Skip to content
2000
image of Insulin Resistance, Hyperinsulinemia and Atherosclerosis: Insights into Pathophysiological Aspects and Future Therapeutic Prospects

Abstract

Insulin resistance describes the lack of activity of a known quantity of insulin (exogenous or endogenous) to promote the uptake of glucose and its utilization in an individual, as much as it does in metabolically normal individuals. On the cellular level, it suggests insufficient power of the insulin pathway (from the insulin receptor downstream to its final substrates) that is essential for multiple mitogenic and metabolic aspects of cellular homeostasis. Atherosclerosis is a slow, complex, and multifactorial pathobiological process in medium to large arteries and involves several tissues and cell types (immune, vascular, and metabolic cells). Inflammatory responses and immunoregulation are key players in its development and progression. This paper examines the possible pathophysiological mechanisms that govern the connection of insulin resistance, hyperinsulinemia, and the closely associated cardiometabolic syndrome with atherosclerosis, after exploring thoroughly both and (preclinical and clinical) evidence. It also discusses the importance of visualizing and developing novel therapeutic strategies and targets for treatment, to face this metabolic state through its genesis.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X314035241006185109
2024-10-16
2024-11-23
Loading full text...

Full text loading...

References

  1. Lebovitz H. Insulin resistance: Definition and consequences. Exp. Clin. Endocrinol. Diabetes 2001 109 Suppl. 2 S135 S148 10.1055/s‑2001‑18576 11460565
    [Google Scholar]
  2. Ginsberg H.N. Insulin resistance and cardiovascular disease. J. Clin. Invest. 2000 106 4 453 458 10.1172/JCI10762 10953019
    [Google Scholar]
  3. Abdul-Ghani M.A. DeFronzo R.A. Pathogenesis of insulin resistance in skeletal muscle. J. Biomed. Biotechnol. 2010 2010 1 19 10.1155/2010/476279 20445742
    [Google Scholar]
  4. Papaetis G.S. Papakyriakou P. Panagiotou T.N. State of the art paper Central obesity, type 2 diabetes and insulin: Exploring a pathway full of thorns. Arch. Med. Sci. 2015 3 3 463 482 10.5114/aoms.2015.52350 26170839
    [Google Scholar]
  5. Yaribeygi H. Farrokhi F.R. Butler A.E. Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell. Physiol. 2019 234 6 8152 8161 10.1002/jcp.27603 30317615
    [Google Scholar]
  6. Papaetis G.S. Empagliflozin and the Diabetic Kidney: Pathophysiological Concepts and Future Challenges. Endocr. Metab. Immune Disord. Drug Targets 2021 21 9 1555 1589 10.2174/1871530321999201214233421 33319678
    [Google Scholar]
  7. Wysham C. Shubrook J. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications. Postgrad. Med. 2020 132 8 676 686 10.1080/00325481.2020.1771047 32543261
    [Google Scholar]
  8. Libby P. The changing landscape of atherosclerosis. Nature 2021 592 7855 524 533 10.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  9. Chistiakov D.A. Melnichenko A.A. Myasoedova V.A. Grechko A.V. Orekhov A.N. Mechanisms of foam cell formation in atherosclerosis. J. Mol. Med. (Berl.) 2017 95 11 1153 1165 10.1007/s00109‑017‑1575‑8 28785870
    [Google Scholar]
  10. Walker A.R.P. Isaacson C. Segal I. Fatty streaks and atherogenesis. Lancet 1980 316 8201 974 10.1016/S0140‑6736(80)92127‑3 6107609
    [Google Scholar]
  11. Alonso-Herranz L. Albarrán-Juárez J. Bentzon J.F. Mechanisms of fibrous cap formation in atherosclerosis. Front. Cardiovasc. Med. 2023 10 1254114 10.3389/fcvm.2023.1254114 37671141
    [Google Scholar]
  12. Cardoso L. Weinbaum S. Microcalcifications, Their Genesis, Growth, and Biomechanical Stability in Fibrous Cap Rupture. Adv. Exp. Med. Biol. 2018 1097 129 155 10.1007/978‑3‑319‑96445‑4_7 30315543
    [Google Scholar]
  13. Stout R.W. Vallance-Owen J. Insulin and atheroma. Lancet 1969 293 7605 1078 1080 10.1016/S0140‑6736(69)91711‑5 4181737
    [Google Scholar]
  14. Laakso M. Sarlund H. Salonen R. Suhonen M. Pyörälä K. Salonen J.T. Karhapää P. Asymptomatic atherosclerosis and insulin resistance. Arterioscler. Thromb. 1991 11 4 1068 1076 10.1161/01.ATV.11.4.1068 2065028
    [Google Scholar]
  15. Bressler P. Bailey S.R. Matsuda M. DeFronzo R.A. Insulin resistance and coronary artery disease. Diabetologia 1996 39 11 1345 1350 10.1007/s001250050581 8933003
    [Google Scholar]
  16. Després J.P. Lamarche B. Mauriège P. Cantin B. Dagenais G.R. Moorjani S. Lupien P.J. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N. Engl. J. Med. 1996 334 15 952 958 10.1056/NEJM199604113341504 8596596
    [Google Scholar]
  17. Gast K.B. Tjeerdema N. Stijnen T. Smit J.W.A. Dekkers O.M. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis. PLoS One 2012 7 12 e52036 10.1371/journal.pone.0052036 23300589
    [Google Scholar]
  18. Kilpatrick E.S. Rigby A.S. Atkin S.L. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “Double diabetes” in the Diabetes Control and Complications Trial. Diabetes Care 2007 30 3 707 712 10.2337/dc06‑1982 17327345
    [Google Scholar]
  19. Gaggini M. Morelli M. Buzzigoli E. DeFronzo R. Bugianesi E. Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 2013 5 5 1544 1560 10.3390/nu5051544 23666091
    [Google Scholar]
  20. Papaetis G.S. SGLT2 Inhibitors and Diabetic Kidney Disease: Targeting Multiple and Interrelated Signaling Pathways for Renal Protection. Curr. Mol. Pharmacol. 2023 17 e18761429261105 10.2174/0118761429261105231011101200 37904562
    [Google Scholar]
  21. Papaetis G.S. Filippou P.K. Constantinidou K.G. Stylianou C.S. Liraglutide: New Perspectives for the Treatment of Polycystic Ovary Syndrome. Clin. Drug Investig. 2020 40 8 695 713 10.1007/s40261‑020‑00942‑2 32583294
    [Google Scholar]
  22. Li M. Chi X. Wang Y. Setrerrahmane S. Xie W. Xu H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Signal Transduct. Target. Ther. 2022 7 1 216 10.1038/s41392‑022‑01073‑0 35794109
    [Google Scholar]
  23. Papaetis G. GLP-1 receptor agonists, SGLT-2 inhibitors, and obstructive sleep apnoea: Can new allies face an old enemy? Arch. Med. Sci. Atheroscler. Dis. 2023 8 1 19 34 10.5114/amsad/161170 37153372
    [Google Scholar]
  24. Li J.W. He S.Y. Liu P. Luo L. Zhao L. Xiao Y.B. Association of Gestational Diabetes Mellitus (GDM) with subclinical atherosclerosis: A systemic review and meta-analysis. BMC Cardiovasc. Disord. 2014 14 1 132 10.1186/1471‑2261‑14‑132 25266849
    [Google Scholar]
  25. Kim Y. Han E. Lee J.S. Lee H.W. Kim B.K. Kim M.K. Kim H.S. Park J.Y. Kim D.Y. Ahn S.H. Lee B.W. Kang E.S. Cha B.S. Lee Y. Kim S.U. Cardiovascular Risk Is Elevated in Lean Subjects with Nonalcoholic Fatty Liver Disease. Gut Liver 2022 16 2 290 299 10.5009/gnl210084 34238770
    [Google Scholar]
  26. Kasuga M. Karlsson F.A. Kahn C.R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor. Science 1982 215 4529 185 187 10.1126/science.7031900 7031900
    [Google Scholar]
  27. White M.F. Shoelson S.E. Keutmann H. Kahn C.R. A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor. J. Biol. Chem. 1988 263 6 2969 2980 10.1016/S0021‑9258(18)69163‑X 2449432
    [Google Scholar]
  28. Sun X.J. Rothenberg P. Kahn C.R. Backer J.M. Araki E. Wilden P.A. Cahill D.A. Goldstein B.J. White M.F. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991 352 6330 73 77 10.1038/352073a0 1648180
    [Google Scholar]
  29. Skolnik E.Y. Lee C.H. Batzer A. Vicentini L.M. Zhou M. Daly R. Myers M.J. Jr Backer J.M. Ullrich A. White M.F. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: Implications for insulin control of ras signalling. EMBO J. 1993 12 5 1929 1936 10.1002/j.1460‑2075.1993.tb05842.x 8491186
    [Google Scholar]
  30. Paz K. Voliovitch H. Hadari Y.R. Roberts C.T.J. Jr LeRoith D. Zick Y. Interaction between the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis. J. Biol. Chem. 1996 271 12 6998 7003 10.1074/jbc.271.12.6998 8636129
    [Google Scholar]
  31. Kolterman O.G. Insel J. Saekow M. Olefsky J.M. Mechanisms of insulin resistance in human obesity: Evidence for receptor and postreceptor defects. J. Clin. Invest. 1980 65 6 1272 1284 10.1172/JCI109790 6997333
    [Google Scholar]
  32. Bryant N.J. Govers R. James D.E. Regulated transport of the glucose transporter GLUT4. Nat. Rev. Mol. Cell Biol. 2002 3 4 267 277 10.1038/nrm782 11994746
    [Google Scholar]
  33. Saxton R.A. Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017 168 6 960 976 10.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  34. Kamagate A. Qu S. Perdomo G. Su D. Kim D.H. Slusher S. Meseck M. Dong H.H. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice. J. Clin. Invest. 2008 118 6 2347 2364 10.1172/JCI32914 18497885
    [Google Scholar]
  35. Altomonte J. Cong L. Harbaran S. Richter A. Xu J. Meseck M. Dong H.H. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism. J. Clin. Invest. 2004 114 10 1493 1503 10.1172/JCI200419992 15546000
    [Google Scholar]
  36. Sánchez-Margalet V. Stimulation of glycogen synthesis by insulin requires S6 kinase and phosphatidylinositol-3-kinase in HTC-IR cells. J. Cell. Physiol. 2000 182 2 182 188 10.1002/(SICI)1097‑4652(200002)182:2<182::AID‑JCP6>3.0.CO;2‑X 10623881
    [Google Scholar]
  37. Tzivion G. Dobson M. Ramakrishnan G. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim. Biophys. Acta Mol. Cell Res. 2011 1813 11 1938 1945 10.1016/j.bbamcr.2011.06.002 21708191
    [Google Scholar]
  38. Krycer J.R. Sharpe L.J. Luu W. Brown A.J. The Akt–SREBP nexus: Cell signaling meets lipid metabolism. Trends Endocrinol. Metab. 2010 21 5 268 276 10.1016/j.tem.2010.01.001 20117946
    [Google Scholar]
  39. Rebrin K. Steil G.M. Mittelman S.D. Bergman R.N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J. Clin. Invest. 1996 98 3 741 749 10.1172/JCI118846 8698866
    [Google Scholar]
  40. Jaworski K. Sarkadi-Nagy E. Duncan R.E. Ahmadian M. Sul H.S. Regulation of Triglyceride Metabolism.IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physiol. Gastrointest. Liver Physiol. 2007 293 1 G1 G4 10.1152/ajpgi.00554.2006 17218471
    [Google Scholar]
  41. Rieusset J. Andreelli F. Auboeuf D. Roques M. Vallier P. Riou J.P. Auwerx J. Laville M. Vidal H. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes. Diabetes 1999 48 4 699 705 10.2337/diabetes.48.4.699 10102684
    [Google Scholar]
  42. Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: The two sides of a coin. Diabetes 2006 55 8 2392 2397 10.2337/db06‑0391 16873706
    [Google Scholar]
  43. Stentz F.B. Kitabchi A.E. De novo emergence of growth factor receptors in activated human CD4+ and CD8+ T lymphocytes. Metabolism 2004 53 1 117 122 10.1016/j.metabol.2003.07.015 14681852
    [Google Scholar]
  44. Entezari M. Hashemi D. Taheriazam A. Zabolian A. Mohammadi S. Fakhri F. Hashemi M. Hushmandi K. Ashrafizadeh M. Zarrabi A. Ertas Y.N. Mirzaei S. Samarghandian S. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation. Biomed. Pharmacother. 2022 146 112563 10.1016/j.biopha.2021.112563 35062059
    [Google Scholar]
  45. Liang C.P. Han S. Okamoto H. Carnemolla R. Tabas I. Accili D. Tall A.R. Increased CD36 protein as a response to defective insulin signaling in macrophages. J. Clin. Invest. 2004 113 5 764 773 10.1172/JCI19528 14991075
    [Google Scholar]
  46. Iida K.T. Suzuki H. Sone H. Shimano H. Toyoshima H. Yatoh S. Asano T. Okuda Y. Yamada N. Insulin inhibits apoptosis of macrophage cell line, THP-1 cells, via phosphatidylinositol-3-kinase-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 2002 22 3 380 386 10.1161/hq0302.105272 11884278
    [Google Scholar]
  47. Pina A.F. Borges D.O. Meneses M.J. Branco P. Birne R. Vilasi A. Macedo M.P. Insulin: Trigger and Target of Renal Functions. Front. Cell Dev. Biol. 2020 8 519 10.3389/fcell.2020.00519 32850773
    [Google Scholar]
  48. Abel E.D. Insulin signaling in the heart. Am. J. Physiol. Endocrinol. Metab. 2021 321 1 E130 E145 10.1152/ajpendo.00158.2021 34056923
    [Google Scholar]
  49. Blázquez E. Velázquez E. Hurtado-Carneiro V. Ruiz-Albusac J.M. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front. Endocrinol. (Lausanne) 2014 5 161 10.3389/fendo.2014.00161 25346723
    [Google Scholar]
  50. Luo J. Field S.J. Lee J.Y. Engelman J.A. Cantley L.C. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex. J. Cell Biol. 2005 170 3 455 464 10.1083/jcb.200503088 16043515
    [Google Scholar]
  51. Häring H.U. The insulin receptor: Signalling mechanism and contribution to the pathogenesis of insulin resistance. Diabetologia 1991 34 12 848 861 10.1007/BF00400192 1663881
    [Google Scholar]
  52. Aguirre V. Werner E.D. Giraud J. Lee Y.H. Shoelson S.E. White M.F. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J. Biol. Chem. 2002 277 2 1531 1537 10.1074/jbc.M101521200 11606564
    [Google Scholar]
  53. Qiao L. Zhande R. Jetton T.L. Zhou G. Sun X.J. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents. J. Biol. Chem. 2002 277 29 26530 26539 10.1074/jbc.M201494200 12006586
    [Google Scholar]
  54. Gao Z. Zhang X. Zuberi A. Hwang D. Quon M.J. Lefevre M. Ye J. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol. 2004 18 8 2024 2034 10.1210/me.2003‑0383 15143153
    [Google Scholar]
  55. Summers S. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res. 2006 45 1 42 72 10.1016/j.plipres.2005.11.002 16445986
    [Google Scholar]
  56. Petersen K.F. Dufour S. Befroy D. Garcia R. Shulman G.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N. Engl. J. Med. 2004 350 7 664 671 10.1056/NEJMoa031314 14960743
    [Google Scholar]
  57. Schubert K.M. Scheid M.P. Duronio V. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J. Biol. Chem. 2000 275 18 13330 13335 10.1074/jbc.275.18.13330 10788440
    [Google Scholar]
  58. Stratford S. Hoehn K.L. Liu F. Summers S.A. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 2004 279 35 36608 36615 10.1074/jbc.M406499200 15220355
    [Google Scholar]
  59. Özcan U. Yilmaz E. Özcan L. Furuhashi M. Vaillancourt E. Smith R.O. Görgün C.Z. Hotamisligil G.S. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006 313 5790 1137 1140 10.1126/science.1128294 16931765
    [Google Scholar]
  60. Hurrle S. Hsu W.H. The etiology of oxidative stress in insulin resistance. Biomed. J. 2017 40 5 257 262 10.1016/j.bj.2017.06.007 29179880
    [Google Scholar]
  61. Dröge W. Free radicals in the physiological control of cell function. Physiol. Rev. 2002 82 1 47 95 10.1152/physrev.00018.2001 11773609
    [Google Scholar]
  62. Taniyama Y. Hitomi H. Shah A. Alexander R.W. Griendling K.K. Mechanisms of reactive oxygen species-dependent downregulation of insulin receptor substrate-1 by angiotensin II. Arterioscler. Thromb. Vasc. Biol. 2005 25 6 1142 1147 10.1161/01.ATV.0000164313.17167.df 15802620
    [Google Scholar]
  63. Jia G. Lockette W. Sowers J.R. Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: From basic studies to clinical disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021 320 3 R276 R286 10.1152/ajpregu.00280.2020 33438511
    [Google Scholar]
  64. Andreozzi F. Laratta E. Sciacqua A. Perticone F. Sesti G. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ. Res. 2004 94 9 1211 1218 10.1161/01.RES.0000126501.34994.96 15044323
    [Google Scholar]
  65. Reyna S.M. Ghosh S. Tantiwong P. Meka C.S.R. Eagan P. Jenkinson C.P. Cersosimo E. DeFronzo R.A. Coletta D.K. Sriwijitkamol A. Musi N. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. Diabetes 2008 57 10 2595 2602 10.2337/db08‑0038 18633101
    [Google Scholar]
  66. Hill M.A. Yang Y. Zhang L. Sun Z. Jia G. Parrish A.R. Sowers J.R. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021 119 154766 10.1016/j.metabol.2021.154766 33766485
    [Google Scholar]
  67. Zeng G. Quon M.J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J. Clin. Invest. 1996 98 4 894 898 10.1172/JCI118871 8770859
    [Google Scholar]
  68. Gimbrone M.A. Jr García-Cardeña G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016 118 4 620 636 10.1161/CIRCRESAHA.115.306301 26892962
    [Google Scholar]
  69. Montagnani M. Ravichandran L.V. Chen H. Esposito D.L. Quon M.J. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells. Mol. Endocrinol. 2002 16 8 1931 1942 10.1210/me.2002‑0074 12145346
    [Google Scholar]
  70. Förstermann U. Xia N. Li H. Roles of Vascular Oxidative Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis. Circ. Res. 2017 120 4 713 735 10.1161/CIRCRESAHA.116.309326 28209797
    [Google Scholar]
  71. Barrett E.J. Liu Z. The endothelial cell: An “early responder” in the development of insulin resistance. Rev. Endocr. Metab. Disord. 2013 14 1 21 27 10.1007/s11154‑012‑9232‑6 23306779
    [Google Scholar]
  72. Tanigaki K. Chambliss K.L. Yuhanna I.S. Sacharidou A. Ahmed M. Atochin D.N. Huang P.L. Shaul P.W. Mineo C. Endothelial Fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to Cause Insulin Resistance in Mice. Diabetes 2016 65 7 1996 2005 10.2337/db15‑1605 27207525
    [Google Scholar]
  73. Guo Y.J. Pan W.W. Liu S.B. Shen Z.F. Xu Y. Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 32104259
    [Google Scholar]
  74. Carel K. Kummer J.L. Schubert C. Leitner W. Heidenreich K.A. Draznin B. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. J. Biol. Chem. 1996 271 48 30625 30630 10.1074/jbc.271.48.30625 8940037
    [Google Scholar]
  75. Zhang W. Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002 12 1 9 18 10.1038/sj.cr.7290105 11942415
    [Google Scholar]
  76. Cubbon R.M. Rajwani A. Wheatcroft S.B. The impact of insulin resistance on endothelial function, progenitor cells and repair. Diab. Vasc. Dis. Res. 2007 4 2 103 111 10.3132/dvdr.2007.027 17654443
    [Google Scholar]
  77. Metzler B. Hu Y. Dietrich H. Xu Q. Increased expression and activation of stress-activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53. Am. J. Pathol. 2000 156 6 1875 1886 10.1016/S0002‑9440(10)65061‑4 10854211
    [Google Scholar]
  78. Hu Y. Dietrich H. Metzler B. Wick G. Xu Q. Hyperexpression and activation of extracellular signal-regulated kinases (ERK1/2) in atherosclerotic lesions of cholesterol-fed rabbits. Arterioscler. Thromb. Vasc. Biol. 2000 20 1 18 26 10.1161/01.ATV.20.1.18 10634796
    [Google Scholar]
  79. Rahaman S.O. Lennon D.J. Febbraio M. Podrez E.A. Hazen S.L. Silverstein R.L. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 2006 4 3 211 221 10.1016/j.cmet.2006.06.007 16950138
    [Google Scholar]
  80. Muslin A.J. MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets. Clin. Sci. (Lond.) 2008 115 7 203 218 10.1042/CS20070430 18752467
    [Google Scholar]
  81. Abu-Elheiga L. Matzuk M.M. Kordari P. Oh W. Shaikenov T. Gu Z. Wakil S.J. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal. Proc. Natl. Acad. Sci. USA 2005 102 34 12011 12016 10.1073/pnas.0505714102 16103361
    [Google Scholar]
  82. Ferré P. Foufelle F. SREBP-1c transcription factor and lipid homeostasis: Clinical perspective. Horm. Res. 2007 68 2 72 82 17344645
    [Google Scholar]
  83. Stout R.W. Insulin and atheroma. 20-yr perspective. Diabetes Care 1990 13 6 631 654 10.2337/diacare.13.6.631 2192848
    [Google Scholar]
  84. Lechner K. McKenzie A.L. Kränkel N. Von Schacky C. Worm N. Nixdorff U. Lechner B. Scherr J. Weingärtner O. Krauss R.M. High-risk atherosclerosis and metabolic phenotype: The roles of ectopic adiposity, atherogenic dyslipidemia, and inflammation. Metab. Syndr. Relat. Disord. 2020 18 4 176 185 10.1089/met.2019.0115 32119801
    [Google Scholar]
  85. Steinberg H. Baron A. Vascular function, insulin resistance and fatty acids. Diabetologia 2002 45 5 623 634 10.1007/s00125‑002‑0800‑2 12107742
    [Google Scholar]
  86. Andronico G. Ferraro-Mortellaro R. Mangano M. Romé M. Raspanti F. Pinto A. Licata G. Seddio G. Mulé G. Cerasola G. Insulin resistance and glomerular hemodynamics in essential hypertension. Kidney Int. 2002 62 3 1005 1009 10.1046/j.1523‑1755.2002.00529.x 12164884
    [Google Scholar]
  87. DeFronzo R.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009. Diabetologia 2010 53 7 1270 1287 10.1007/s00125‑010‑1684‑1 20361178
    [Google Scholar]
  88. Raz I. Exogenous hyperinsulinemia and atherosclerosis in type 1 diabetic patients. J. Diabetes Complications 2013 27 1 2 3 10.1016/j.jdiacomp.2012.10.003 23151316
    [Google Scholar]
  89. Matteucci E. Giampietro O. Covolan V. Giustarini D. Fanti P. Rossi R. Insulin administration: Present strategies and future directions for a noninvasive (possibly more physiological) delivery. Drug Des. Devel. Ther. 2015 9 3109 3118 10.2147/DDDT.S79322 26124635
    [Google Scholar]
  90. Schwartz S.S. Jellinger P.S. Herman M.E. Obviating much of the need for insulin therapy in type 2 diabetes mellitus: A re-assessment of insulin therapy’s safety profile. Postgrad. Med. 2016 128 6 609 619 10.1080/00325481.2016.1191955 27210018
    [Google Scholar]
  91. Jandeleit-Dahm K.A.M. Gray S.P. Insulin and cardiovascular disease: Biomarker or association? Diabetologia 2012 55 12 3145 3151 10.1007/s00125‑012‑2729‑4 23052054
    [Google Scholar]
  92. Wang M.Y. Yu X. Lee Y. McCorkle S.K. Clark G.O. Strowig S. Unger R.H. Raskin P. Iatrogenic hyperinsulinemia in type 1 diabetes: Its effect on atherogenic risk markers. J. Diabetes Complications 2013 27 1 70 74 10.1016/j.jdiacomp.2012.08.008 23079124
    [Google Scholar]
  93. Draznin B. Mechanism of the mitogenic influence of hyperinsulinemia. Diabetol. Metab. Syndr. 2011 3 1 10 10.1186/1758‑5996‑3‑10 21668983
    [Google Scholar]
  94. Muis M.J. Bots M.L. Grobbee D.E. Stolk R.P. Insulin treatment and cardiovascular disease; friend or foe? A point of view. Diabet. Med. 2005 22 2 118 126 10.1111/j.1464‑5491.2004.01416.x 15660727
    [Google Scholar]
  95. Henry R.R. Gumbiner B. Ditzler T. Wallace P. Lyon R. Glauber H.S. Intensive Conventional Insulin Therapy for Type II Diabetes: Metabolic effects during a 6-mo outpatient trial. Diabetes Care 1993 16 1 21 31 10.2337/diacare.16.1.21 8422777
    [Google Scholar]
  96. Gupta S. Wang H. Skolnik N. Tong L. Liebert R.M. Lee L.K. Stella P. Cali A. Preblick R. Treatment dosing patterns and clinical outcomes for patients with type 2 diabetes starting or switching to treatment with insulin glargine (300 units per milliliter) in a real-world setting: A retrospective observational study. Adv. Ther. 2018 35 1 43 55 10.1007/s12325‑017‑0651‑3 29313285
    [Google Scholar]
  97. Church T.J. Haines S.T. Treatment Approach to Patients With Severe Insulin Resistance. Clin. Diabetes 2016 34 2 97 104 10.2337/diaclin.34.2.97 27092020
    [Google Scholar]
  98. Ovalle F. Clinical approach to the patient with diabetes mellitus and very high insulin requirements. Diabetes Res. Clin. Pract. 2010 90 3 231 242 10.1016/j.diabres.2010.06.025 20724017
    [Google Scholar]
  99. Pontiroli A.E. Miele L. Morabito A. Increase of body weight during the first year of intensive insulin treatment in type 2 diabetes: Systematic review and meta-analysis. Diabetes Obes. Metab. 2011 13 11 1008 1019 10.1111/j.1463‑1326.2011.01433.x 21645195
    [Google Scholar]
  100. McFarlane S.I. Insulin therapy and type 2 diabetes: Management of weight gain. J. Clin. Hypertens. (Greenwich) 2009 11 10 601 607 10.1111/j.1751‑7176.2009.00063.x 19817944
    [Google Scholar]
  101. Brown A. Guess N. Dornhorst A. Taheri S. Frost G. Insulin‐associated weight gain in obese type 2 diabetes mellitus patients: What can be done? Diabetes Obes. Metab. 2017 19 12 1655 1668 10.1111/dom.13009 28509408
    [Google Scholar]
  102. Papaetis G. Kyriacou A. GLP-1 receptor agonists, polycystic ovary syndrome and reproductive dysfunction: Current research and future horizons. Adv. Clin. Exp. Med. 2022 31 11 1265 1274 10.17219/acem/151695 35951627
    [Google Scholar]
  103. Biesenbach G. Raml A. Alsaraji N. Weight gain and insulin requirement in type 2 diabetic patients during the first year after initiating insulin therapy dependent on baseline BMI. Diabetes Obes. Metab. 2006 8 6 669 673 10.1111/j.1463‑1326.2005.00552.x 17026491
    [Google Scholar]
  104. Mendez C.E. Walker R.J. Eiler C.R. Mishriky B.M. Egede L.E. Insulin therapy in patients with type 2 diabetes and high insulin resistance is associated with increased risk of complications and mortality. Postgrad. Med. 2019 131 6 376 382 10.1080/00325481.2019.1643635 31311382
    [Google Scholar]
  105. Gerstein H.C. Bosch J. Dagenais G.R. Díaz R. Jung H. Maggioni A.P. Pogue J. Probstfield J. Ramachandran A. Riddle M.C. Rydén L.E. Yusuf S. Basal insulin and cardiovascular and other outcomes in dysglycemia. N. Engl. J. Med. 2012 367 4 319 328 10.1056/NEJMoa1203858 22686416
    [Google Scholar]
  106. Marso S.P. McGuire D.K. Zinman B. Poulter N.R. Emerson S.S. Pieber T.R. Pratley R.E. Haahr P.M. Lange M. Brown-Frandsen K. Moses A. Skibsted S. Kvist K. Buse J.B. Efficacy and safety of degludec versus glargine in type 2 diabetes. N. Engl. J. Med. 2017 377 8 723 732 10.1056/NEJMoa1615692 28605603
    [Google Scholar]
  107. UK Prospective Diabetes Study (UKPDS) Group Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998 352 9131 837 853 10.1016/S0140‑6736(98)07019‑6 9742976
    [Google Scholar]
  108. Nathan D.M. Cleary P.A. Backlund J.Y. Genuth S.M. Lachin J.M. Orchard T.J. Raskin P. Zinman B. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N. Engl. J. Med. 2005 353 25 2643 2653 10.1056/NEJMoa052187 16371630
    [Google Scholar]
  109. Purnell J.Q. Braffett B.H. Zinman B. Gubitosi-Klug R.A. Sivitz W. Bantle J.P. Ziegler G. Cleary P.A. Brunzell J.D. Nathan D.M. Zinman B. Crofford O. Genuth S. Brown-Friday J. Crandall J. Engel H. Engel S. Martinez H. Phillips M. Reid M. Shamoon H. Sheindlin J. Gubitosi-Klug R. Mayer L. Pendegast S. Zegarra H. Miller D. Singerman L. Smith-Brewer S. Novak M. Quin J. Genuth S. Palmert M. Brown E. McConnell J. Pugsley P. Crawford P. Dahms W. Gregory N.S. Lackaye M.E. Kiss S. Chan R. Orlin A. Rubin M. Brillon D. Reppucci V. Lee T. Heinemann M. Chang S. Levy B. Jovanovic L. Richardson M. Bosco B. Dwoskin A. Hanna R. Barron S. Campbell R. Bhan A. Kruger D. Jones J.K. Edwards P.A. Bhan A. Carey J.D. Angus E. Thomas A. Galprin A. McLellan M. Whitehouse F. Bergenstal R. Johnson M. Gunyou K. Thomas L. Laechelt J. Hollander P. Spencer M. Kendall D. Cuddihy R. Callahan P. List S. Gott J. Rude N. Olson B. Franz M. Castle G. Birk R. Nelson J. Freking D. Gill L. Mestrezat W. Etzwiler D. Morgan K. Aiello L.P. Golden E. Arrigg P. Asuquo V. Beaser R. Bestourous L. Cavallerano J. Cavicchi R. Ganda O. Hamdy O. Kirby R. Murtha T. Schlossman D. Shah S. Sharuk G. Silva P. Silver P. Stockman M. Sun J. Weimann E. Wolpert H. Aiello L.M. Jacobson A. Rand L. Rosenzwieg J. Nathan D.M. Larkin M.E. Christofi M. Folino K. Godine J. Lou P. Stevens C. Anderson E. Bode H. Brink S. Cornish C. Cros D. Delahanty L. deManbey A. Haggan C. Lynch J. McKitrick C. Norman D. Moore D. Ong M. Taylor C. Zimbler D. Crowell S. Fritz S. Hansen K. Gauthier-Kelly C. Service F.J. Ziegler G. Barkmeier A. Schmidt L. French B. Woodwick R. Rizza R. Schwenk W.F. Haymond M. Pach J. Mortenson J. Zimmerman B. Lucas A. Colligan R. Luttrell L. Lopes-Virella M. Caulder S. Pittman C. Patel N. Lee K. Nutaitis M. Fernandes J. Hermayer K. Kwon S. Blevins A. Parker J. Colwell J. Lee D. Soule J. Lindsey P. Bracey M. Farr A. Elsing S. Thompson T. Selby J. Lyons T. Yacoub-Wasef S. Szpiech M. Wood D. Mayfield R. Molitch M. Adelman D. Colson S. Jampol L. Lyon A. Gill M. Strugula Z. Kaminski L. Mirza R. Simjanoski E. Ryan D. Johnson C. Wallia A. Ajroud-Driss S. Astelford P. Leloudes N. Degillio A. Schaefer B. Mudaliar S. Lorenzi G. Goldbaum M. Jones K. Prince M. Swenson M. Grant I. Reed R. Lyon R. Kolterman O. Giotta M. Clark T. Friedenberg G. Sivitz W.I. Vittetoe B. Kramer J. Bayless M. Zeitler R. Schrott H. Olson N. Snetselaar L. Hoffman R. MacIndoe J. Weingeist T. Fountain C. Miller R. Johnsonbaugh S. Patronas M. Carney M. Mendley S. Salemi P. Liss R. Hebdon M. Counts D. Donner T. Gordon J. Hemady R. Kowarski A. Ostrowski D. Steidl S. Jones B. Herman W.H. Martin C.L. Pop-Busui R. Greene D.A. Stevens M.J. Burkhart N. Sandford T. Floyd J. Bantle J. Flaherty N. Terry J. Koozekanani D. Montezuma S. Wimmergren N. Rogness B. Mech M. Strand T. Olson J. McKenzie L. Kwong C. Goetz F. Warhol R. Hainsworth D. Goldstein D. Hitt S. Giangiacomo J. Schade D.S. Canady J.L. Burge M.R. Das A. Avery R.B. Ketai L.H. Chapin J.E. Schluter M.L. Rich J. Johannes C. Hornbeck D. Schutta M. Bourne P.A. Brucker A. Braunstein S. Schwartz S. Maschak-Carey B.J. Baker L. Orchard T. Cimino L. Songer T. Doft B. Olson S. Becker D. Rubinstein D. Bergren R.L. Fruit J. Hyre R. Palmer C. Silvers N. Lobes L. Rath P.P. Conrad P.W. Yalamanchi S. Wesche J. Bratkowksi M. Arslanian S. Rinkoff J. Warnicki J. Curtin D. Steinberg D. Vagstad G. Harris R. Steranchak L. Arch J. Kelly K. Ostrosaka P. Guiliani M. Good M. Williams T. Olsen K. Campbell A. Shipe C. Conwit R. Finegold D. Zaucha M. Drash A. Morrison A. Malone J.I. Bernal M.L. Pavan P.R. Grove N. Tanaka E.A. McMillan D. Vaccaro-Kish J. Babbione L. Solc H. DeClue T.J. Dagogo-Jack S. Wigley C. Ricks H. Kitabchi A. Chaum E. Murphy M.B. Moser S. Meyer D. Iannacone A. Yoser S. Bryer-Ash M. Schussler S. Lambeth H. Raskin P. Strowig S. Basco M. Cercone S. Zinman B. Barnie A. Devenyi R. Mandelcorn M. Brent M. Rogers S. Gordon A. Bakshi N. Perkins B. Tuason L. Perdikaris F. Ehrlich R. Daneman D. Perlman K. Ferguson S. Palmer J. Fahlstrom R. Boer I.H. Kinyoun J. Van Ottingham L. Catton S. Ginsberg J. McDonald C. Harth J. Driscoll M. Sheidow T. Mahon J. Canny C. Nicolle D. Colby P. Dupre J. Hramiak I. Rodger N.W. Jenner M. Smith T. Brown W. May M. Hagan J.L. Agarwal A. Adkins T. Lorenz R. Feman S. Survant L. White N.H. Levandoski L. Grand G. Thomas M. Joseph D. Blinder K. Shah G. Burgess D. Boniuk I. Santiago J. Tamborlane W. Gatcomb P. Stoessel K. Ramos P. Fong K. Ossorio P. Ahern J. Gubitosi-Klug R. Meadema-Mayer L. Beck C. Farrell K. Genuth S. Quin J. Gaston P. Palmert M. Trail R. Dahms W. Lachin J. Backlund J. Bebu I. Braffett B. Diminick L. Gao X. Hsu W. Klumpp K. Pan H. Trapani V. Cleary P. McGee P. Sun W. Villavicencio S. Anderson K. Dews L. Younes N. Rutledge B. Chan K. Rosenberg D. Petty B. Determan A. Kenny D. Williams C. Cowie C. Siebert C. Steffes M. Arends V. Bucksa J. Nowicki M. Chavers B. O’Leary D. Polak J. Harrington A. Funk L. Crow R. Gloeb B. Thomas S. O’Donnell C. Soliman E.Z. Zhang Z.M. Li Y. Campbell C. Keasler L. Hensley S. Hu J. Barr M. Taylor T. Prineas R. Feldman E.L. Albers J.W. Low P. Sommer C. Nickander K. Speigelberg T. Pfiefer M. Schumer M. Moran M. Farquhar J. Ryan C. Sandstrom D. Williams T. Geckle M. Cupelli E. Thoma F. Burzuk B. Woodfill T. Danis R. Blodi B. Lawrence D. Wabers H. Gangaputra S. Neill S. Burger M. Dingledine J. Gama V. Sussman R. Davis M. Hubbard L. Budoff M. Darabian S. Rezaeian P. Wong N. Fox M. Oudiz R. Kim L. Detrano R. Cruickshanks K. Dalton D. Bainbridg K. Lima J. Bluemke D. Turkbey E. van der Geest R.J. Liu C. Malayeri A. Jain A. Miao C. Chahal H. Jarboe R. Nathan D.M. Monnier V. Sell D. Strauch C. Hazen S. Pratt A. Tang W. Brunzell J. Purnell J. Natarajan R. Miao F. Zhang L. Chen Z. Paterson A. Boright A. Bull S. Sun L. Scherer S. Lopes-Virella M. Lyons T.J. Jenkins A. Klein R. Virella G. Jaffa A. Carter R. Stoner J. Garvey W.T. Lackland D. Brabham M. McGee D. Zheng D. Mayfield R.K. Maynard J. Wessells H. Sarma A. Jacobson A. Dunn R. Holt S. Hotaling J. Kim C. Clemens Q. Brown J. McVary K. Impact of excessive weight gain on cardiovascular outcomes in type 1 diabetes: Results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes Care 2017 40 12 1756 1762 10.2337/dc16‑2523 29138273
    [Google Scholar]
  110. Masrouri S. Shapiro M.D. Khalili D. Hadaegh F. Impact of coronary artery calcium on mortality and cardiovascular events in metabolic syndrome and diabetes among younger adults. Eur. J. Prev. Cardiol. 2024 31 6 744 753 10.1093/eurjpc/zwae039 38323650
    [Google Scholar]
  111. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up. Diabetes Care 2016 39 5 686 693 10.2337/dc15‑1990 26861924
    [Google Scholar]
  112. Reaven G.M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988 37 12 1595 1607 10.2337/diab.37.12.1595 3056758
    [Google Scholar]
  113. Norton L. Shannon C. Gastaldelli A. DeFronzo R.A. Insulin: The master regulator of glucose metabolism. Metabolism 2022 129 155142 10.1016/j.metabol.2022.155142 35066003
    [Google Scholar]
  114. Reaven G.M. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. Panminerva Med. 2005 47 4 201 210 16489319
    [Google Scholar]
  115. Reaven G.M. Insulin resistance, cardiovascular disease, and the metabolic syndrome: How well do the emperor’s clothes fit? Diabetes Care 2004 27 4 1011 1012 10.2337/diacare.27.4.1011 15047666
    [Google Scholar]
  116. Castro J.P. El-Atat F.A. McFarlane S.I. Aneja A. Sowers J.R. Cardiometabolic syndrome: Pathophysiology and treatment. Curr. Hypertens. Rep. 2003 5 5 393 401 10.1007/s11906‑003‑0085‑y 12948432
    [Google Scholar]
  117. Lastra G. Manrique C. McFarlane S.I. Sowers J.R. Cardiometabolic syndrome and chronic kidney disease. Curr. Diab. Rep. 2006 6 3 207 212 10.1007/s11892‑006‑0036‑5 16898573
    [Google Scholar]
  118. Gill H. Mugo M. Whaley-Connell A. Stump C. Sowers J.R. The key role of insulin resistance in the cardiometabolic syndrome. Am. J. Med. Sci. 2005 330 6 290 294 10.1097/00000441‑200512000‑00006 16355013
    [Google Scholar]
  119. Whaley-Connell A. Sowers J.R. Basic science. J. Am. Soc. Hypertens. 2014 8 8 604 606 10.1016/j.jash.2014.07.003 25151323
    [Google Scholar]
  120. Hu G. Qiao Q. Tuomilehto J. Balkau B. Borch-Johnsen K. Pyorala K. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women. Arch. Intern. Med. 2004 164 10 1066 1076 10.1001/archinte.164.10.1066 15159263
    [Google Scholar]
  121. Santomauro A.T. Boden G. Silva M.E. Rocha D.M. Santos R.F. Ursich M.J. Strassmann P.G. Wajchenberg B.L. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes 1999 48 9 1836 1841 10.2337/diabetes.48.9.1836 10480616
    [Google Scholar]
  122. Iqbal J. Al Qarni A. Hawwari A. Alghanem A.F. Ahmed G. Metabolic Syndrome, Dyslipidemia and Regulation of Lipoprotein Metabolism. Curr. Diabetes Rev. 2018 14 5 427 433 10.2174/1573399813666170705161039 28677496
    [Google Scholar]
  123. Bjornstad P. Eckel R.H. Pathogenesis of Lipid Disorders in Insulin Resistance: A Brief Review. Curr. Diab. Rep. 2018 18 12 127 10.1007/s11892‑018‑1101‑6 30328521
    [Google Scholar]
  124. Krauss R.M. Lipids and lipoproteins in patients with type 2 diabetes. Diabetes Care 2004 27 6 1496 1504 10.2337/diacare.27.6.1496 15161808
    [Google Scholar]
  125. Mineo C. Deguchi H. Griffin J.H. Shaul P.W. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006 98 11 1352 1364 10.1161/01.RES.0000225982.01988.93 16763172
    [Google Scholar]
  126. Tall AR An overview of reverse cholesterol transport. Eur Heart J. 1998 19 Suppl A A31 5
    [Google Scholar]
  127. Qu L. Fang S. Lan Z. Xu S. Jiang J. Pan Y. Xu Y. Zhu X. Jin J. Association between atherogenic index of plasma and new-onset stroke in individuals with different glucose metabolism status: Insights from CHARLS. Cardiovasc. Diabetol. 2024 23 1 215 10.1186/s12933‑024‑02314‑y 38907337
    [Google Scholar]
  128. Rokicka D. Hudzik B. Wróbel M. Stołtny T. Stołtny D. Nowowiejska-Wiewióra A. Rokicka S. Gąsior M. Strojek K. The prognostic impact of insulin resistance surrogates in patients with acute myocardial infarction with and without type 2 diabetes. Cardiovasc. Diabetol. 2024 23 1 147 10.1186/s12933‑024‑02240‑z 38685054
    [Google Scholar]
  129. Dong W. Gong Y. Zhao J. Wang Y. Li B. Yang Y. A combined analysis of TyG index, SII index, and SIRI index: Positive association with CHD risk and coronary atherosclerosis severity in patients with NAFLD. Front. Endocrinol. (Lausanne) 2024 14 1281839 10.3389/fendo.2023.1281839 38260163
    [Google Scholar]
  130. Lembo G. Napoli R. Capaldo B. Rendina V. Iaccarino G. Volpe M. Trimarco B. Saccà L. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension. J. Clin. Invest. 1992 90 1 24 29 10.1172/JCI115842 1634611
    [Google Scholar]
  131. Sowers J.R. Hypertension, angiotensin II, and oxidative stress. N. Engl. J. Med. 2002 346 25 1999 2001 10.1056/NEJMe020054 12075063
    [Google Scholar]
  132. Lamounier-Zepter V. Ehrhart-Bornstein M. Bornstein S.R. Insulin resistance in hypertension and cardiovascular disease. Best Pract. Res. Clin. Endocrinol. Metab. 2006 20 3 355 367 10.1016/j.beem.2006.07.002 16980199
    [Google Scholar]
  133. Hall J. Brands M.W. Henegar J.R. Mechanisms of hypertension and kidney disease in obesity. Ann. N. Y. Acad. Sci. 1999 892 1 91 107 10.1111/j.1749‑6632.1999.tb07788.x 10842655
    [Google Scholar]
  134. Wang F. Han L. Hu D. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis. Clin. Chim. Acta 2017 464 57 63 10.1016/j.cca.2016.11.009 27836689
    [Google Scholar]
  135. Calhoun D.A. Use of aldosterone antagonists in resistant hypertension. Prog. Cardiovasc. Dis. 2006 48 6 387 396 10.1016/j.pcad.2006.02.002 16714158
    [Google Scholar]
  136. Groenland E.H. Bots M.L. Asselbergs F.W. de Borst G.J. Kappelle L.J. Visseren F.L.J. Spiering W. Apparent treatment resistant hypertension and the risk of recurrent cardiovascular events and mortality in patients with established vascular disease. Int. J. Cardiol. 2021 334 135 141 10.1016/j.ijcard.2021.04.047 33932429
    [Google Scholar]
  137. Briones A.M. Nguyen Dinh Cat A. Callera G.E. Yogi A. Burger D. He Y. Corrêa J.W. Gagnon A.M. Gomez-Sanchez C.E. Gomez-Sanchez E.P. Sorisky A. Ooi T.C. Ruzicka M. Burns K.D. Touyz R.M. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: Implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension 2012 59 5 1069 1078 10.1161/HYPERTENSIONAHA.111.190223 22493070
    [Google Scholar]
  138. Rao A. Pandya V. Whaley-Connell A. Obesity and insulin resistance in resistant hypertension: Implications for the kidney. Adv. Chronic Kidney Dis. 2015 22 3 211 217 10.1053/j.ackd.2014.12.004 25908470
    [Google Scholar]
  139. Wada T. Ohshima S. Fujisawa E. Koya D. Tsuneki H. Sasaoka T. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes. Endocrinology 2009 150 4 1662 1669 10.1210/en.2008‑1018 19095745
    [Google Scholar]
  140. Li P. Zhang X.N. Pan C.M. Sun F. Zhu D.L. Song H.D. Chen M.D. Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes. Horm. Metab. Res. 2011 43 7 464 469 10.1055/s‑0031‑1277226 21667402
    [Google Scholar]
  141. Gilbert K.C. Brown N.J. Aldosterone and inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 2010 17 3 199 204 10.1097/MED.0b013e3283391989 20422780
    [Google Scholar]
  142. Papaetis G.S. Incretin-based therapies in prediabetes: Current evidence and future perspectives. World J. Diabetes 2014 5 6 817 834 10.4239/wjd.v5.i6.817 25512784
    [Google Scholar]
  143. Kanat M. Winnier D. Norton L. Arar N. Jenkinson C. DeFronzo R.A. Abdul-Ghani M.A. The relationship between beta-cell function and glycated hemoglobin: Results from the veterans administration genetic epidemiology study. Diabetes Care 2011 34 4 1006 1010 10.2337/dc10‑1352 21346184
    [Google Scholar]
  144. Papaetis G.S. Empagliflozin therapy and insulin resistance-associated disorders: Effects and promises beyond a diabetic state. Arch. Med. Sci. Atheroscler. Dis. 2021 6 e57 e78 10.5114/amsad.2021.105314 34027215
    [Google Scholar]
  145. Pendergrass M. Bertoldo A. Bonadonna R. Nucci G. Mandarino L. Cobelli C. DeFronzo R.A. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals. Am. J. Physiol. Endocrinol. Metab. 2007 292 1 E92 E100 10.1152/ajpendo.00617.2005 16896161
    [Google Scholar]
  146. Abdul-Ghani M.A. Tripathy D. DeFronzo R.A. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006 29 5 1130 1139 10.2337/dc05‑2179 16644654
    [Google Scholar]
  147. Coutinho M. Gerstein H.C. Wang Y. Yusuf S. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years. Diabetes Care 1999 22 2 233 240 10.2337/diacare.22.2.233 10333939
    [Google Scholar]
  148. DECODE Study Group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: Comparison of fasting and 2-hour diagnostic criteria. Arch. Intern. Med. 2001 161 3 397 405 10.1001/archinte.161.3.397 11176766
    [Google Scholar]
  149. Qiao Q. Pyörälä K. Pyörälä M. Nissinen A. Lindström J. Tilvis R. Tuomilehto J. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose. Eur. Heart J. 2002 23 16 1267 1275 10.1053/euhj.2001.3113 12175663
    [Google Scholar]
  150. Rijkelijkhuizen J.M. Nijpels G. Heine R.J. Bouter L.M. Stehouwer C.D.A. Dekker J.M. High risk of cardiovascular mortality in individuals with impaired fasting glucose is explained by conversion to diabetes: The Hoorn study. Diabetes Care 2007 30 2 332 336 10.2337/dc06‑1238 17259503
    [Google Scholar]
  151. DeFronzo R.A. Abdul-Ghani M. Assessment and treatment of cardiovascular risk in prediabetes: Impaired glucose tolerance and impaired fasting glucose. Am. J. Cardiol. 2011 108 3 3B 24B 10.1016/j.amjcard.2011.03.013 21802577
    [Google Scholar]
  152. Monnier L. Lapinski H. Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetes patients. Diabetes Care 2003 26 3 881 885 10.2337/diacare.26.3.881 12610053
    [Google Scholar]
  153. Saely C.H. Drexel H. Sourij H. Aczel S. Jahnel H. Zweiker R. Langer P. Marte T. Hoefle G. Benzer W. Wascher T.C. Key role of postchallenge hyperglycemia for the presence and extent of coronary atherosclerosis: An angiographic study. Atherosclerosis 2008 199 2 317 322 10.1016/j.atherosclerosis.2007.11.020 18187138
    [Google Scholar]
  154. Ceriello A. Impaired glucose tolerance and cardiovascular disease: The possible role of post-prandial hyperglycemia. Am. Heart J. 2004 147 5 803 807 10.1016/j.ahj.2003.11.020 15131534
    [Google Scholar]
  155. Liang Y. Wang M. Wang C. Liu Y. Naruse K. Takahashi K. The mechanisms of the development of atherosclerosis in prediabetes. Int. J. Mol. Sci. 2021 22 8 4108 10.3390/ijms22084108 33921168
    [Google Scholar]
  156. Kawai T. Autieri M.V. Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021 320 3 C375 C391 10.1152/ajpcell.00379.2020 33356944
    [Google Scholar]
  157. Catalano K.J. Stefanovski D. Bergman R.N. Critical role of the mesenteric depot versus other intra-abdominal adipose depots in the development of insulin resistance in young rats. Diabetes 2010 59 6 1416 1423 10.2337/db08‑0675 20299478
    [Google Scholar]
  158. Papaetis G.S. Orphanidou D. Panagiotou T.N. Thiazolidinediones and type 2 diabetes: From cellular targets to cardiovascular benefit. Curr. Drug Targets 2011 12 10 1498 1512 10.2174/138945011796818243 21675944
    [Google Scholar]
  159. Lumeng C.N. Bodzin J.L. Saltiel A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 2007 117 1 175 184 10.1172/JCI29881 17200717
    [Google Scholar]
  160. Lee Y. Wang M.Y. Kakuma T. Wang Z.W. Babcock E. McCorkle K. Higa M. Zhou Y.T. Unger R.H. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia. J. Biol. Chem. 2001 276 8 5629 5635 10.1074/jbc.M008553200 11096093
    [Google Scholar]
  161. Faber D.R. De Groot P.G. Visseren F.L.J. Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obes. Rev. 2009 10 5 554 563 10.1111/j.1467‑789X.2009.00593.x 19460118
    [Google Scholar]
  162. Yamamoto K. Takeshita K. Kojima T. Takamatsu J. Saito H. Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: Implication in the pathogenesis of thrombotic disorders in the elderly. Cardiovasc. Res. 2005 66 2 276 285 10.1016/j.cardiores.2004.11.013 15820196
    [Google Scholar]
  163. Samad F. Ruf W. Inflammation, obesity, and thrombosis. Blood 2013 122 20 3415 3422 10.1182/blood‑2013‑05‑427708 24092932
    [Google Scholar]
  164. Santilli F. Vazzana N. Liani R. Guagnano M.T. Davì G. Platelet activation in obesity and metabolic syndrome. Obes. Rev. 2012 13 1 27 42 10.1111/j.1467‑789X.2011.00930.x 21917110
    [Google Scholar]
  165. Tsai A.G. Bessesen D.H. Obesity. Ann. Intern. Med. 2019 170 5 ITC33 ITC48 10.7326/AITC201903050 30831593
    [Google Scholar]
  166. Kitabchi A.E. Temprosa M. Knowler W.C. Kahn S.E. Fowler S.E. Haffner S.M. Andres R. Saudek C. Edelstein S.L. Arakaki R. Murphy M.B. Shamoon H. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: Effects of lifestyle intervention and metformin. Diabetes 2005 54 8 2404 2414 10.2337/diabetes.54.8.2404 16046308
    [Google Scholar]
  167. Knowler W.C. Barrett-Connor E. Fowler S.E. Hamman R.F. Lachin J.M. Walker E.A. Nathan D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002 346 6 393 403 10.1056/NEJMoa012512 11832527
    [Google Scholar]
  168. Delahanty L.M. Trief P.M. Cibula D.A. Weinstock R.S. Barriers to weight loss and physical activity, and coach approaches to addressing barriers, in a real-world adaptation of the DPP lifestyle intervention: A process analysis. Diabetes Educ. 2019 45 6 596 606 10.1177/0145721719883615 31682536
    [Google Scholar]
  169. Arterburn D.E. Telem D.A. Kushner R.F. Courcoulas A.P. Benefits and risks of bariatric surgery in adults: A review. JAMA 2020 324 9 879 887 10.1001/jama.2020.12567 32870301
    [Google Scholar]
  170. Sarkhosh K. Switzer N.J. El-Hadi M. Birch D.W. Shi X. Karmali S. The impact of bariatric surgery on obstructive sleep apnea: A systematic review. Obes. Surg. 2013 23 3 414 423 10.1007/s11695‑012‑0862‑2 23299507
    [Google Scholar]
  171. Escobar-Morreale H.F. Botella-Carretero J.I. Álvarez-Blasco F. Sancho J. San Millán J.L. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J. Clin. Endocrinol. Metab. 2005 90 12 6364 6369 10.1210/jc.2005‑1490 16189250
    [Google Scholar]
  172. Athanasiadis D.I. Martin A. Kapsampelis P. Monfared S. Stefanidis D. Factors associated with weight regain post-bariatric surgery: A systematic review. Surg. Endosc. 2021 35 8 4069 4084 10.1007/s00464‑021‑08329‑w 33650001
    [Google Scholar]
  173. Liu F. Wang Y. Yu J. Role of inflammation and immune response in atherosclerosis: Mechanisms, modulations, and therapeutic targets. Hum. Immunol. 2023 84 9 439 449 10.1016/j.humimm.2023.06.002 37353446
    [Google Scholar]
  174. Larsson J. Auscher S. Shamoun A. Pararajasingam G. Heinsen L.J. Andersen T.R. Lindholt J.S. Diederichsen A.C.P. Lambrechtsen J. Egstrup K. Insulin resistance is associated with high-risk coronary artery plaque composition in asymptomatic men between 65 and 75 years and no diabetes: A DANCAVAS cross-sectional sub-study. Atherosclerosis 2023 385 117328 10.1016/j.atherosclerosis.2023.117328 38390826
    [Google Scholar]
  175. Berisha-Muharremi V. Majnaric-Trtica L. Mujaj B. Insulin resistance is an important index to assess glucose and insulin metabolism, but not a biological risk factor for high-risk coronary artery plaque composition. Atherosclerosis 2024 392 117484 10.1016/j.atherosclerosis.2024.117484 38433071
    [Google Scholar]
  176. Larsson J. Auscher S. Pararajasingam G. Heinsen L.J. Andersen T.R. Lambrechtsen J. Egstrup K. Reply to: “Insulin resistance is an important index to assess glucose and insulin metabolism, but not a biological risk factor for high-risk coronary artery plaque composition”. Atherosclerosis 2024 392 117524 10.1016/j.atherosclerosis.2024.117524 38523001
    [Google Scholar]
  177. Julla J.B. Girard D. Diedisheim M. Saulnier P.J. Tran Vuong B. Blériot C. Carcarino E. De Keizer J. Orliaguet L. Nemazanyy I. Potier C. Khider K. Tonui D.C. Ejlalmanesh T. Ballaire R. Mambu Mambueni H. Germain S. Gaborit B. Vidal-Trécan T. Riveline J.P. Garchon H.J. Fenaille F. Lemoine S. Carlier A. Castelli F. Potier L. Masson D. Roussel R. Vandiedonck C. Hadjadj S. Alzaid F. Gautier J.F. Venteclef N. Blood Monocyte Phenotype Is A Marker of Cardiovascular Risk in Type 2 Diabetes. Circ. Res. 2024 134 2 189 202 10.1161/CIRCRESAHA.123.322757 38152893
    [Google Scholar]
  178. Ridker P.M. Bhatt D.L. Pradhan A.D. Glynn R.J. MacFadyen J.G. Nissen S.E. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials. Lancet 2023 401 10384 1293 1301 10.1016/S0140‑6736(23)00215‑5 36893777
    [Google Scholar]
  179. Evans J.L. Youngren J.F. Goldfine I.D. Effective treatments for insulin resistance: Trim the fat and douse the fire. Trends Endocrinol. Metab. 2004 15 9 425 431 10.1016/j.tem.2004.09.005 15519889
    [Google Scholar]
  180. Stagakis I. Bertsias G. Karvounaris S. Kavousanaki M. Virla D. Raptopoulou A. Kardassis D. Boumpas D.T. Sidiropoulos P.I. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance. Arthritis Res. Ther. 2012 14 3 R141 10.1186/ar3874 22691241
    [Google Scholar]
  181. van den Oever I.A.M. Baniaamam M. Simsek S. Raterman H.G. van Denderen J.C. van Eijk I.C. Peters M.J.L. van der Horst-Bruinsma I.E. Smulders Y.M. Nurmohamed M.T. The effect of anti-TNF treatment on body composition and insulin resistance in patients with rheumatoid arthritis. Rheumatol. Int. 2021 41 2 319 328 10.1007/s00296‑020‑04666‑6 32776224
    [Google Scholar]
  182. Hassan N.F. Hassan A.H. El-Ansary M.R. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet. Sci. Rep. 2022 12 1 20227 10.1038/s41598‑022‑24593‑9 36418417
    [Google Scholar]
  183. Bernstein L.E. Berry J. Kim S. Canavan B. Grinspoon S.K. Effects of etanercept in patients with the metabolic syndrome. Arch. Intern. Med. 2006 166 8 902 908 10.1001/archinte.166.8.902 16636217
    [Google Scholar]
  184. Li Z. Lin C. Cai X. Hu S. Lv F. Yang W. Zhu X. Ji L. Anti-inflammatory therapies were associated with reduced risk of myocardial infarction in patients with established cardiovascular disease or high cardiovascular risks: A systematic review and meta-analysis of randomized controlled trials. Atherosclerosis 2023 379 117181 10.1016/j.atherosclerosis.2023.06.972 37527612
    [Google Scholar]
  185. Tardif J.C. Kouz S. Waters D.D. Bertrand O.F. Diaz R. Maggioni A.P. Pinto F.J. Ibrahim R. Gamra H. Kiwan G.S. Berry C. López-Sendón J. Ostadal P. Koenig W. Angoulvant D. Grégoire J.C. Lavoie M.A. Dubé M.P. Rhainds D. Provencher M. Blondeau L. Orfanos A. L’Allier P.L. Guertin M.C. Roubille F. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 2019 381 26 2497 2505 10.1056/NEJMoa1912388 31733140
    [Google Scholar]
  186. Schwarz N. Fernando S. Chen Y.C. Salagaras T. Rao S.R. Liyanage S. Williamson A.E. Toledo-Flores D. Dimasi C. Sargeant T.J. Manavis J. Eddy E. Kanellakis P. Thompson P.L. Tan J.T.M. Snel M.F. Bursill C.A. Nicholls S.J. Peter K. Psaltis P.J. Colchicine exerts anti‐atherosclerotic and ‑plaque‐stabilizing effects targeting foam cell formation. FASEB J. 2023 37 4 e22846 10.1096/fj.202201469R 36856983
    [Google Scholar]
  187. Demidowich A.P. Levine J.A. Onyekaba G.I. Khan S.M. Chen K.Y. Brady S.M. Broadney M.M. Yanovski J.A. Effects of colchicine in adults with metabolic syndrome: A pilot randomized controlled trial. Diabetes Obes. Metab. 2019 21 7 1642 1651 10.1111/dom.13702 30869182
    [Google Scholar]
  188. Spence J.D. Viscoli C. Kernan W.N. Young L.H. Furie K. DeFronzo R. Abdul-Ghani M. Dandona P. Inzucchi S.E. Efficacy of lower doses of pioglitazone after stroke or transient ischaemic attack in patients with insulin resistance. Diabetes Obes. Metab. 2022 24 6 1150 1158 10.1111/dom.14687 35253334
    [Google Scholar]
  189. Papaetis G.S. Pioglitazone, bladder cancer, and the presumption of innocence. Curr. Drug Saf. 2022 17 4 294 318 10.2174/1574886317666220304124756 35249505
    [Google Scholar]
  190. Papaetis G. Pioglitazone in diabetic kidney disease: Forgotten but not gone. Arch. Med. Sci. Atheroscler. Dis. 2022 7 1 78 93 10.5114/amsad/151046 36158067
    [Google Scholar]
  191. Meiring S. Busch C.B.E. van Baar A.C.G. Hemke R. Holleman F. Nieuwdorp M. Bergman J.J.G.H.M. Eliminating exogenous insulin therapy in patients with type 2 diabetes by duodenal ablation and GLP-1RA decreases risk scores for cardiovascular events. Cardiovasc. Diabetol. 2022 21 1 191 10.1186/s12933‑022‑01628‑z 36138441
    [Google Scholar]
  192. Meiring S. Meessen E.C.E. van Baar A.C.G. Holleman F. Nieuwdorp M. Olde Damink S.W. Schaap F.G. Vaz F.M. Groen A.K. Soeters M.R. Bergman J.J.G.H.M. Duodenal mucosal resurfacing with a GLP-1 receptor agonist increases postprandial unconjugated bile acids in patients with insulin-dependent type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2022 322 2 E132 E140 10.1152/ajpendo.00337.2021 34957857
    [Google Scholar]
  193. Wolosowicz M. Prokopiuk S. Kaminski T.W. Recent advances in the treatment of insulin resistance targeting molecular and metabolic pathways: Fighting a losing battle? Medicina (Kaunas) 2022 58 4 472 10.3390/medicina58040472 35454311
    [Google Scholar]
  194. Lee C.J. Sears C.L. Maruthur N. Gut microbiome and its role in obesity and insulin resistance. Ann. N. Y. Acad. Sci. 2020 1461 1 37 52 10.1111/nyas.14107 31087391
    [Google Scholar]
  195. Ballanti M. Antonetti L. Mavilio M. Casagrande V. Moscatelli A. Pietrucci D. Teofani A. Internò C. Cardellini M. Paoluzi O. Monteleone G. Lefebvre P. Staels B. Mingrone G. Menghini R. Federici M. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study. Pharmacol. Res. 2024 204 107207 10.1016/j.phrs.2024.107207 38734193
    [Google Scholar]
  196. Lee S.H. Park S.Y. Choi C.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab. J. 2022 46 1 15 37 10.4093/dmj.2021.0280 34965646
    [Google Scholar]
  197. Mastrototaro L. Roden M. Insulin resistance and insulin sensitizing agents. Metabolism 2021 125 154892 10.1016/j.metabol.2021.154892 34563556
    [Google Scholar]
  198. Schreyer E. Obringer C. Messaddeq N. Kieffer B. Zimmet P. Fleming A. Geberhiwot T. Marion V. PATAS, a first-in-class therapeutic peptide biologic, improves whole-body insulin resistance and associated comorbidities in vivo. Diabetes 2022 71 9 2034 2047 10.2337/db22‑0058 35822820
    [Google Scholar]
  199. Sangwung P. Petersen K.F. Shulman G.I. Knowles J.W. Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology 2020 161 4 bqaa017 10.1210/endocr/bqaa017 32060542
    [Google Scholar]
  200. Ciccarelli G. Conte S. Cimmino G. Maiorano P. Morrione A. Giordano A. Mitochondrial Dysfunction: The hidden player in the pathogenesis of atherosclerosis? Int. J. Mol. Sci. 2023 24 2 1086 10.3390/ijms24021086 36674602
    [Google Scholar]
  201. Abdel Mageed S.S. Doghish A.S. Ismail A. El-Husseiny A.A. Fawzi S.F. Mahmoud A.M.A. El-Mahdy H.A. The role of miRNAs in insulin resistance and diabetic macrovascular complications – A review. Int. J. Biol. Macromol. 2023 230 123189 10.1016/j.ijbiomac.2023.123189 36623613
    [Google Scholar]
  202. Zhou D. Lu P. Mo X. Yang B. Chen T. Yao Y. Xiong T. Yue L. Yang X. Ferroptosis and metabolic syndrome and complications: Association, mechanism, and translational applications. Front. Endocrinol. (Lausanne) 2024 14 1248934 10.3389/fendo.2023.1248934 38260171
    [Google Scholar]
  203. Sasaki N. Ueno Y. Ozono R. Nakano Y. Higashi Y. Insulin resistance in the adipose tissue predicts future vascular resistance: The Hiroshima Study on Glucose Metabolism and Cardiovascular Diseases. Atherosclerosis 2024 393 117547 10.1016/j.atherosclerosis.2024.117547 38703418
    [Google Scholar]
  204. Liu G. Association between the metabolic score for insulin resistance (METS-IR) and arterial stiffness among health check-up population in Japan: A retrospective cross-sectional study. Front. Endocrinol. (Lausanne) 2024 14 1308719 10.3389/fendo.2023.1308719 38229737
    [Google Scholar]
  205. Reaven G.M. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab. 2005 1 1 9 14 10.1016/j.cmet.2004.12.001 16054040
    [Google Scholar]
  206. De Vriese A.S. Verbeuren T.J. Van de Voorde J. Lameire N.H. Vanhoutte P.M. Endothelial dysfunction in diabetes. Br. J. Pharmacol. 2000 130 5 963 974 10.1038/sj.bjp.0703393 10882379
    [Google Scholar]
  207. Papaetis G.S. SGLT2 inhibitors, intrarenal hypoxia and the diabetic kidney: Insights into pathophysiological concepts and current evidence. Arch. Med. Sci. Atheroscler. Dis. 2023 8 1 155 168 10.5114/amsad/176658 38283924
    [Google Scholar]
  208. Golden S.H. Folsom A.R. Coresh J. Sharrett A.R. Szklo M. Brancati F. Risk factor groupings related to insulin resistance and their synergistic effects on subclinical atherosclerosis: The atherosclerosis risk in communities study. Diabetes 2002 51 10 3069 3076 10.2337/diabetes.51.10.3069 12351449
    [Google Scholar]
  209. D’Agostino R.B. Sr Grundy S. Sullivan L.M. Wilson P. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001 286 2 180 187 10.1001/jama.286.2.180 11448281
    [Google Scholar]
  210. Di Pino A. DeFronzo R.A. Insulin resistance and atherosclerosis: Implications for insulin-sensitizing agents. Endocr. Rev. 2019 40 6 1447 1467 10.1210/er.2018‑00141 31050706
    [Google Scholar]
  211. Onyango A.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance. Oxid. Med. Cell. Longev. 2018 2018 1 4321714 10.1155/2018/4321714 30116482
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X314035241006185109
Loading
/content/journals/ccr/10.2174/011573403X314035241006185109
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: insulin resistance ; Insulin ; atherosclerosis ; cardiovascular disease ; hyperinsulinemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test