Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1573-403X
  • E-ISSN:

Abstract

Ischemic heart disease (IHD) is a pathology of global interest because it is widespread and has high morbidity and mortality. IHD pathophysiology involves local and systemic changes, including lipidomic, proteomic, and inflammasome changes in serum plasma. The modulation in these metabolites is viable in the pre-IHD, during the IHD period, and after management of IHD in all forms, including lifestyle changes and pharmacological and surgical interventions. Therefore, these biochemical markers (metabolite changes; lipidome, inflammasome, proteome) can be used for early prevention, treatment strategy, assessment of the patient's response to the treatment, diagnosis, and determination of prognosis. Lipidomic changes are associated with the severity of inflammation and disorder in the lipidome component, and correlation is related to disturbance of inflammasome components. Main inflammasome biomarkers that are associated with coronary artery disease progression include IL‐1, Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3), and caspase‐1. Meanwhile, the main lipidome biomarkers related to coronary artery disease development involve plasmalogen lipids, lysophosphatidylethanolamine (LPE), and phosphatidylethanolamine (PE). The hypothesis of this paper is that the changes in the volatile organic compounds associated with inflammasome and lipidome changes in patients with coronary artery disease are various and depend on the severity and risk factor for death from cardiovascular disease in the time span of 10 years. In this paper, we explore the potential origin and pathway in which the lipidome and or inflammasome molecules could be excreted in the exhaled air in the form of volatile organic compounds (VOCs).

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X302934240715113647
2024-07-19
2024-10-09
Loading full text...

Full text loading...

References

  1. TsaoC.W. AdayA.W. AlmarzooqZ.I. Heart disease and stroke statistics—2023 update: A report from the American heart association.Circulation20231478e93e62110.1161/CIR.0000000000001123 36695182
    [Google Scholar]
  2. SalonenI. HuttunenK. HirvonenM.R. Exhaled nitric oxide and atherosclerosis.Eur. J. Clin. Invest.201242887388010.1111/j.1365‑2362.2012.02662.x 22428603
    [Google Scholar]
  3. NurmohamedN.S. KraaijenhofJ.M. MayrM. Proteomics and lipidomics in atherosclerotic cardiovascular disease risk prediction.Eur. Heart J.202344181594160710.1093/eurheartj/ehad161 36988179
    [Google Scholar]
  4. MočnikM. Marčun VardaN. Lipid biomarkers and atherosclerosis—old and new in cardiovascular risk in childhood.Int. J. Mol. Sci.2023243223710.3390/ijms24032237 36768558
    [Google Scholar]
  5. ZhuD. VernonS.T. D’AgostinoZ. Lipidomics profiling and risk of coronary artery disease in the BioHEART-CT discovery cohort.Biomolecules202313691710.3390/biom13060917 37371497
    [Google Scholar]
  6. DuganiS.B. MoorthyM.V. LiC. Association of lipid, inflammatory, and metabolic biomarkers with age at onset for incident coronary heart disease in women.JAMA Cardiol.2021643710.1001/jamacardio.2020.7073
    [Google Scholar]
  7. OlsenM.B. GregersenI. SandangerØ. Targeting the inflammasome in cardiovascular disease.JACC Basic Transl. Sci.202271849810.1016/j.jacbts.2021.08.006 35128212
    [Google Scholar]
  8. Abdullah MarzoogB. Cytokines and regulating epithelial cell division.Curr. Drug Targets202425319020010.2174/0113894501279979240101051345 38213162
    [Google Scholar]
  9. ThackerS.G. ZarzourA. ChenY. High‐density lipoprotein reduces inflammation from cholesterol crystals by inhibiting inflammasome activation.Immunology2016149330631910.1111/imm.12638 27329564
    [Google Scholar]
  10. RidkerP.M. EverettB.M. ThurenT. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa1707914 28845751
    [Google Scholar]
  11. MarzoogB.A. Tree of life: Endothelial cell in norm and disease, the good guy is a partner in crime!Anat. Cell Biol.202356216617810.5115/acb.22.190 36879408
    [Google Scholar]
  12. MarzoogB.A. Endothelial dysfunction under the scope of arterial hypertension, coronary heart disease, and diabetes mellitus using the angioscan.Cardiovasc. Hematol. Agents Med. Chem.202422218118610.2174/0118715257246589231018053646 37921186
    [Google Scholar]
  13. MarzoogB.A. Autophagy behavior in post-myocardial infarction injury.Cardiovasc. Hematol. Disord. Drug Targets202323121010.2174/1871529X23666230503123612 37138481
    [Google Scholar]
  14. MarzoogB. Lipid behavior in metabolic syndrome pathophysiology.Curr. Diabetes Rev.2022186e15092119649710.2174/1573399817666210915101321 34525924
    [Google Scholar]
  15. MarzoogB.A. The metabolic syndrome puzzles; Possible pathogenesis and management.Curr. Diabetes Rev.2023194e29042220425810.2174/1573399818666220429100411 35507784
    [Google Scholar]
  16. MarzoogB.A. Endothelial cell autophagy in the context of disease development.Anat. Cell Biol.2023561162410.5115/acb.22.098 36267005
    [Google Scholar]
  17. Abdullah MarzoogB. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females.Emir. Med. J.202341e28112221129310.2174/04666221128110145
    [Google Scholar]
  18. XieD. GuoH. LiM. Splenic monocytes mediate inflammatory response and exacerbate myocardial ischemia/reperfusion injury in a mitochondrial cell-free DNA-TLR9-NLRP3-dependent fashion.Basic Res. Cardiol.202311814410.1007/s00395‑023‑01014‑0 37814087
    [Google Scholar]
  19. DuewellP. KonoH. RaynerK.J. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals.Nature201046472931357136110.1038/nature08938 20428172
    [Google Scholar]
  20. KawaguchiM. TakahashiM. HataT. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury.Circulation2011123659460410.1161/CIRCULATIONAHA.110.982777 21282498
    [Google Scholar]
  21. Muñoz-PlanilloR. KuffaP. Martínez-ColónG. SmithB.L. RajendiranT.M. NúñezG. K+ efflux is the common trigger of NLRP3 inflam-masome activation by bacterial toxins and particulate matter.Immunity20133861142115310.1016/j.immuni.2013.05.016 23809161
    [Google Scholar]
  22. SheedyF.J. GrebeA. RaynerK.J. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation.Nat. Immunol.201314881282010.1038/ni.2639 23812099
    [Google Scholar]
  23. ZongP. FengJ. YueZ. TRPM2 deficiency in mice protects against atherosclerosis by inhibiting TRPM2–CD36 inflammatory axis in macrophages.Nature Cardiovascular Research.20221434436010.1038/s44161‑022‑00027‑7 35445217
    [Google Scholar]
  24. HarmT. DittrichK. BrunA. Large-scale lipidomics profiling reveals characteristic lipid signatures associated with an increased cardiovascular risk.Clin. Res. Cardiol.2023112111664167810.1007/s00392‑023‑02260‑x 37470807
    [Google Scholar]
  25. KosekV. HajšlM. BechyňskáK. Long-term effects on the lipidome of acute coronary syndrome patients.Metab20221212410.3390/metabo12020124
    [Google Scholar]
  26. MarzoogB.A. VlasovaT.I. Membrane lipids under norm and pathology.Eur J Clin Exp Med2021191597510.15584/ejcem.2021.1.9
    [Google Scholar]
  27. GibbonsR.J. BaladyG.J. BeasleyJ.W. ACC/AHA guidelines for exercise testing: Executive summary.Circulation199796134535410.1161/01.CIR.96.1.345 9236456
    [Google Scholar]
  28. PhillipsM. CataneoR.N. GreenbergJ. GrodmanR. SalazarM. Breath markers of oxidative stress in patients with unstable angina.Heart Dis.200352959910.1097/01.hdx.0000061701.99611.e8 12713676
    [Google Scholar]
  29. DasS. PalS. MitraM. Significance of exhaled breath test in clinical diagnosis: A special focus on the detection of diabetes mellitus.J. Med. Biol. Eng.201636560562410.1007/s40846‑016‑0164‑6 27853412
    [Google Scholar]
  30. CikachF.S.Jr DweikR.A. Cardiovascular biomarkers in exhaled breath.Prog. Cardiovasc. Dis.2012551344310.1016/j.pcad.2012.05.005 22824108
    [Google Scholar]
  31. SharmaA. KumarR. VaradwajP. Smelling the disease: Diagnostic potential of breath analysis.Mol. Diagnosis. Ther.20232732732134710.1007/s40291‑023‑00640‑7
    [Google Scholar]
  32. Nardi AgmonI. BrozaY.Y. AlaaG. Detecting coronary artery disease using exhaled breath analysis.Cardiology2022147438939710.1159/000525688 35820369
    [Google Scholar]
  33. TrefzP. ObermeierJ. LehbrinkR. SchubertJ.K. MiekischW. FischerD.C. Exhaled volatile substances in children suffering from type 1 diabetes mellitus: Results from a cross-sectional study.Sci. Rep.2019911570710.1038/s41598‑019‑52165‑x 31673076
    [Google Scholar]
  34. van de KantK.D.G. van der SandeL.J.T.M. JöbsisQ. van SchayckO.C.P. DompelingE. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review.Respir. Res.201213111710.1186/1465‑9921‑13‑117 23259710
    [Google Scholar]
  35. AmalH. LejaM. FunkaK. Breath testing as potential colorectal cancer screening tool.Int. J. Cancer2016138122923610.1002/ijc.29701 26212114
    [Google Scholar]
  36. ChapmanE.A. BakerJ. AggarwalP. GC-MS techniques investigating potential biomarkers of dying in the last weeks with lung cancer.Int. J. Mol. Sci.2023242159110.3390/ijms24021591 36675106
    [Google Scholar]
  37. ChungJ. AkterS. HanS. Diagnosis by volatile organic compounds in exhaled breath from patients with gastric and colorectal cancers.Int. J. Mol. Sci.202224112910.3390/ijms24010129 36613569
    [Google Scholar]
  38. SukaramT. TansawatR. ApiparakoonT. Exhaled volatile organic compounds for diagnosis of hepatocellular carcinoma.Sci. Rep.2022121532610.1038/s41598‑022‑08678‑z 35351916
    [Google Scholar]
  39. PolitiL. MonastaL. RigressiM.N. Discriminant profiles of volatile compounds in the alveolar air of patients with squamous cell lung cancer, lung adenocarcinoma or colon cancer.Molecules202126355010.3390/molecules26030550 33494458
    [Google Scholar]
  40. Di GilioA. CatinoA. LombardiA. Breath analysis for early detection of malignant pleural mesothelioma: Volatile organic compounds (VOCs) determination and possible biochemical pathways.Cancers 2020125126210.3390/cancers12051262 32429446
    [Google Scholar]
  41. CatinoA. de GennaroG. Di GilioA. Breath analysis: A systematic review of volatile organic compounds (VOCs) in diagnostic and therapeutic management of pleural mesothelioma.Cancers 201911683110.3390/cancers11060831 31207975
    [Google Scholar]
  42. RodriguesD. PintoJ. AraújoA.M. Volatile metabolomic signature of bladder cancer cell lines based on gas chromatography–mass spectrometry.Metabolomics20181456210.1007/s11306‑018‑1361‑9 30830384
    [Google Scholar]
  43. PrincivalleA. MonastaL. ButturiniG. BassiC. PerbelliniL. Pancreatic ductal adenocarcinoma can be detected by analysis of volatile organic compounds (VOCs) in alveolar air.BMC Cancer201818152910.1186/s12885‑018‑4452‑0 29728093
    [Google Scholar]
  44. ChinS.T. RomanoA. DoranS.L.F. HannaG.B. Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer.Sci. Rep.201881513910.1038/s41598‑018‑22890‑w 29572531
    [Google Scholar]
  45. BrekelmansM.P. FensN. BrinkmanP. Smelling the diagnosis: The electronic nose as diagnostic tool in inflammatory arthritis. A case-reference study.PLoS One2016113e015171510.1371/journal.pone.0151715 26982569
    [Google Scholar]
  46. DeLanoF.A. ChowJ. Schmid-SchönbeinG.W. Volatile decay products in breath during peritonitis shock are attenuated by enteral blockade of pancreatic digestive proteases.Shock201748557157510.1097/SHK.0000000000000888 28498300
    [Google Scholar]
  47. KrilaviciuteA. HeissJ.A. LejaM. KupcinskasJ. HaickH. BrennerH. Detection of cancer through exhaled breath: A systematic review.Oncotarget2015636386433865710.18632/oncotarget.5938 26440312
    [Google Scholar]
  48. HannaG.B. BoshierP.R. MarkarS.R. RomanoA. Accuracy and methodologic challenges of volatile organic compound–based exhaled breath tests for cancer diagnosis.JAMA Oncol.201951e18281510.1001/jamaoncol.2018.2815 30128487
    [Google Scholar]
  49. GruberM. TischU. JeriesR. Analysis of exhaled breath for diagnosing head and neck squamous cell carcinoma: A feasibility study.Br. J. Cancer2014111479079810.1038/bjc.2014.361 24983369
    [Google Scholar]
  50. BajtarevicA. AgerC. PienzM. Noninvasive detection of lung cancer by analysis of exhaled breath.BMC Cancer20099134810.1186/1471‑2407‑9‑348 19788722
    [Google Scholar]
  51. XuZ. BrozaY.Y. IonsecuR. A nanomaterial-based breath test for distinguishing gastric cancer from benign gastric conditions.Br. J. Cancer2013108494195010.1038/bjc.2013.44 23462808
    [Google Scholar]
  52. PeledN. HakimM. BunnP.A.Jr Non-invasive breath analysis of pulmonary nodules.J. Thorac. Oncol.20127101528153310.1097/JTO.0b013e3182637d5f 22929969
    [Google Scholar]
  53. IonescuR. BrozaY. ShaltieliH. Detection of multiple sclerosis from exhaled breath using bilayers of polycyclic aromatic hydrocarbons and single-wall carbon nanotubes.ACS Chem. Neurosci.201121268769310.1021/cn2000603 22860162
    [Google Scholar]
  54. BuszewskiB. LigorT. JezierskiT. Wenda-PiesikA. WalczakM. RudnickaJ. Identification of volatile lung cancer markers by gas chromatographymass spectrometry: Comparison with discrimination by canines.Anal. Bioanal. Chem.2012404114114610.1007/s00216‑012‑6102‑8 22660158
    [Google Scholar]
  55. StottS. BrozaY.Y. GharraA. WangZ. BarkerR.A. HaickH. The utility of breath analysis in the diagnosis and staging of parkinson’s disease.J. Parkinsons Dis.2022123993100210.3233/JPD‑213133 35147553
    [Google Scholar]
  56. Marcondes-BragaF.G. Gioli-PereiraL. Bernardez-PereiraS. Exhaled breath acetone for predicting cardiac and overall mortality in chronic heart failure patients.ESC Heart Fail.2020741744175210.1002/ehf2.12736 32383349
    [Google Scholar]
  57. Marcondes-BragaF.G. BatistaG.L. BacalF. GutzI. Exhaled breath analysis in heart failure.Curr. Heart Fail. Rep.201613416617110.1007/s11897‑016‑0294‑8 27287200
    [Google Scholar]
  58. BykovaA.A. MalinovskayaL.K. ChomakhidzeP.S. Exhaled breath analysis in diagnostics of cardiovascular diseases.Kardiologiia2019597616710.18087/cardio.2019.7.10263 31322091
    [Google Scholar]
  59. BykovaAA MalinovskayaLK TrushinaOV Exhaled breath analysis in diagnosis of chronic heart failure with reduced left ventricular ejection fraction. Cardiology and cardiovascular surgery20191265687610.17116/kardio201912061568
    [Google Scholar]
  60. Marcondes-BragaF.G. BatistaG.L. GutzI.G.R. Impact of exhaled breath acetone in the prognosis of patients with heart failure with reduced ejection fraction (HFrEF).PLoS One20161112e016879010.1371/journal.pone.0168790 28030609
    [Google Scholar]
  61. MalinovskayaLK BykovaAA ChomahidzePSH KopylovPHYU SyrkinAL BetelinVB P3758Exhaled breath analysis in the differen-tial diagnostics of heart failure.. Eur Heart J 201839Suppl. 110.1093/eurheartj/ehy563.P3758
    [Google Scholar]
  62. BiaginiD. LomonacoT. GhimentiS. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatographytandem mass spectrometry.J. Breath Res.201711404711010.1088/1752‑7163/aa94e7 29052557
    [Google Scholar]
  63. YokokawaT. SatoT. SuzukiS. Elevated exhaled acetone concentration in stage C heart failure patients with diabetes mellitus.BMC Cardiovasc. Disord.201717128010.1186/s12872‑017‑0713‑0 29145814
    [Google Scholar]
  64. YokokawaT. SatoT. SuzukiS. Change of exhaled acetone concentration levels in patients with acute decompensated heart failure a preliminary study.Int. Heart J.201859480881210.1536/ihj.17‑482 29794390
    [Google Scholar]
  65. ZhouQ. WangQ. ChenB. Factors influencing breath analysis results in patients with diabetes mellitus.J. Breath Res.201913404601210.1088/1752‑7163/ab285a 31489846
    [Google Scholar]
  66. BrozaY.Y. KhatibS. GharraA. Screening for gastric cancer using exhaled breath samples.Br. J. Surg.201910691122112510.1002/bjs.11294 31259390
    [Google Scholar]
  67. PeledN. FuchsV. KestenbaumE.H. OscarE. BitranR. An update on the use of exhaled breath analysis for the early detection of lung cancer.Lung Cancer202112819210.2147/LCTT.S320493 34429674
    [Google Scholar]
  68. WangM.H. Yuk-Fai LauS. ChongK.C. Estimation of clinical parameters of chronic kidney disease by exhaled breath full-scan mass spectrometry data and iterative PCA with intensity screening algorithm.J. Breath Res.201711303600710.1088/1752‑7163/aa7635 28566556
    [Google Scholar]
  69. ZengQ. LiP. CaiY. Detection of creatinine in exhaled breath of humans with chronic kidney disease by extractive electrospray ionization mass spectrometry.J. Breath Res.201610101600810.1088/1752‑7155/10/1/016008 26857588
    [Google Scholar]
  70. BadjagboK. Exhaled breath analysis for early cancer detection: principle and progress in direct mass spectrometry techniques. Clinical Chemistry and Laboratory Medicine (CCLM)201250111893190210.1515/cclm‑2012‑020822718640
    [Google Scholar]
  71. ChanM.J. LiY.J. WuC.C. Breath ammonia is a useful biomarker predicting kidney function in chronic kidney disease patients.Biomedicines202081146810.3390/biomedicines8110468 33142890
    [Google Scholar]
  72. Rodríguez-AguilarM. Ramírez-GarcíaS. Ilizaliturri-HernándezC. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study.Biomed. Chromatogr.20193312e468410.1002/bmc.4684 31423612
    [Google Scholar]
  73. MarzoogB.A. VolatilomeA. Volatilome: A novel tool for risk scoring in ischemic heart disease.Curr. Cardiol. Rev.20242010.2174/011573403X304090240705063536
    [Google Scholar]
  74. MarzoogB. Breathomics detect the cardiovascular disease: Delusion or dilution of the metabolomic signature.Curr. Cardiol. Rev.2024204e02022422664710.2174/011573403X283768240124065853 38318837
    [Google Scholar]
  75. ZhangY. TuJ. LiY. Inflammation macrophages contribute to cardiac homeostasis.Cardiology. Plus20238161710.1097/CP9.0000000000000035
    [Google Scholar]
  76. SharmaI. BehlT. BungauS. Understanding the role of inflammasome in angina pectoris.Curr. Protein Pept. Sci.202122322823610.2174/1389203721999201208200242 33292150
    [Google Scholar]
  77. LavineK.J. EpelmanS. UchidaK. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart.Proc. Natl. Acad. Sci. USA201411145160291603410.1073/pnas.1406508111 25349429
    [Google Scholar]
  78. RajamäkiK. MäyränpääM.I. RiscoA. p38δ MAPK.Arterioscler. Thromb. Vasc. Biol.20163691937194610.1161/ATVBAHA.115.307312 27417584
    [Google Scholar]
  79. TallA.R. BornfeldtK.E. Inflammasomes and atherosclerosis: A mixed picture.Circ. Res.2023132111505152010.1161/CIRCRESAHA.123.321637 37228237
    [Google Scholar]
  80. MarzoogB.A. Autophagy behavior in endothelial cell dysfunction.Emir. Med. J.20235e14072321872610.2174/0250688204666230714110857
    [Google Scholar]
  81. MarzoogB.A. Nicotinamide mononucleotide in the context of myocardiocyte longevity.Curr. Aging Sci.202417210310810.2174/0118746098266041231212105020 38151845
    [Google Scholar]
  82. MarzoogB.A. Transcription factors – The essence of heart regeneration: A potential novel therapeutic strategy.Curr. Mol. Med.202323323223810.2174/1566524022666220216123650 35170408
    [Google Scholar]
  83. Abdullah MarzoogB. Caveolae’s behavior in norm and pathology.Emir. Med. J.202342e08052321663910.2174/0250688204666230508112229
    [Google Scholar]
  84. Abdullah MarzoogB. Cell physiological behavior in the context of local hypothermia.Emir. Med. J.20235e10072321857610.2174/0250688204666230710102624
    [Google Scholar]
  85. MarzoogB.A. Autophagy behavior in endothelial cell regeneration.Curr. Aging Sci.20231610.2174/0118746098260689231002044435 37861048
    [Google Scholar]
  86. Abdullah MarzoogB. Autophagy behavior under local hypothermia in myocardiocytes injury.Cardiovasc. Hematol. Agents Med. Chem.20232110.2174/1871525721666230803102554
    [Google Scholar]
  87. MarzoogB.A. Incidence rate of post coronary artery shunt complications; Age dependent!Cardiovasc. Hematol. Agents Med. Chem.20242210.2174/0118715257265595231128070227 38265403
    [Google Scholar]
  88. MarzoogB.A. Endothelial cell aging and autophagy dysregulation.Cardiovasc. Hematol. Agents Med. Chem.20242210.2174/0118715257275690231129101408 38265402
    [Google Scholar]
  89. MarzoogB.A. VlasovaT.I. Myocardiocyte autophagy in the context of myocardiocytes regeneration: A potential novel therapeutic strategy.Egypt. J. Med. Hum. Genet.20222314110.1186/s43042‑022‑00250‑8
    [Google Scholar]
  90. TabassumR. RipattiS. Integrating lipidomics and genomics: Emerging tools to understand cardiovascular diseases.Cell. Mol. Life Sci.20217862565258410.1007/s00018‑020‑03715‑4 33449144
    [Google Scholar]
  91. AbrahamsT. NichollsS.J. Perspectives on the success of plasma lipidomics in cardiovascular drug discovery and future challenges.Expert Opin. Drug Discov.202311010.1080/17460441.2023.2292039 38402906
    [Google Scholar]
  92. HinterwirthH. StegemannC. MayrM. Lipidomics.Circ. Cardiovasc. Genet.20147694195410.1161/CIRCGENETICS.114.000550 25516624
    [Google Scholar]
  93. SeverinoP. D’AmatoA. PucciM. Ischemic heart disease pathophysiology paradigms overview: From plaque activation to microvascular dysfunction.Int. J. Mol. Sci.20202121811810.3390/ijms21218118 33143256
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X302934240715113647
Loading
/content/journals/ccr/10.2174/011573403X302934240715113647
Loading

Data & Media loading...

Supplements

  • Article Type: Review Article
Keyword(s): coronary artery disease; inflammasome; ischemic heart disease; Lipidome; metabolome; VOCs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test