholar]
  39. Sidhu J.S. Rajawat Y.S. Rami T.G. Gollob M.H. Wang Z. Yuan R. Marian A.J. DeMayo F.J. Weilbacher D. Taffet G.E. Davies J.K. Carling D. Khoury D.S. Roberts R. Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome. Circulation 2005 111 1 21 29 10.1161/01.CIR.0000151291.32974.D5 15611370
    [Google Scholar]
  40. MacRae C.A. Ghaisas N. Kass S. Donnelly S. Basson C.T. Watkins H.C. Anan R. Thierfelder L.H. McGarry K. Rowland E. Familial hypertrophic cardiomyopathy with wolff-parkinson-white syndrome maps to a locus on chromosome 7q3. J. Clin. Invest. 1995 96 3 1216 1220 10.1172/JCI118154 7657794
    [Google Scholar]
  41. Murphy R.T. Mogensen J. McGarry K. Bahl A. Evans A. Osman E. Syrris P. Gorman G. Farrell M. Holton J.L. Hanna M.G. Hughes S. Elliott P.M. MacRae C.A. McKenna W.J. Adenosine monophosphate-activated protein kinase disease mimicks hypertrophic cardiomyopathy and Wolff-Parkinson-White syndrome. J. Am. Coll. Cardiol. 2005 45 6 922 930 10.1016/j.jacc.2004.11.053 15766830
    [Google Scholar]
  42. Gollob M.H. Seger J.J. Gollob T.N. Tapscott T. Gonzales O. Bachinski L. Roberts R. Novel PRKAG2 mutation responsible for the genetic syndrome of ventricular preexcitation and conduction system disease with childhood onset and absence of cardiac hypertrophy. Circulation 2001 104 25 3030 3033 10.1161/hc5001.102111 11748095
    [Google Scholar]
  43. Koneru J.N. Wood M.A. Ellenbogen K.A. Rare forms of preexcitation: A case study and brief overview of familial forms of preexcitation. Circ. Arrhythm. Electrophysiol. 2012 5 4 e82 e87 10.1161/CIRCEP.111.968917 22895604
    [Google Scholar]
  44. Arad M. Maron B.J. Gorham J.M. Johnson W.H. Jr Saul J.P. Atayde P.A.R. Spirito P. Wright G.B. Kanter R.J. Seidman C.E. Seidman J.G. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N. Engl. J. Med. 2005 352 4 362 372 10.1056/NEJMoa033349 15673802
    [Google Scholar]
  45. Tan H.L. van der Wal A.C. Campian M.E. Kruyswijk H.H. ten Hove Jansen B. Doorn v.D.J. Oskam H.J. Becker A.E. Wilde A.A.M. Nodoventricular accessory pathways in PRKAG2-dependent familial preexcitation syndrome reveal a disorder in cardiac development. Circ. Arrhythm. Electrophysiol. 2008 1 4 276 281 10.1161/CIRCEP.108.782862 19808419
    [Google Scholar]
  46. Cheung P.C. Salt I.P. Davies S.P. Hardie D.G. Carling D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 2000 345 Pt 3 659 669
    [Google Scholar]
  47. Kübler W. Schömig A. Senges J. The conduction and cardiac sympathetic systems: Metabolic aspects. J. Am. Coll. Cardiol. 1985 5 6 Suppl. 157B 161B 10.1016/S0735‑1097(85)80548‑9 3998332
    [Google Scholar]
  48. Arad M. Moskowitz I.P. Patel V.V. Ahmad F. Atayde P.A.R. Sawyer D.B. Walter M. Li G.H. Burgon P.G. Maguire C.T. Stapleton D. Schmitt J.P. Guo X.X. Pizard A. Kupershmidt S. Roden D.M. Berul C.I. Seidman C.E. Seidman J.G. Transgenic mice overexpressing mutant prkag2 define the cause of wolff-parkinson-white syndrome in glycogen storage cardiomyopathy. Circulation 2003 107 22 2850 2856 10.1161/01.CIR.0000075270.13497.2B 12782567
    [Google Scholar]
  49. Light P.E. Wallace C.H.R. Dyck J.R.B. Constitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes. Circulation 2003 107 15 1962 1965 10.1161/01.CIR.0000069269.60167.02 12682004
    [Google Scholar]
  50. Lalani S.R. Thakuria J.V. Cox G.F. Wang X. Bi W. Bray M.S. Shaw C. Cheung S.W. Chinault A.C. Boggs B.A. Ou Z. Brundage E.K. Lupski J.R. Gentile J. Waisbren S. Pursley A. Ma L. Khajavi M. Zapata G. Friedman R. Kim J.J. Towbin J.A. Stankiewicz P. Schnittger S. Hansmann I. Ai T. Sood S. Wehrens X.H. Martin J.F. Belmont J.W. Potocki L. 20p12.3 microdeletion predisposes to Wolff-Parkinson-White syndrome with variable neurocognitive deficits. J. Med. Genet. 2008 46 3 168 175 10.1136/jmg.2008.061002 18812404
    [Google Scholar]
  51. Weyhrauch D.L. Ye D. Boczek N.J. Tester D.J. Gavrilova R.H. Patterson M.C. Wieben E.D. Ackerman M.J. Whole exome sequencing and heterologous cellular electrophysiology studies elucidate a novel loss-of-function mutation in the cacna1a-encoded neuronal p/q-type calcium channel in a child with congenital hypotonia and developmental delay. Pediatr. Neurol. 2016 55 46 51 10.1016/j.pediatrneurol.2015.10.014 26739101
    [Google Scholar]
  52. Wising P. Familial, Congenital Sinus Tachycardia. Acta Med. Scand. 1941 108 3-4 299 305 10.1111/j.0954‑6820.1941.tb18795.x
    [Google Scholar]
  53. Baruscotti M. Bucchi A. Milanesi R. Paina M. Barbuti A. Ruscone G.T. Bianco E. Serdoz V.L. Cappato R. DiFrancesco D. A gain-of-function mutation in the cardiac pacemaker HCN4 channel increasing cAMP sensitivity is associated with familial Inappropriate Sinus Tachycardia. Eur. Heart J. 2017 38 4 280 288 10.1093/eurheartj/ehv582 28182231
    [Google Scholar]
  54. Baruscotti M. Bianco E. Bucchi A. DiFrancesco D. Current understanding of the pathophysiological mechanisms responsible for inappropriate sinus tachycardia: Role of the If "funny" current. J. Inter. Card Electro. 2016 46 1 19 28
    [Google Scholar]
  55. Still A.M. Huikuri H. Airaksinen K.J. Koistinen M.J. Kettunen R. Hartikainen J. Mitrani R.D. Castellanos A. Myerburg R.J. Raatikainen M.J.P. Impaired negative chronotropic response to adenosine in patients with inappropriate sinus tachycardia. J. Cardiovasc. Electrophysiol. 2002 13 6 557 562 10.1046/j.1540‑8167.2002.00557.x 12108496
    [Google Scholar]
  56. Nattel S. Inappropriate sinus tachycardia and beta-receptor autoantibodies: A mechanistic breakthrough? Heart Rhythm 2006 3 10 1187 1188 10.1016/j.hrthm.2006.07.019 17018349
    [Google Scholar]
  57. Ahmed A. Pothineni N.V.K. Charate R. Garg J. Elbey M. Asmundis d.C. LaMeir M. Romeya A. Shivamurthy P. Olshansky B. Russo A. Gopinathannair R. Lakkireddy D. Inappropriate sinus tachycardia: Etiology, pathophysiology, and management. J. Am. Coll. Cardiol. 2022 79 24 2450 2462 10.1016/j.jacc.2022.04.019 35710196
    [Google Scholar]
  58. Baruscotti M. Barbuti A. Bucchi A. The cardiac pacemaker current. J. Mol. Cell. Cardiol. 2010 48 1 55 64 10.1016/j.yjmcc.2009.06.019 19591835
    [Google Scholar]
  59. Chiale P.A. Garro H.A. Schmidberg J. Sánchez R.A. Acunzo R.S. Lago M. Levy G. Levin M. Inappropriate sinus tachycardia may be related to an immunologic disorder involving cardiac β andrenergic receptors. Heart Rhythm 2006 3 10 1182 1186 10.1016/j.hrthm.2006.06.011 17018348
    [Google Scholar]
  60. Cappato R. Castelvecchio S. Ricci C. Bianco E. Serdoz V.L. Ruscone G.T. Pittalis M. Ambroggi D.L. Baruscotti M. Gaeta M. Furlanello F. Francesco D.D. Lupo P.P. Clinical efficacy of ivabradine in patients with inappropriate sinus tachycardia: A prospective, randomized, placebo-controlled, double-blind, crossover evaluation. J. Am. Coll. Cardiol. 2012 60 15 1323 1329 10.1016/j.jacc.2012.06.031 22981555
    [Google Scholar]
  61. Scheinman M.M. Vedantham V. Ivabradine. J. Am. Coll. Cardiol. 2012 60 15 1330 1332 10.1016/j.jacc.2012.06.032 22981552
    [Google Scholar]
  62. Olshansky B. Sullivan R.M. Inappropriate sinus tachycardia. J. Am. Coll. Cardiol. 2013 61 8 793 801 10.1016/j.jacc.2012.07.074 23265330
    [Google Scholar]
  63. Pellegrini C.N. Scheinman M.M. Epidemiology and definition of inappropriate sinus tachycardia. J. Interv. Card. Electrophysiol. 2016 46 1 29 32 10.1007/s10840‑015‑0039‑8 26310298
    [Google Scholar]
  64. Li Z. Wang Q. Sun X. Zhang Y. Cui C. Chen H. Chen M. Atrial tachycardia with concomitant prolonged hv interval with an scn5a missense variant (p.r367h). JACC Clin. Electrophysiol. 2023 9 3 448 452 10.1016/j.jacep.2022.11.018 36752468
    [Google Scholar]
  65. Hayakawa I. Abe Y. Ono H. Kubota M. Severe congenital RYR1-associated myopathy complicated with atrial tachycardia and sinus node dysfunction: A case report. Ital. J. Pediatr. 2019 45 1 165 10.1186/s13052‑019‑0756‑1 31856875
    [Google Scholar]
  66. Theis J.L. Zimmermann M.T. Larsen B.T. Rybakova I.N. Long P.A. Evans J.M. Middha S. Andrade d.M. Moss R.L. Wieben E.D. Michels V.V. Olson T.M. TNNI3K mutation in familial syndrome of conduction system disease, atrial tachyarrhythmia and dilated cardiomyopathy. Hum. Mol. Genet. 2014 23 21 5793 5804 10.1093/hmg/ddu297 24925317
    [Google Scholar]
  67. Dagres N. Gutersohn A. Wieneke H. Sack S. Erbel R. A new hereditary form of ectopic atrial tachycardia with autosomal dominant inheritance. Int. J. Cardiol. 2004 93 2-3 311 313 10.1016/S0167‑5273(03)00164‑5 14975569
    [Google Scholar]
  68. Balaji S. Sullivan I.D. Shinebourne E.A. Familial neonatal atrial tachycardia. Heart 1996 76 2 178 180 10.1136/hrt.76.2.178 8795484
    [Google Scholar]
  69. Brodsky M. Wu D. Denes P. Rosen K.M. Familial atrial tachyarrhythmia with short PR interval. Arch. Intern. Med. 1977 137 2 165 169 10.1001/archinte.1977.03630140021008 836114
    [Google Scholar]
  70. Zhao Y. Meng X.M. Wei Y.J. Zhao X.W. Liu D.Q. Cao H.Q. Liew C.C. Ding J.F. Cloning and characterization of a novel cardiac-specific kinase that interacts specifically with cardiac troponin I. J. Mol. Med. 2003 81 5 297 304 10.1007/s00109‑003‑0427‑x 12721663
    [Google Scholar]
  71. Milano A. Lodder E.M. Bezzina C.R. TNNI3K in cardiovascular disease and prospects for therapy. J. Mol. Cell. Cardiol. 2015 82 167 173 10.1016/j.yjmcc.2015.03.008 25787061
    [Google Scholar]
  72. Benson D.W. Wang D.W. Dyment M. Knilans T.K. Fish F.A. Strieper M.J. Rhodes T.H. George A.L. Jr Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 2003 112 7 1019 1028 10.1172/JCI200318062 14523039
    [Google Scholar]
  73. Gellens M.E. George A.L. Jr Chen L.Q. Chahine M. Horn R. Barchi R.L. Kallen R.G. Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl. Acad. Sci. USA 1992 89 2 554 558 10.1073/pnas.89.2.554 1309946
    [Google Scholar]
  74. Asseman P. Berzin B. Desry D. Vilarem D. Durand P. Delmotte C. Sarkis E.H. Lekieffre J. Thery C. Persistent sinus nodal electrograms during abnormally prolonged postpacing atrial pauses in sick sinus syndrome in humans: Sinoatrial block vs overdrive suppression. Circulation 1983 68 1 33 41 10.1161/01.CIR.68.1.33 6851052
    [Google Scholar]
  75. Asseman P. Berzin B. Desry D. Bauchart J.J. Reade R. Leroy O. Poncelet P. Lekieffre J. Thery C. Postextrasystolic sinoatrial exit block in human sick sinus syndrome: Demonstration by direct recording of sinus node electrograms. Am. Heart J. 1991 122 6 1633 1643 10.1016/0002‑8703(91)90281‑L 1720277
    [Google Scholar]
  76. Villain E. Vetter V.L. Garcia J.M. Herre J. Cifarelli A. Garson A. Jr Evolving concepts in the management of congenital junctional ectopic tachycardia. A multicenter study. Circulation 1990 81 5 1544 1549 10.1161/01.CIR.81.5.1544 2184944
    [Google Scholar]
  77. Alasti M. Mirzaee S. Machado C. Healy S. Bittinger L. Adam D. Kotschet E. Krafchek J. Alison J. Junctional ectopic tachycardia (JET). J. Arrhythm. 2020 36 5 837 844 10.1002/joa3.12410 33024461
    [Google Scholar]
  78. Dubin A.M. Cuneo B.F. Strasburger J.F. Wakai R.T. Hare v.G.F. Rosenthal D.N. Congenital junctional ectopic tachycardia and congenital complete atrioventricular block: A shared etiology? Heart Rhythm 2005 2 3 313 315 10.1016/j.hrthm.2004.11.016 15851326
    [Google Scholar]
  79. Xi Y. Honeywell C. Zhang D. Schwartzentruber J. Beaulieu C.L. Tetreault M. Hartley T. Marton J. Vidal S.M. Majewski J. Aravind L. Gollob M. Boycott K.M. Gow R.M. Whole exome sequencing identifies the TNNI3K gene as a cause of familial conduction system disease and congenital junctional ectopic tachycardia. Int. J. Cardiol. 2015 185 114 116 10.1016/j.ijcard.2015.03.130 25791106
    [Google Scholar]
  80. Wheeler F.C. Tang H. Marks O.A. Hadnott T.N. Chu P.L. Mao L. Rockman H.A. Marchuk D.A. Tnni3k modifies disease progression in murine models of cardiomyopathy. PLoS Genet. 2009 5 9 e1000647 10.1371/journal.pgen.1000647 19763165
    [Google Scholar]
  81. Azam M. Seeliger M.A. Gray N.S. Kuriyan J. Daley G.Q. Activation of tyrosine kinases by mutation of the gatekeeper threonine. Nat. Struct. Mol. Biol. 2008 15 10 1109 1118 10.1038/nsmb.1486 18794843
    [Google Scholar]
  82. Eyers P.A. Craxton M. Morricel N. Cohen P. Goedert M. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem. Biol. 1998 5 6 321 328 10.1016/S1074‑5521(98)90170‑3 9653550
    [Google Scholar]
  83. Joseph R.E. Andreotti A.H. Controlling the activity of the Tec kinase Itk by mutation of the phenylalanine gatekeeper residue. Biochemistry 2011 50 2 221 229 10.1021/bi101379m 21138328
    [Google Scholar]
  84. Takeshima H. Komazaki S. Nishi M. Iino M. Kangawa K. Junctophilins: A novel family of junctional membrane complex proteins. Mol. Cell 2000 6 1 11 22 10949023
    [Google Scholar]
  85. Landstrom A.P. Beavers D.L. Wehrens X.H.T. The junctophilin family of proteins: From bench to bedside. Trends Mol. Med. 2014 20 6 353 362 10.1016/j.molmed.2014.02.004 24636942
    [Google Scholar]
  86. Oort v.R.J. Garbino A. Wang W. Dixit S.S. Landstrom A.P. Gaur N. Almeida D.A.C. Skapura D.G. Rudy Y. Burns A.R. Ackerman M.J. Wehrens X.H.T. Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 2011 123 9 979 988 10.1161/CIRCULATIONAHA.110.006437 21339484
    [Google Scholar]
  87. Yang Q. Tadros H.J. Sun B. Bidzimou M.T. Ezekian J.E. Li F. Ludwig A. Wehrens X.H.T. Landstrom A.P. Junctional ectopic tachycardia caused by junctophilin-2 expression silencing is selectively sensitive to ryanodine receptor blockade. JACC Basic Transl. Sci. 2023 8 12 1577 1588 10.1016/j.jacbts.2023.07.008 38205351
    [Google Scholar]
  88. Landstrom A.P. Yang Q. Reduction in junctophilin 2 expression in cardiac nodal tissue results in intracellular calcium-driven increase in nodal cell automaticity.m Circ. Arrhythm. Electrophysiol. 2023 16 2 e010858
    [Google Scholar]
  89. Catterall W.A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000 26 1 13 25 10.1016/S0896‑6273(00)81133‑2 10798388
    [Google Scholar]
  90. Balser J. Structure and function of the cardiac sodium channels. Cardiovasc. Res. 1999 42 2 327 338 10.1016/S0008‑6363(99)00031‑0 10533571
    [Google Scholar]
  91. Roberts R. Brugada R. Genetics and arrhythmias. Annu. Rev. Med. 2003 54 1 257 267 10.1146/annurev.med.54.073002.182112 12525675
    [Google Scholar]
  92. Koitabashi N. Kass D.A. Reverse remodeling in heart failure—mechanisms and therapeutic opportunities. Nat. Rev. Cardiol. 2012 9 3 147 157 10.1038/nrcardio.2011.172 22143079
    [Google Scholar]
  93. Dorn G.W. II Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest. 2005 115 3 527 537 10.1172/JCI24178 15765134
    [Google Scholar]
  94. Darbar D. Roden D.M. Pharmacogenetics of antiarrhythmic therapy. Expert Opin. Pharmacother. 2006 7 12 1583 1590 10.1517/14656566.7.12.1583 16872261
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X320610250108113731
Loading
/content/journals/ccr/10.2174/011573403X320610250108113731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test