Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Insulin resistance describes the lack of activity of a known quantity of insulin (exogenous or endogenous) to promote the uptake of glucose and its utilization in an individual, as much as it does in metabolically normal individuals. On the cellular level, it suggests insufficient power of the insulin pathway (from the insulin receptor downstream to its final substrates) that is essential for multiple mitogenic and metabolic aspects of cellular homeostasis. Atherosclerosis is a slow, complex, and multifactorial pathobiological process in medium to large arteries and involves several tissues and cell types (immune, vascular, and metabolic cells). Inflammatory responses and immunoregulation are key players in its development and progression. This paper examines the possible pathophysiological mechanisms that govern the connection of insulin resistance, hyperinsulinemia, and the closely associated cardiometabolic syndrome with atherosclerosis, after exploring thoroughly both and (preclinical and clinical) evidence. It also discusses the importance of visualizing and developing novel therapeutic strategies and targets for treatment, to face this metabolic state through its genesis.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X314035241006185109
2024-10-16
2025-04-06
Loading full text...

Full text loading...

References

  1. LebovitzH. Insulin resistance: Definition and consequences.Exp. Clin. Endocrinol. Diabetes2001109Suppl. 2S135S14810.1055/s‑2001‑18576 11460565
    [Google Scholar]
  2. GinsbergH.N. Insulin resistance and cardiovascular disease.J. Clin. Invest.2000106445345810.1172/JCI10762 10953019
    [Google Scholar]
  3. Abdul-GhaniM.A. DeFronzoR.A. Pathogenesis of insulin resistance in skeletal muscle.J. Biomed. Biotechnol.2010201011910.1155/2010/476279 20445742
    [Google Scholar]
  4. PapaetisG.S. PapakyriakouP. PanagiotouT.N. State of the art paper Central obesity, type 2 diabetes and insulin: Exploring a pathway full of thorns.Arch. Med. Sci.20153346348210.5114/aoms.2015.52350 26170839
    [Google Scholar]
  5. YaribeygiH. FarrokhiF.R. ButlerA.E. SahebkarA. Insulin resistance: Review of the underlying molecular mechanisms.J. Cell. Physiol.201923468152816110.1002/jcp.27603 30317615
    [Google Scholar]
  6. PapaetisG.S. Empagliflozin and the Diabetic Kidney: Pathophysiological Concepts and Future Challenges.Endocr. Metab. Immune Disord. Drug Targets20212191555158910.2174/1871530321999201214233421 33319678
    [Google Scholar]
  7. WyshamC. ShubrookJ. Beta-cell failure in type 2 diabetes: Mechanisms, markers, and clinical implications.Postgrad. Med.2020132867668610.1080/00325481.2020.1771047 32543261
    [Google Scholar]
  8. LibbyP. The changing landscape of atherosclerosis.Nature2021592785552453310.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  9. ChistiakovD.A. MelnichenkoA.A. MyasoedovaV.A. GrechkoA.V. OrekhovA.N. Mechanisms of foam cell formation in atherosclerosis.J. Mol. Med. (Berl.)201795111153116510.1007/s00109‑017‑1575‑8 28785870
    [Google Scholar]
  10. WalkerA.R.P. IsaacsonC. SegalI. Fatty streaks and atherogenesis.Lancet1980316820197410.1016/S0140‑6736(80)92127‑3 6107609
    [Google Scholar]
  11. Alonso-HerranzL. Albarrán-JuárezJ. BentzonJ.F. Mechanisms of fibrous cap formation in atherosclerosis.Front. Cardiovasc. Med.202310125411410.3389/fcvm.2023.1254114 37671141
    [Google Scholar]
  12. CardosoL. WeinbaumS. Microcalcifications, their genesis, growth, and biomechanical stability in fibrous cap rupture.Adv. Exp. Med. Biol.2018109712915510.1007/978‑3‑319‑96445‑4_7 30315543
    [Google Scholar]
  13. StoutR.W. Vallance-OwenJ. Insulin and atheroma.Lancet196929376051078108010.1016/S0140‑6736(69)91711‑5 4181737
    [Google Scholar]
  14. LaaksoM. SarlundH. SalonenR. Asymptomatic atherosclerosis and insulin resistance.Arterioscler. Thromb.19911141068107610.1161/01.ATV.11.4.1068 2065028
    [Google Scholar]
  15. BresslerP. BaileyS.R. MatsudaM. DeFronzoR.A. Insulin resistance and coronary artery disease.Diabetologia199639111345135010.1007/s001250050581 8933003
    [Google Scholar]
  16. DesprésJ.P. LamarcheB. MauriègeP. Hyperinsulinemia as an independent risk factor for ischemic heart disease.N. Engl. J. Med.19963341595295810.1056/NEJM199604113341504 8596596
    [Google Scholar]
  17. GastK.B. TjeerdemaN. StijnenT. SmitJ.W.A. DekkersO.M. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: Meta-analysis.PLoS One2012712e5203610.1371/journal.pone.0052036 23300589
    [Google Scholar]
  18. KilpatrickE.S. RigbyA.S. AtkinS.L. Insulin resistance, the metabolic syndrome, and complication risk in type 1 diabetes: “Double diabetes” in the Diabetes Control and Complications Trial.Diabetes Care200730370771210.2337/dc06‑1982 17327345
    [Google Scholar]
  19. GagginiM. MorelliM. BuzzigoliE. DeFronzoR. BugianesiE. GastaldelliA. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease.Nutrients2013551544156010.3390/nu5051544 23666091
    [Google Scholar]
  20. PapaetisG.S. SGLT2 Inhibitors and diabetic kidney disease: Targeting multiple and interrelated signaling pathways for renal protection.Curr. Mol. Pharmacol.202317e1876142926110510.2174/0118761429261105231011101200 37904562
    [Google Scholar]
  21. PapaetisG.S. FilippouP.K. ConstantinidouK.G. StylianouC.S. Liraglutide: New perspectives for the treatment of polycystic ovary syndrome.Clin. Drug Investig.202040869571310.1007/s40261‑020‑00942‑2 32583294
    [Google Scholar]
  22. LiM. ChiX. WangY. SetrerrahmaneS. XieW. XuH. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy.Signal Transduct. Target. Ther.20227121610.1038/s41392‑022‑01073‑0 35794109
    [Google Scholar]
  23. PapaetisG. GLP-1 receptor agonists, SGLT-2 inhibitors, and obstructive sleep apnoea: Can new allies face an old enemy?Arch. Med. Sci. Atheroscler. Dis.202381193410.5114/amsad/161170 37153372
    [Google Scholar]
  24. LiJ.W. HeS.Y. LiuP. LuoL. ZhaoL. XiaoY.B. Association of Gestational Diabetes Mellitus (GDM) with subclinical atherosclerosis: A systemic review and meta-analysis.BMC Cardiovasc. Disord.201414113210.1186/1471‑2261‑14‑132 25266849
    [Google Scholar]
  25. KimY. HanE. LeeJ.S. Cardiovascular risk is elevated in lean subjects with nonalcoholic fatty liver disease.Gut Liver202216229029910.5009/gnl210084 34238770
    [Google Scholar]
  26. KasugaM. KarlssonF.A. KahnC.R. Insulin stimulates the phosphorylation of the 95,000-dalton subunit of its own receptor.Science1982215452918518710.1126/science.7031900 7031900
    [Google Scholar]
  27. WhiteM.F. ShoelsonS.E. KeutmannH. KahnC.R. A cascade of tyrosine autophosphorylation in the beta-subunit activates the phosphotransferase of the insulin receptor.J. Biol. Chem.198826362969298010.1016/S0021‑9258(18)69163‑X 2449432
    [Google Scholar]
  28. SunX.J. RothenbergP. KahnC.R. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein.Nature19913526330737710.1038/352073a0 1648180
    [Google Scholar]
  29. SkolnikE.Y. LeeC.H. BatzerA. The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: Implications for insulin control of ras signalling.EMBO J.19931251929193610.1002/j.1460‑2075.1993.tb05842.x 8491186
    [Google Scholar]
  30. PazK. VoliovitchH. HadariY.R. RobertsC.T.J.Jr LeRoithD. ZickY. Interaction between the insulin receptor and its downstream effectors. Use of individually expressed receptor domains for structure/function analysis.J. Biol. Chem.1996271126998700310.1074/jbc.271.12.6998 8636129
    [Google Scholar]
  31. KoltermanO.G. InselJ. SaekowM. OlefskyJ.M. Mechanisms of insulin resistance in human obesity: Evidence for receptor and postreceptor defects.J. Clin. Invest.19806561272128410.1172/JCI109790 6997333
    [Google Scholar]
  32. BryantN.J. GoversR. JamesD.E. Regulated transport of the glucose transporter GLUT4.Nat. Rev. Mol. Cell Biol.20023426727710.1038/nrm782 11994746
    [Google Scholar]
  33. SaxtonR.A. SabatiniD.M. mTOR signaling in growth, metabolism, and disease.Cell2017168696097610.1016/j.cell.2017.02.004 28283069
    [Google Scholar]
  34. KamagateA. QuS. PerdomoG. FoxO1 mediates insulin-dependent regulation of hepatic VLDL production in mice.J. Clin. Invest.200811862347236410.1172/JCI32914 18497885
    [Google Scholar]
  35. AltomonteJ. CongL. HarbaranS. Foxo1 mediates insulin action on apoC-III and triglyceride metabolism.J. Clin. Invest.2004114101493150310.1172/JCI200419992 15546000
    [Google Scholar]
  36. Sánchez-MargaletV. Stimulation of glycogen synthesis by insulin requires S6 kinase and phosphatidylinositol-3-kinase in HTC-IR cells.J. Cell. Physiol.2000182218218810.1002/(SICI)1097‑4652(200002)182:2<182:AID‑JCP6>3.0.CO;2‑X 10623881
    [Google Scholar]
  37. TzivionG. DobsonM. RamakrishnanG. FoxO transcription factors; Regulation by AKT and 14-3-3 proteins.Biochim. Biophys. Acta Mol. Cell Res.20111813111938194510.1016/j.bbamcr.2011.06.002 21708191
    [Google Scholar]
  38. KrycerJ.R. SharpeL.J. LuuW. BrownA.J. The Akt–SREBP nexus: Cell signaling meets lipid metabolism.Trends Endocrinol. Metab.201021526827610.1016/j.tem.2010.01.001 20117946
    [Google Scholar]
  39. RebrinK. SteilG.M. MittelmanS.D. BergmanR.N. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs.J. Clin. Invest.199698374174910.1172/JCI118846 8698866
    [Google Scholar]
  40. JaworskiK. Sarkadi-NagyE. DuncanR.E. AhmadianM. SulH.S. Regulation of Triglyceride Metabolism.IV. Hormonal regulation of lipolysis in adipose tissue.Am. J. Physiol. Gastrointest. Liver Physiol.20072931G1G410.1152/ajpgi.00554.2006 17218471
    [Google Scholar]
  41. RieussetJ. AndreelliF. AuboeufD. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor-gamma in human adipocytes.Diabetes199948469970510.2337/diabetes.48.4.699 10102684
    [Google Scholar]
  42. DrazninB. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: The two sides of a coin.Diabetes20065582392239710.2337/db06‑0391 16873706
    [Google Scholar]
  43. StentzF.B. KitabchiA.E. De novo emergence of growth factor receptors in activated human CD4+ and CD8+ T lymphocytes.Metabolism200453111712210.1016/j.metabol.2003.07.015 14681852
    [Google Scholar]
  44. EntezariM. HashemiD. TaheriazamA. AMPK signaling in diabetes mellitus, insulin resistance and diabetic complications: A pre-clinical and clinical investigation.Biomed. Pharmacother.202214611256310.1016/j.biopha.2021.112563 35062059
    [Google Scholar]
  45. LiangC.P. HanS. OkamotoH. Increased CD36 protein as a response to defective insulin signaling in macrophages.J. Clin. Invest.2004113576477310.1172/JCI19528 14991075
    [Google Scholar]
  46. IidaK.T. SuzukiH. SoneH. Insulin inhibits apoptosis of macrophage cell line, THP-1 cells, via phosphatidylinositol-3-kinase-dependent pathway.Arterioscler. Thromb. Vasc. Biol.200222338038610.1161/hq0302.105272 11884278
    [Google Scholar]
  47. PinaA.F. BorgesD.O. MenesesM.J. Insulin: Trigger and Target of Renal Functions.Front. Cell Dev. Biol.2020851910.3389/fcell.2020.00519 32850773
    [Google Scholar]
  48. AbelE.D. Insulin signaling in the heart.Am. J. Physiol. Endocrinol. Metab.20213211E130E14510.1152/ajpendo.00158.2021 34056923
    [Google Scholar]
  49. BlázquezE. VelázquezE. Hurtado-CarneiroV. Ruiz-AlbusacJ.M. Insulin in the brain: Its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer’s disease.Front. Endocrinol. (Lausanne)2014516110.3389/fendo.2014.00161 25346723
    [Google Scholar]
  50. LuoJ. FieldS.J. LeeJ.Y. EngelmanJ.A. CantleyL.C. The p85 regulatory subunit of phosphoinositide 3-kinase down-regulates IRS-1 signaling via the formation of a sequestration complex.J. Cell Biol.2005170345546410.1083/jcb.200503088 16043515
    [Google Scholar]
  51. HäringH.U. The insulin receptor: Signalling mechanism and contribution to the pathogenesis of insulin resistance.Diabetologia1991341284886110.1007/BF00400192 1663881
    [Google Scholar]
  52. AguirreV. WernerE.D. GiraudJ. LeeY.H. ShoelsonS.E. WhiteM.F. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action.J. Biol. Chem.200227721531153710.1074/jbc.M101521200 11606564
    [Google Scholar]
  53. QiaoL. ZhandeR. JettonT.L. ZhouG. SunX.J. In vivo phosphorylation of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-resistant rodents.J. Biol. Chem.200227729265302653910.1074/jbc.M201494200 12006586
    [Google Scholar]
  54. GaoZ. ZhangX. ZuberiA. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes.Mol. Endocrinol.20041882024203410.1210/me.2003‑0383 15143153
    [Google Scholar]
  55. SummersS. Ceramides in insulin resistance and lipotoxicity.Prog. Lipid Res.2006451427210.1016/j.plipres.2005.11.002 16445986
    [Google Scholar]
  56. PetersenK.F. DufourS. BefroyD. GarciaR. ShulmanG.I. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes.N. Engl. J. Med.2004350766467110.1056/NEJMoa031314 14960743
    [Google Scholar]
  57. SchubertK.M. ScheidM.P. DuronioV. Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473.J. Biol. Chem.200027518133301333510.1074/jbc.275.18.13330 10788440
    [Google Scholar]
  58. StratfordS. HoehnK.L. LiuF. SummersS.A. Regulation of insulin action by ceramide: Dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B.J. Biol. Chem.200427935366083661510.1074/jbc.M406499200 15220355
    [Google Scholar]
  59. ÖzcanU. YilmazE. ÖzcanL. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes.Science200631357901137114010.1126/science.1128294 16931765
    [Google Scholar]
  60. HurrleS. HsuW.H. The etiology of oxidative stress in insulin resistance.Biomed. J.201740525726210.1016/j.bj.2017.06.007 29179880
    [Google Scholar]
  61. DrögeW. Free radicals in the physiological control of cell function.Physiol. Rev.2002821479510.1152/physrev.00018.2001 11773609
    [Google Scholar]
  62. TaniyamaY. HitomiH. ShahA. AlexanderR.W. GriendlingK.K. Mechanisms of reactive oxygen species-dependent downregulation of insulin receptor substrate-1 by angiotensin II.Arterioscler. Thromb. Vasc. Biol.20052561142114710.1161/01.ATV.0000164313.17167.df 15802620
    [Google Scholar]
  63. JiaG. LocketteW. SowersJ.R. Mineralocorticoid receptors in the pathogenesis of insulin resistance and related disorders: From basic studies to clinical disease.Am. J. Physiol. Regul. Integr. Comp. Physiol.20213203R276R28610.1152/ajpregu.00280.2020 33438511
    [Google Scholar]
  64. AndreozziF. LarattaE. SciacquaA. PerticoneF. SestiG. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells.Circ. Res.20049491211121810.1161/01.RES.0000126501.34994.96 15044323
    [Google Scholar]
  65. ReynaS.M. GhoshS. TantiwongP. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.Diabetes200857102595260210.2337/db08‑0038 18633101
    [Google Scholar]
  66. HillM.A. YangY. ZhangL. Insulin resistance, cardiovascular stiffening and cardiovascular disease.Metabolism202111915476610.1016/j.metabol.2021.154766 33766485
    [Google Scholar]
  67. ZengG. QuonM.J. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells.J. Clin. Invest.199698489489810.1172/JCI118871 8770859
    [Google Scholar]
  68. GimbroneM.A.Jr García-CardeñaG. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.Circ. Res.2016118462063610.1161/CIRCRESAHA.115.306301 26892962
    [Google Scholar]
  69. MontagnaniM. RavichandranL.V. ChenH. EspositoD.L. QuonM.J. Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells.Mol. Endocrinol.20021681931194210.1210/me.2002‑0074 12145346
    [Google Scholar]
  70. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.309326 28209797
    [Google Scholar]
  71. BarrettE.J. LiuZ. The endothelial cell: An “early responder” in the development of insulin resistance.Rev. Endocr. Metab. Disord.2013141212710.1007/s11154‑012‑9232‑6 23306779
    [Google Scholar]
  72. TanigakiK. ChamblissK.L. YuhannaI.S. Endothelial fcγ Receptor IIB Activation Blunts Insulin Delivery to Skeletal Muscle to cause insulin resistance in mice.Diabetes20166571996200510.2337/db15‑1605 27207525
    [Google Scholar]
  73. GuoY.J. PanW.W. LiuS.B. ShenZ.F. XuY. HuL.L. ERK/MAPK signalling pathway and tumorigenesis.Exp. Ther. Med.202019319972007 32104259
    [Google Scholar]
  74. CarelK. KummerJ.L. SchubertC. LeitnerW. HeidenreichK.A. DrazninB. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes.J. Biol. Chem.199627148306253063010.1074/jbc.271.48.30625 8940037
    [Google Scholar]
  75. ZhangW. LiuH.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells.Cell Res.200212191810.1038/sj.cr.7290105 11942415
    [Google Scholar]
  76. CubbonR.M. RajwaniA. WheatcroftS.B. The impact of insulin resistance on endothelial function, progenitor cells and repair.Diab. Vasc. Dis. Res.20074210311110.3132/dvdr.2007.027 17654443
    [Google Scholar]
  77. MetzlerB. HuY. DietrichH. XuQ. Increased expression and activation of stress-activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53.Am. J. Pathol.200015661875188610.1016/S0002‑9440(10)65061‑4 10854211
    [Google Scholar]
  78. HuY. DietrichH. MetzlerB. WickG. XuQ. Hyperexpression and activation of extracellular signal-regulated kinases (ERK1/2) in atherosclerotic lesions of cholesterol-fed rabbits.Arterioscler. Thromb. Vasc. Biol.2000201182610.1161/01.ATV.20.1.18 10634796
    [Google Scholar]
  79. RahamanS.O. LennonD.J. FebbraioM. PodrezE.A. HazenS.L. SilversteinR.L. A CD36-dependent signaling cascade is necessary for macrophage foam cell formation.Cell Metab.20064321122110.1016/j.cmet.2006.06.007 16950138
    [Google Scholar]
  80. MuslinA.J. MAPK signalling in cardiovascular health and disease: Molecular mechanisms and therapeutic targets.Clin. Sci. (Lond.)2008115720321810.1042/CS20070430 18752467
    [Google Scholar]
  81. Abu-ElheigaL. MatzukM.M. KordariP. Mutant mice lacking acetyl-CoA carboxylase 1 are embryonically lethal.Proc. Natl. Acad. Sci. USA200510234120111201610.1073/pnas.0505714102 16103361
    [Google Scholar]
  82. FerréP. FoufelleF. SREBP-1c transcription factor and lipid homeostasis: Clinical perspective.Horm. Res.20076827282 17344645
    [Google Scholar]
  83. StoutR.W. Insulin and atheroma. 20-yr perspective.Diabetes Care199013663165410.2337/diacare.13.6.631 2192848
    [Google Scholar]
  84. LechnerK. McKenzieA.L. KränkelN. High-risk atherosclerosis and metabolic phenotype: The roles of ectopic adiposity, atherogenic dyslipidemia, and inflammation.Metab. Syndr. Relat. Disord.202018417618510.1089/met.2019.0115 32119801
    [Google Scholar]
  85. SteinbergH. BaronA. Vascular function, insulin resistance and fatty acids.Diabetologia200245562363410.1007/s00125‑002‑0800‑2 12107742
    [Google Scholar]
  86. AndronicoG. Ferraro-MortellaroR. ManganoM. Insulin resistance and glomerular hemodynamics in essential hypertension.Kidney Int.20026231005100910.1046/j.1523‑1755.2002.00529.x 12164884
    [Google Scholar]
  87. DeFronzoR.A. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: The missing links. The Claude Bernard Lecture 2009.Diabetologia20105371270128710.1007/s00125‑010‑1684‑1 20361178
    [Google Scholar]
  88. RazI. Exogenous hyperinsulinemia and atherosclerosis in type 1 diabetic patients.J. Diabetes Complications20132712310.1016/j.jdiacomp.2012.10.003 23151316
    [Google Scholar]
  89. MatteucciE. GiampietroO. CovolanV. GiustariniD. FantiP. RossiR. Insulin administration: Present strategies and future directions for a noninvasive (possibly more physiological) delivery.Drug Des. Devel. Ther.201593109311810.2147/DDDT.S79322 26124635
    [Google Scholar]
  90. SchwartzS.S. JellingerP.S. HermanM.E. Obviating much of the need for insulin therapy in type 2 diabetes mellitus: A re-assessment of insulin therapy’s safety profile.Postgrad. Med.2016128660961910.1080/00325481.2016.1191955 27210018
    [Google Scholar]
  91. Jandeleit-DahmK.A.M. GrayS.P. Insulin and cardiovascular disease: Biomarker or association?Diabetologia201255123145315110.1007/s00125‑012‑2729‑4 23052054
    [Google Scholar]
  92. WangM.Y. YuX. LeeY. Iatrogenic hyperinsulinemia in type 1 diabetes: Its effect on atherogenic risk markers.J. Diabetes Complications2013271707410.1016/j.jdiacomp.2012.08.008 23079124
    [Google Scholar]
  93. DrazninB. Mechanism of the mitogenic influence of hyperinsulinemia.Diabetol. Metab. Syndr.2011311010.1186/1758‑5996‑3‑10 21668983
    [Google Scholar]
  94. MuisM.J. BotsM.L. GrobbeeD.E. StolkR.P. Insulin treatment and cardiovascular disease; friend or foe? A point of view.Diabet. Med.200522211812610.1111/j.1464‑5491.2004.01416.x 15660727
    [Google Scholar]
  95. HenryR.R. GumbinerB. DitzlerT. WallaceP. LyonR. GlauberH.S. Intensive Conventional Insulin Therapy for Type II Diabetes: Metabolic effects during a 6-mo outpatient trial.Diabetes Care1993161213110.2337/diacare.16.1.21 8422777
    [Google Scholar]
  96. GuptaS. WangH. SkolnikN. Treatment dosing patterns and clinical outcomes for patients with type 2 diabetes starting or switching to treatment with insulin glargine (300 units per milliliter) in a real-world setting: A retrospective observational study.Adv. Ther.2018351435510.1007/s12325‑017‑0651‑3 29313285
    [Google Scholar]
  97. ChurchT.J. HainesS.T. Treatment approach to patients with severe insulin resistance.Clin. Diabetes20163429710410.2337/diaclin.34.2.97 27092020
    [Google Scholar]
  98. OvalleF. Clinical approach to the patient with diabetes mellitus and very high insulin requirements.Diabetes Res. Clin. Pract.201090323124210.1016/j.diabres.2010.06.025 20724017
    [Google Scholar]
  99. PontiroliA.E. MieleL. MorabitoA. Increase of body weight during the first year of intensive insulin treatment in type 2 diabetes: Systematic review and meta-analysis.Diabetes Obes. Metab.201113111008101910.1111/j.1463‑1326.2011.01433.x 21645195
    [Google Scholar]
  100. McFarlaneS.I. Insulin therapy and type 2 diabetes: Management of weight gain.J. Clin. Hypertens. (Greenwich)2009111060160710.1111/j.1751‑7176.2009.00063.x 19817944
    [Google Scholar]
  101. BrownA. GuessN. DornhorstA. TaheriS. FrostG. Insulin‐associated weight gain in obese type 2 diabetes mellitus patients: What can be done?Diabetes Obes. Metab.201719121655166810.1111/dom.13009 28509408
    [Google Scholar]
  102. PapaetisG. KyriacouA. GLP-1 receptor agonists, polycystic ovary syndrome and reproductive dysfunction: Current research and future horizons.Adv. Clin. Exp. Med.202231111265127410.17219/acem/151695 35951627
    [Google Scholar]
  103. BiesenbachG. RamlA. AlsarajiN. Weight gain and insulin requirement in type 2 diabetic patients during the first year after initiating insulin therapy dependent on baseline BMI.Diabetes Obes. Metab.20068666967310.1111/j.1463‑1326.2005.00552.x 17026491
    [Google Scholar]
  104. MendezC.E. WalkerR.J. EilerC.R. MishrikyB.M. EgedeL.E. Insulin therapy in patients with type 2 diabetes and high insulin resistance is associated with increased risk of complications and mortality.Postgrad. Med.2019131637638210.1080/00325481.2019.1643635 31311382
    [Google Scholar]
  105. GersteinH.C. BoschJ. DagenaisG.R. Basal insulin and cardiovascular and other outcomes in dysglycemia.N. Engl. J. Med.2012367431932810.1056/NEJMoa1203858 22686416
    [Google Scholar]
  106. MarsoS.P. McGuireD.K. ZinmanB. Efficacy and safety of degludec versus glargine in type 2 diabetes.N. Engl. J. Med.2017377872373210.1056/NEJMoa1615692 28605603
    [Google Scholar]
  107. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33).Lancet1998352913183785310.1016/S0140‑6736(98)07019‑6 9742976
    [Google Scholar]
  108. NathanD.M. ClearyP.A. BacklundJ.Y. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes.N. Engl. J. Med.2005353252643265310.1056/NEJMoa052187 16371630
    [Google Scholar]
  109. PurnellJ.Q. BraffettB.H. ZinmanB. Impact of excessive weight gain on cardiovascular outcomes in type 1 diabetes: Results from the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study.Diabetes Care201740121756176210.2337/dc16‑2523 29138273
    [Google Scholar]
  110. MasrouriS. ShapiroM.D. KhaliliD. HadaeghF. Impact of coronary artery calcium on mortality and cardiovascular events in metabolic syndrome and diabetes among younger adults.Eur. J. Prev. Cardiol.202431674475310.1093/eurjpc/zwae039 38323650
    [Google Scholar]
  111. Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Study Research Group. Intensive Diabetes Treatment and Cardiovascular Outcomes in Type 1 Diabetes: The DCCT/EDIC Study 30-Year Follow-up.Diabetes Care201639568669310.2337/dc15‑1990 26861924
    [Google Scholar]
  112. ReavenG.M. Banting lecture 1988. Role of insulin resistance in human disease.Diabetes198837121595160710.2337/diab.37.12.1595 3056758
    [Google Scholar]
  113. NortonL. ShannonC. GastaldelliA. DeFronzoR.A. Insulin: The master regulator of glucose metabolism.Metabolism202212915514210.1016/j.metabol.2022.155142 35066003
    [Google Scholar]
  114. ReavenG.M. Insulin resistance, the insulin resistance syndrome, and cardiovascular disease.Panminerva Med.2005474201210 16489319
    [Google Scholar]
  115. ReavenG.M. Insulin resistance, cardiovascular disease, and the metabolic syndrome: How well do the emperor’s clothes fit?Diabetes Care20042741011101210.2337/diacare.27.4.1011 15047666
    [Google Scholar]
  116. CastroJ.P. El-AtatF.A. McFarlaneS.I. AnejaA. SowersJ.R. Cardiometabolic syndrome: Pathophysiology and treatment.Curr. Hypertens. Rep.20035539340110.1007/s11906‑003‑0085‑y 12948432
    [Google Scholar]
  117. LastraG. ManriqueC. McFarlaneS.I. SowersJ.R. Cardiometabolic syndrome and chronic kidney disease.Curr. Diab. Rep.20066320721210.1007/s11892‑006‑0036‑5 16898573
    [Google Scholar]
  118. GillH. MugoM. Whaley-ConnellA. StumpC. SowersJ.R. The key role of insulin resistance in the cardiometabolic syndrome.Am. J. Med. Sci.2005330629029410.1097/00000441‑200512000‑00006 16355013
    [Google Scholar]
  119. Whaley-ConnellA. SowersJ.R. Basic science.J. Am. Soc. Hypertens.20148860460610.1016/j.jash.2014.07.003 25151323
    [Google Scholar]
  120. HuG. QiaoQ. TuomilehtoJ. BalkauB. Borch-JohnsenK. PyoralaK. Prevalence of the metabolic syndrome and its relation to all-cause and cardiovascular mortality in nondiabetic European men and women.Arch. Intern. Med.2004164101066107610.1001/archinte.164.10.1066 15159263
    [Google Scholar]
  121. SantomauroA.T. BodenG. SilvaM.E. Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects.Diabetes19994891836184110.2337/diabetes.48.9.1836 10480616
    [Google Scholar]
  122. IqbalJ. Al QarniA. HawwariA. AlghanemA.F. AhmedG. Metabolic syndrome, dyslipidemia and regulation of lipoprotein metabolism.Curr. Diabetes Rev.201814542743310.2174/1573399813666170705161039 28677496
    [Google Scholar]
  123. BjornstadP. EckelR.H. Pathogenesis of lipid disorders in insulin resistance: A brief review.Curr. Diab. Rep.2018181212710.1007/s11892‑018‑1101‑6 30328521
    [Google Scholar]
  124. KraussR.M. Lipids and lipoproteins in patients with type 2 diabetes.Diabetes Care20042761496150410.2337/diacare.27.6.1496 15161808
    [Google Scholar]
  125. MineoC. DeguchiH. GriffinJ.H. ShaulP.W. Endothelial and antithrombotic actions of HDL.Circ. Res.200698111352136410.1161/01.RES.0000225982.01988.93 16763172
    [Google Scholar]
  126. TallA.R. An overview of reverse cholesterol transport.Eur. Heart J.199819Suppl. AA31A35
    [Google Scholar]
  127. QuL. FangS. LanZ. Association between atherogenic index of plasma and new-onset stroke in individuals with different glucose metabolism status: Insights from CHARLS.Cardiovasc. Diabetol.202423121510.1186/s12933‑024‑02314‑y 38907337
    [Google Scholar]
  128. RokickaD. HudzikB. WróbelM. The prognostic impact of insulin resistance surrogates in patients with acute myocardial infarction with and without type 2 diabetes.Cardiovasc. Diabetol.202423114710.1186/s12933‑024‑02240‑z 38685054
    [Google Scholar]
  129. DongW. GongY. ZhaoJ. WangY. LiB. YangY. A combined analysis of TyG index, SII index, and SIRI index: Positive association with CHD risk and coronary atherosclerosis severity in patients with NAFLD.Front. Endocrinol. (Lausanne)202414128183910.3389/fendo.2023.1281839 38260163
    [Google Scholar]
  130. LemboG. NapoliR. CapaldoB. Abnormal sympathetic overactivity evoked by insulin in the skeletal muscle of patients with essential hypertension.J. Clin. Invest.1992901242910.1172/JCI115842 1634611
    [Google Scholar]
  131. SowersJ.R. Hypertension, angiotensin II, and oxidative stress.N. Engl. J. Med.2002346251999200110.1056/NEJMe020054 12075063
    [Google Scholar]
  132. Lamounier-ZepterV. Ehrhart-BornsteinM. BornsteinS.R. Insulin resistance in hypertension and cardiovascular disease.Best Pract. Res. Clin. Endocrinol. Metab.200620335536710.1016/j.beem.2006.07.002 16980199
    [Google Scholar]
  133. HallJ. BrandsM.W. HenegarJ.R. Mechanisms of hypertension and kidney disease in obesity.Ann. N. Y. Acad. Sci.199989219110710.1111/j.1749‑6632.1999.tb07788.x 10842655
    [Google Scholar]
  134. WangF. HanL. HuD. Fasting insulin, insulin resistance and risk of hypertension in the general population: A meta-analysis.Clin. Chim. Acta2017464576310.1016/j.cca.2016.11.009 27836689
    [Google Scholar]
  135. CalhounD.A. Use of aldosterone antagonists in resistant hypertension.Prog. Cardiovasc. Dis.200648638739610.1016/j.pcad.2006.02.002 16714158
    [Google Scholar]
  136. GroenlandE.H. BotsM.L. AsselbergsF.W. Apparent treatment resistant hypertension and the risk of recurrent cardiovascular events and mortality in patients with established vascular disease.Int. J. Cardiol.202133413514110.1016/j.ijcard.2021.04.047 33932429
    [Google Scholar]
  137. BrionesA.M. Nguyen Dinh CatA. CalleraG.E. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: Implications in diabetes mellitus-associated obesity and vascular dysfunction.Hypertension20125951069107810.1161/HYPERTENSIONAHA.111.190223 22493070
    [Google Scholar]
  138. RaoA. PandyaV. Whaley-ConnellA. Obesity and insulin resistance in resistant hypertension: Implications for the kidney.Adv. Chronic Kidney Dis.201522321121710.1053/j.ackd.2014.12.004 25908470
    [Google Scholar]
  139. WadaT. OhshimaS. FujisawaE. KoyaD. TsunekiH. SasaokaT. Aldosterone inhibits insulin-induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species-mediated pathway in 3T3-L1 adipocytes.Endocrinology200915041662166910.1210/en.2008‑1018 19095745
    [Google Scholar]
  140. LiP. ZhangX.N. PanC.M. Aldosterone perturbs adiponectin and PAI-1 expression and secretion in 3T3-L1 adipocytes.Horm. Metab. Res.201143746446910.1055/s‑0031‑1277226 21667402
    [Google Scholar]
  141. GilbertK.C. BrownN.J. Aldosterone and inflammation.Curr. Opin. Endocrinol. Diabetes Obes.201017319920410.1097/MED.0b013e3283391989 20422780
    [Google Scholar]
  142. PapaetisG.S. Incretin-based therapies in prediabetes: Current evidence and future perspectives.World J. Diabetes20145681783410.4239/wjd.v5.i6.817 25512784
    [Google Scholar]
  143. KanatM. WinnierD. NortonL. The relationship between beta-cell function and glycated hemoglobin: Results from the veterans administration genetic epidemiology study.Diabetes Care20113441006101010.2337/dc10‑1352 21346184
    [Google Scholar]
  144. PapaetisG.S. Empagliflozin therapy and insulin resistance-associated disorders: Effects and promises beyond a diabetic state.Arch. Med. Sci. Atheroscler. Dis.20216e57e7810.5114/amsad.2021.105314 34027215
    [Google Scholar]
  145. PendergrassM. BertoldoA. BonadonnaR. Muscle glucose transport and phosphorylation in type 2 diabetic, obese nondiabetic, and genetically predisposed individuals.Am. J. Physiol. Endocrinol. Metab.20072921E92E10010.1152/ajpendo.00617.2005 16896161
    [Google Scholar]
  146. Abdul-GhaniM.A. TripathyD. DeFronzoR.A. Contributions of beta-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose.Diabetes Care20062951130113910.2337/dc05‑2179 16644654
    [Google Scholar]
  147. CoutinhoM. GersteinH.C. WangY. YusufS. The relationship between glucose and incident cardiovascular events. A metaregression analysis of published data from 20 studies of 95,783 individuals followed for 12.4 years.Diabetes Care199922223324010.2337/diacare.22.2.233 10333939
    [Google Scholar]
  148. Decode Study Group, the European Diabetes Epidemiology Group.. Glucose tolerance and cardiovascular mortality: Comparison of fasting and 2-hour diagnostic criteria.Arch. Intern. Med.2001161339740510.1001/archinte.161.3.397 11176766
    [Google Scholar]
  149. QiaoQ. PyöräläK. PyöräläM. Two-hour glucose is a better risk predictor for incident coronary heart disease and cardiovascular mortality than fasting glucose.Eur. Heart J.200223161267127510.1053/euhj.2001.3113 12175663
    [Google Scholar]
  150. RijkelijkhuizenJ.M. NijpelsG. HeineR.J. BouterL.M. StehouwerC.D.A. DekkerJ.M. High risk of cardiovascular mortality in individuals with impaired fasting glucose is explained by conversion to diabetes: The Hoorn study.Diabetes Care200730233233610.2337/dc06‑1238 17259503
    [Google Scholar]
  151. DeFronzoR.A. Abdul-GhaniM. Assessment and treatment of cardiovascular risk in prediabetes: Impaired glucose tolerance and impaired fasting glucose.Am. J. Cardiol.201110833B24B10.1016/j.amjcard.2011.03.013 21802577
    [Google Scholar]
  152. MonnierL. LapinskiH. ColetteC. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetes patients.Diabetes Care200326388188510.2337/diacare.26.3.881 12610053
    [Google Scholar]
  153. SaelyC.H. DrexelH. SourijH. Key role of postchallenge hyperglycemia for the presence and extent of coronary atherosclerosis: An angiographic study.Atherosclerosis2008199231732210.1016/j.atherosclerosis.2007.11.020 18187138
    [Google Scholar]
  154. CerielloA. Impaired glucose tolerance and cardiovascular disease: The possible role of post-prandial hyperglycemia.Am. Heart J.2004147580380710.1016/j.ahj.2003.11.020 15131534
    [Google Scholar]
  155. LiangY. WangM. WangC. LiuY. NaruseK. TakahashiK. The mechanisms of the development of atherosclerosis in prediabetes.Int. J. Mol. Sci.2021228410810.3390/ijms22084108 33921168
    [Google Scholar]
  156. KawaiT. AutieriM.V. ScaliaR. Adipose tissue inflammation and metabolic dysfunction in obesity.Am. J. Physiol. Cell Physiol.20213203C375C39110.1152/ajpcell.00379.2020 33356944
    [Google Scholar]
  157. CatalanoK.J. StefanovskiD. BergmanR.N. Critical role of the mesenteric depot versus other intra-abdominal adipose depots in the development of insulin resistance in young rats.Diabetes20105961416142310.2337/db08‑0675 20299478
    [Google Scholar]
  158. PapaetisG.S. OrphanidouD. PanagiotouT.N. Thiazolidinediones and type 2 diabetes: From cellular targets to cardiovascular benefit.Curr. Drug Targets201112101498151210.2174/138945011796818243 21675944
    [Google Scholar]
  159. LumengC.N. BodzinJ.L. SaltielA.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.J. Clin. Invest.2007117117518410.1172/JCI29881 17200717
    [Google Scholar]
  160. LeeY. WangM.Y. KakumaT. Liporegulation in diet-induced obesity. The antisteatotic role of hyperleptinemia.J. Biol. Chem.200127685629563510.1074/jbc.M008553200 11096093
    [Google Scholar]
  161. FaberD.R. De GrootP.G. VisserenF.L.J. Role of adipose tissue in haemostasis, coagulation and fibrinolysis.Obes. Rev.200910555456310.1111/j.1467‑789X.2009.00593.x 19460118
    [Google Scholar]
  162. YamamotoK. TakeshitaK. KojimaT. TakamatsuJ. SaitoH. Aging and plasminogen activator inhibitor-1 (PAI-1) regulation: Implication in the pathogenesis of thrombotic disorders in the elderly.Cardiovasc. Res.200566227628510.1016/j.cardiores.2004.11.013 15820196
    [Google Scholar]
  163. SamadF. RufW. Inflammation, obesity, and thrombosis.Blood2013122203415342210.1182/blood‑2013‑05‑427708 24092932
    [Google Scholar]
  164. SantilliF. VazzanaN. LianiR. GuagnanoM.T. DavìG. Platelet activation in obesity and metabolic syndrome.Obes. Rev.2012131274210.1111/j.1467‑789X.2011.00930.x 21917110
    [Google Scholar]
  165. TsaiA.G. BessesenD.H. Obesity.Ann. Intern. Med.20191705ITC33ITC4810.7326/AITC201903050 30831593
    [Google Scholar]
  166. KitabchiA.E. TemprosaM. KnowlerW.C. Role of insulin secretion and sensitivity in the evolution of type 2 diabetes in the diabetes prevention program: Effects of lifestyle intervention and metformin.Diabetes20055482404241410.2337/diabetes.54.8.2404 16046308
    [Google Scholar]
  167. KnowlerW.C. Barrett-ConnorE. FowlerS.E. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.N. Engl. J. Med.2002346639340310.1056/NEJMoa012512 11832527
    [Google Scholar]
  168. DelahantyL.M. TriefP.M. CibulaD.A. WeinstockR.S. Barriers to weight loss and physical activity, and coach approaches to addressing barriers, in a real-world adaptation of the DPP lifestyle intervention: A process analysis.Diabetes Educ.201945659660610.1177/0145721719883615 31682536
    [Google Scholar]
  169. ArterburnD.E. TelemD.A. KushnerR.F. CourcoulasA.P. Benefits and risks of bariatric surgery in adults: A review.JAMA2020324987988710.1001/jama.2020.12567 32870301
    [Google Scholar]
  170. SarkhoshK. SwitzerN.J. El-HadiM. BirchD.W. ShiX. KarmaliS. The impact of bariatric surgery on obstructive sleep apnea: A systematic review.Obes. Surg.201323341442310.1007/s11695‑012‑0862‑2 23299507
    [Google Scholar]
  171. Escobar-MorrealeH.F. Botella-CarreteroJ.I. Álvarez-BlascoF. SanchoJ. San MillánJ.L. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery.J. Clin. Endocrinol. Metab.200590126364636910.1210/jc.2005‑1490 16189250
    [Google Scholar]
  172. AthanasiadisD.I. MartinA. KapsampelisP. MonfaredS. StefanidisD. Factors associated with weight regain post-bariatric surgery: A systematic review.Surg. Endosc.20213584069408410.1007/s00464‑021‑08329‑w 33650001
    [Google Scholar]
  173. LiuF. WangY. YuJ. Role of inflammation and immune response in atherosclerosis: Mechanisms, modulations, and therapeutic targets.Hum. Immunol.202384943944910.1016/j.humimm.2023.06.002 37353446
    [Google Scholar]
  174. LarssonJ. AuscherS. ShamounA. Insulin resistance is associated with high-risk coronary artery plaque composition in asymptomatic men between 65 and 75 years and no diabetes: A DANCAVAS cross-sectional sub-study.Atherosclerosis202338511732810.1016/j.atherosclerosis.2023.117328 38390826
    [Google Scholar]
  175. Berisha-MuharremiV. Majnaric-TrticaL. MujajB. Insulin resistance is an important index to assess glucose and insulin metabolism, but not a biological risk factor for high-risk coronary artery plaque composition.Atherosclerosis202439211748410.1016/j.atherosclerosis.2024.117484 38433071
    [Google Scholar]
  176. LarssonJ. AuscherS. PararajasingamG. Reply to: “Insulin resistance is an important index to assess glucose and insulin metabolism, but not a biological risk factor for high-risk coronary artery plaque composition”.Atherosclerosis202439211752410.1016/j.atherosclerosis.2024.117524 38523001
    [Google Scholar]
  177. JullaJ.B. GirardD. DiedisheimM. Blood Monocyte Phenotype Is A Marker of Cardiovascular Risk in Type 2 Diabetes.Circ. Res.2024134218920210.1161/CIRCRESAHA.123.322757 38152893
    [Google Scholar]
  178. RidkerP.M. BhattD.L. PradhanA.D. GlynnR.J. MacFadyenJ.G. NissenS.E. Inflammation and cholesterol as predictors of cardiovascular events among patients receiving statin therapy: A collaborative analysis of three randomised trials.Lancet2023401103841293130110.1016/S0140‑6736(23)00215‑5 36893777
    [Google Scholar]
  179. EvansJ.L. YoungrenJ.F. GoldfineI.D. Effective treatments for insulin resistance: Trim the fat and douse the fire.Trends Endocrinol. Metab.200415942543110.1016/j.tem.2004.09.005 15519889
    [Google Scholar]
  180. StagakisI. BertsiasG. KarvounarisS. Anti-tumor necrosis factor therapy improves insulin resistance, beta cell function and insulin signaling in active rheumatoid arthritis patients with high insulin resistance.Arthritis Res. Ther.2012143R14110.1186/ar3874 22691241
    [Google Scholar]
  181. van den OeverI.A.M. BaniaamamM. SimsekS. The effect of anti-TNF treatment on body composition and insulin resistance in patients with rheumatoid arthritis.Rheumatol. Int.202141231932810.1007/s00296‑020‑04666‑6 32776224
    [Google Scholar]
  182. HassanN.F. HassanA.H. El-AnsaryM.R. Cytokine modulation by etanercept ameliorates metabolic syndrome and its related complications induced in rats administered a high-fat high-fructose diet.Sci. Rep.20221212022710.1038/s41598‑022‑24593‑9 36418417
    [Google Scholar]
  183. BernsteinL.E. BerryJ. KimS. CanavanB. GrinspoonS.K. Effects of etanercept in patients with the metabolic syndrome.Arch. Intern. Med.2006166890290810.1001/archinte.166.8.902 16636217
    [Google Scholar]
  184. LiZ. LinC. CaiX. Anti-inflammatory therapies were associated with reduced risk of myocardial infarction in patients with established cardiovascular disease or high cardiovascular risks: A systematic review and meta-analysis of randomized controlled trials.Atherosclerosis202337911718110.1016/j.atherosclerosis.2023.06.972 37527612
    [Google Scholar]
  185. TardifJ.C. KouzS. WatersD.D. Efficacy and safety of low-dose colchicine after myocardial infarction.N. Engl. J. Med.2019381262497250510.1056/NEJMoa1912388 31733140
    [Google Scholar]
  186. SchwarzN. FernandoS. ChenY.C. Colchicine exerts anti‐atherosclerotic and plaque‐stabilizing effects targeting foam cell formation.FASEB J.2023374e2284610.1096/fj.202201469R 36856983
    [Google Scholar]
  187. DemidowichA.P. LevineJ.A. OnyekabaG.I. Effects of colchicine in adults with metabolic syndrome: A pilot randomized controlled trial.Diabetes Obes. Metab.20192171642165110.1111/dom.13702 30869182
    [Google Scholar]
  188. SpenceJ.D. ViscoliC. KernanW.N. Efficacy of lower doses of pioglitazone after stroke or transient ischaemic attack in patients with insulin resistance.Diabetes Obes. Metab.20222461150115810.1111/dom.14687 35253334
    [Google Scholar]
  189. PapaetisG.S. Pioglitazone, bladder cancer, and the presumption of innocence.Curr. Drug Saf.202217429431810.2174/1574886317666220304124756 35249505
    [Google Scholar]
  190. PapaetisG. Pioglitazone in diabetic kidney disease: Forgotten but not gone.Arch. Med. Sci. Atheroscler. Dis.202271789310.5114/amsad/151046 36158067
    [Google Scholar]
  191. MeiringS. BuschC.B.E. van BaarA.C.G. Eliminating exogenous insulin therapy in patients with type 2 diabetes by duodenal ablation and GLP-1RA decreases risk scores for cardiovascular events.Cardiovasc. Diabetol.202221119110.1186/s12933‑022‑01628‑z 36138441
    [Google Scholar]
  192. MeiringS. MeessenE.C.E. van BaarA.C.G. Duodenal mucosal resurfacing with a GLP-1 receptor agonist increases postprandial unconjugated bile acids in patients with insulin-dependent type 2 diabetes.Am. J. Physiol. Endocrinol. Metab.20223222E132E14010.1152/ajpendo.00337.2021 34957857
    [Google Scholar]
  193. WolosowiczM. ProkopiukS. KaminskiT.W. Recent advances in the treatment of insulin resistance targeting molecular and metabolic pathways: Fighting a losing battle?Medicina (Kaunas)202258447210.3390/medicina58040472 35454311
    [Google Scholar]
  194. LeeC.J. SearsC.L. MaruthurN. Gut microbiome and its role in obesity and insulin resistance.Ann. N. Y. Acad. Sci.202014611375210.1111/nyas.14107 31087391
    [Google Scholar]
  195. BallantiM. AntonettiL. MavilioM. Decreased circulating IPA levels identify subjects with metabolic comorbidities: A multi-omics study.Pharmacol. Res.202420410720710.1016/j.phrs.2024.107207 38734193
    [Google Scholar]
  196. LeeS.H. ParkS.Y. ChoiC.S. Insulin Resistance: From Mechanisms to Therapeutic Strategies.Diabetes Metab. J.2022461153710.4093/dmj.2021.0280 34965646
    [Google Scholar]
  197. MastrototaroL. RodenM. Insulin resistance and insulin sensitizing agents.Metabolism202112515489210.1016/j.metabol.2021.154892 34563556
    [Google Scholar]
  198. SchreyerE. ObringerC. MessaddeqN. PATAS, a first-in-class therapeutic peptide biologic, improves whole-body insulin resistance and associated comorbidities in vivo.Diabetes20227192034204710.2337/db22‑0058 35822820
    [Google Scholar]
  199. SangwungP. PetersenK.F. ShulmanG.I. KnowlesJ.W. Mitochondrial dysfunction, insulin resistance, and potential genetic implications.Endocrinology20201614bqaa01710.1210/endocr/bqaa017 32060542
    [Google Scholar]
  200. CiccarelliG. ConteS. CimminoG. MaioranoP. MorrioneA. GiordanoA. Mitochondrial Dysfunction: The hidden player in the pathogenesis of atherosclerosis?Int. J. Mol. Sci.2023242108610.3390/ijms24021086 36674602
    [Google Scholar]
  201. Abdel MageedS.S. DoghishA.S. IsmailA. The role of miRNAs in insulin resistance and diabetic macrovascular complications – A review.Int. J. Biol. Macromol.202323012318910.1016/j.ijbiomac.2023.123189 36623613
    [Google Scholar]
  202. ZhouD. LuP. MoX. Ferroptosis and metabolic syndrome and complications: Association, mechanism, and translational applications.Front. Endocrinol. (Lausanne)202414124893410.3389/fendo.2023.1248934 38260171
    [Google Scholar]
  203. SasakiN. UenoY. OzonoR. NakanoY. HigashiY. Insulin resistance in the adipose tissue predicts future vascular resistance: The Hiroshima Study on Glucose Metabolism and Cardiovascular Diseases.Atherosclerosis202439311754710.1016/j.atherosclerosis.2024.117547 38703418
    [Google Scholar]
  204. LiuG. Association between the metabolic score for insulin resistance (METS-IR) and arterial stiffness among health check-up population in Japan: A retrospective cross-sectional study.Front. Endocrinol. (Lausanne)202414130871910.3389/fendo.2023.1308719 38229737
    [Google Scholar]
  205. ReavenG.M. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome.Cell Metab.20051191410.1016/j.cmet.2004.12.001 16054040
    [Google Scholar]
  206. De VrieseA.S. VerbeurenT.J. Van de VoordeJ. LameireN.H. VanhoutteP.M. Endothelial dysfunction in diabetes.Br. J. Pharmacol.2000130596397410.1038/sj.bjp.0703393 10882379
    [Google Scholar]
  207. PapaetisG.S. SGLT2 inhibitors, intrarenal hypoxia and the diabetic kidney: Insights into pathophysiological concepts and current evidence.Arch. Med. Sci. Atheroscler. Dis.20238115516810.5114/amsad/176658 38283924
    [Google Scholar]
  208. GoldenS.H. FolsomA.R. CoreshJ. SharrettA.R. SzkloM. BrancatiF. Risk factor groupings related to insulin resistance and their synergistic effects on subclinical atherosclerosis: The atherosclerosis risk in communities study.Diabetes200251103069307610.2337/diabetes.51.10.3069 12351449
    [Google Scholar]
  209. D’AgostinoR.B.Sr GrundyS. SullivanL.M. WilsonP. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation.JAMA2001286218018710.1001/jama.286.2.180 11448281
    [Google Scholar]
  210. Di PinoA. DeFronzoR.A. Insulin resistance and atherosclerosis: Implications for insulin-sensitizing agents.Endocr. Rev.20194061447146710.1210/er.2018‑00141 31050706
    [Google Scholar]
  211. OnyangoA.N. Cellular stresses and stress responses in the pathogenesis of insulin resistance.Oxid. Med. Cell. Longev.201820181432171410.1155/2018/4321714 30116482
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X314035241006185109
Loading
/content/journals/ccr/10.2174/011573403X314035241006185109
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test